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Abstract: We apply advanced machine learning techniques to two challenging jet classifi-

cation problems at the LHC. The first is strange-quark tagging, in particular distinguishing

strange-quark jets from down-quark jets. The second, which we term fragmentation tag-

ging, involves identifying the fragmentation channel of a quark. We exemplify the latter by

training neural networks to differentiate between bottom jets containing a bottom baryon

and those containing a bottom meson. The common challenge in these two problems is

that neither quark lifetimes and masses nor parton showering provide discriminating tools,

making it necessary to rely on differences in the distributions of the hadron types contained

in each type of jet and their kinematics. For these classification tasks, we employ varia-

tions of Graph Attention Networks and the Particle Transformer, which receive jet and

all constituent properties as inputs. We compare their performance to a simple Multilayer

Perceptron that uses simple variables. We find that the more sophisticated architectures

do not improve s-quark versus d-quark jet differentiation by a significant amount, but they

do lead to a significant gain in b-baryon versus b-meson jet differentiation.
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1 Introduction

Jets, which are collimated sprays of particles, are among the most ubiquitous objects

produced at the Large Hadron Collider (LHC) at CERN and other high-energy colliders.

Determining a jet’s origin is often crucial for deciphering the underlying physical process

that occurred in the collision. In other cases, one would like to focus on particular hadrons

that might have been produced, with their decay products contained in the jet. However,

these tasks are complicated by the stochastic nature of the processes governing the evolution

of the original particle into a jet, which typically ends up containing tens of particles.

Moreover, due to the limitations of detectors, only certain properties of the jet constituents
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can be measured. Machine learning (ML) tools are therefore a natural fit for analyzing jet

data. They have been already proven effective in many such tasks (e.g., refs. [1, 2]).

We are interested in strange-quark tagging as part of a broader effort to distinguish be-

tween different types of quarks, gluons, and other objects that produce jets. In many cases,

various established tagging techniques exist. Bottom and charm quarks travel several mil-

limeters within the detector because of their long lifetimes. Their decays produce secondary

vertices, aiding in their recognition and differentiation from other particles [3, 4]. Another

example involves distinguishing gluon from light-quark (u, d, s) jets. This is done by noting

that gluon jets are usually wider, have a larger number of constituents, and exhibit more

uniform energy fragmentation [5]. Similarly, up and down-quark jets can be partially dis-

tinguished using the pT -weighted track charge [6]. Moreover, in scenarios where a heavy

hadronically decaying particle (e.g., a W , Z or Higgs boson or a top quark) is boosted,

such that its decay products are collimated into a single jet, it can be distinguished from

quark/gluon jets by using the jet mass or substructure variables (e.g., refs. [7, 8]). Dis-

tinguishing between strange and down-quark jets, on the other hand, remains a challenge

since these quarks have small masses and identical QCD and electromagnetic interactions,

so the only difference between them is found in their hadronization and subsequent decay

processes.

Simple methods for strange-quark tagging were implemented by DELPHI [9, 10] and

OPAL [11] at LEP and by SLD [12] at SLAC in measurements of the strange-quark forward-

backward asymmetry in e+e− collisions near the Z pole. These methods relied on the fact

that the particle with the highest energy in a jet tends to carry the flavor of the primary

quark. Therefore, strange jets can be characterized by them containing an energetic charged

or neutral kaon or a Λ baryon. More recently, a combination of such inputs was proposed

for identifying Higgs boson decays to ss̄ in a future e+e− collider [13]. A recurrent neural

network (RNN) was proposed for the same task in ref. [14]. And a short while ago, a

transformer-based neural network was proposed for jet flavor tagging, including strange-

quark tagging, for the FCC-ee [15].

Our focus will be on the multipurpose LHC detectors ATLAS [16] and CMS [17], where

the strange-tagging challenge is exacerbated by the inability to determine the identity of

charged hadrons. This implies, in particular, that charged kaons (K±) cannot be distin-

guished from charged pions and protons. Additionally, for jet transverse momentum (pT )

above a few tens of GeV, most of the energetic short-lived neutral kaons (KS) and Λ baryons

reach the hadronic calorimeter (HCAL) without decaying, like the long-lived neutral kaons

(KL), which makes them indistinguishable from neutrons or a collection of soft neutral

hadrons. Still, the presence of these energetic neutral strange hadrons in s-quark jets leads

to an increased energy fraction, on average, deposited in the HCAL, while d-quark jets

have a greater energy fraction deposited in the electromagnetic calorimeter (ECAL) due to

energetic neutral pions decaying to photons. However, the distributions of these quantities

for the two classes of jets overlap significantly, which limits their discriminating power.

Several studies on possible s-tagging strategies for ATLAS and CMS have been re-

ported in the literature [18–21]. Ref. [18] considered processing the tracks in the jet with a

Long Short-Term Memory (LSTM) RNN. Refs. [20, 21] extended this study to use calorime-
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ter information, again with LSTM RNNs. Ref. [21] also implemented a feedforward neural

network (FNN) with multiple properties of the jet and of reconstructed KS and Λ hadrons

as inputs. The resulting s tagger was calibrated on ATLAS tt̄ samples with hadronic W

decays, and then used to constrain the CKM matrix elements |Vts| and |Vtd| by analyzing

data from top-quark decays. Ref. [19] considered Boosted Decision Tree (BDT) classi-

fiers with whole-jet energy fractions as inputs, as well as Convolutional Neural Networks

(CNNs) applied to jet images, and found the CNNs to outperform the BDTs by a small

amount. In all these cases, the discriminating power was found to be quite limited, with

AUC scores not exceeding 0.64.

In this paper, we make another attempt to tackle the difficult problem of strange-

jet tagging by employing different and more sophisticated neural network (NN) architec-

tures that utilize attention mechanisms. One is a variant of the Graph Attention Network

(GAT) [22, 23], which is a powerful Graph Neural Network (GNN) [24, 25] architecture.

Another NN we use is based on the attention mechanisms utilized in the famous trans-

former architecture [26, 27]. Transformers were shown to outperform GNNs and CNNs

in sequence transduction problems [26] and they are at the heart of state-of-the-art ar-

tificial intelligence applications, such as ChatGPT [28]. In collider physics, the recently

introduced Particle Transformer (ParT) [29] (see also refs. [30–33] for more sophisticated

versions) was shown to be very effective in many jet classification tasks, and we will closely

follow its architecture. Similar architectures are also being explored by the ATLAS and

CMS collaborations for various jet tagging tasks [30, 33–36].

The second problem that we will address with the same tools is fragmentation tagging.

By this we mean determining the fragmentation channel of a quark, e.g., identifying the

type of b hadron that was present in a b jet. The motivation for developing fragmentation

taggers comes from several directions. One is measurements of parton fragmentation func-

tions (FFs), which describe how partons transform into hadrons [37, 38]. The FFs, which

are determined by non-perturbative QCD matrix elements, describe the probability of a

parton producing a specific hadron carrying a certain fraction of the parton momentum.

Measuring FFs is useful for improving our understanding, or at least the description, of

QCD dynamics, as well as for tuning Monte Carlo generators. While FF measurements

can be done using specific clean decay channels of the corresponding hadrons (see, e.g.,

refs. [39, 40]), it is interesting to ask whether ML methods can help doing more inclusive

measurements. Such measurements might be particularly useful at high pT , where statistics

is limited.

Another motivation for fragmentation tagging is analyses targeting jets with (decay

products of) specific hadrons, where jets with other hadrons form a background. One

such case is the proposed measurements of b-quark polarization and/or bb̄ spin correlations

in various samples in ATLAS and CMS [41–43]. These proposals rely on reconstructing

semileptonic decays of Λb baryons in b jets. A fragmentation tagger could help reduce the

large background from semileptonic decays of B mesons.

We will demonstrate fragmentation tagging using the example of distinguishing be-

tween b jets containing a b baryon vs. those containing a b meson. Various other definitions

of classes (e.g., focusing on specific hadrons as signal, distinguishing between particles and
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antiparticles, etc.), or narrowing down to a particular subset of jets (e.g., those containing

a lepton), could be relevant to specific applications of fragmentation tagging. They can be

addressed with the same general approach.

The rest of the paper is organized as follows. Section 2 describes the simulated event

samples used in our study. In section 3, we analyze a number of simple variables that

can be used for classification. In section 4, we present the neural network architectures

we used (whose more detailed descriptions are provided in appendix A) and the resulting

performance. Section 5 summarizes our results and conclusions.

2 Event simulation

To obtain representative samples of the jet types of interest, we proceed as follows.

2.1 Event generation

We simulate dijet events in proton-proton collisions with a center-of-mass energy of 14 TeV.

We use MadGraph5 3.5.1 [44] to create the hard scattering process and Pythia 8.308 [45] to

handle the parton showering, hadronization and decays. We define two kinematic regions

for the jets (clustered as described below): pT,jet > 200 GeV and pT,jet > 45 GeV. These

jet pT cuts follow generation-level cuts on the partons of pT > 180 GeV and pT > 35 GeV,

respectively, and pseudorapidity |η| < 4.

To obtain samples of s and d jets, we generate ss̄ and dd̄ events. We include only the

gg and uū initial states so that the only difference between the s and d jets in the resulting

samples will be their flavor. We do it to ensure that the taggers rely solely on the intrinsic

differences between the jets and not on differences between their pT and η distributions in

particular samples.

To obtain samples of b jets, we generate bb̄ events from gg and qq̄ (with q = u, d, s)

initial states. The b jets are separated into a sample containing b baryons and a sample

containing b mesons. The baryon samples are dominated by the Λ0
b (with smaller contribu-

tions from Ξ0
b , Ξ−

b , and Ω−
b ), and the meson samples consist of B

0
(∼ 45%), B− (∼ 45%),

and B
0
s (∼ 10%). Their antiparticles are included.

2.2 Detector simulation

We consider particles in the range |η| < 4, which is approximately the range that will be

covered by the ATLAS and CMS tracking detectors at the HL-LHC [46, 47]. In addition,

charged particles need to satisfy pT > 0.5 GeV. Particles are treated as stable if they do

not decay within 1 m from the beam axis and 3 m along the beam axis from the interaction

point. Based on them, we form the following detector-level objects with the help of the

Monte Carlo truth information:

• Charged hadrons.

We simulate track reconstruction efficiency as a function of the track production

radius rprod (relative to the beam axis) according to the expectations for the ATLAS

tracker at the HL-LHC [48]. This efficiency starts at about 95% for rprod = 0,
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decreases gradually to 65% at rprod ≈ 38 cm, and then drops sharply. For rprod >

50 cm, we set the reconstruction efficiency to zero. Charged hadrons that fail track

reconstruction are counted as neutral hadrons.

For b jets, we distinguish between charged hadrons originating from the primary ver-

tex (PV), which are produced simultaneously with the b hadron during hadronization,

and those produced from the decay of the b hadron, thus originating from a secondary

vertex (SV). This distinction is achieved in our simulation based on truth informa-

tion. If a charged hadron has a b hadron as one of its ancestors, it is categorized as

originating from the SV. Otherwise, it is classified as originating from the PV.

• Neutral hadrons.

Associated with the typical HCAL granularity, we implement a grid with cell sizes

of 0.1 × 0.1 in the η-ϕ space and calculate the energy contributed by the neutral

hadrons to each cell within this grid. Each populated cell is then described as a

single neutral hadron, regardless of how many neutral hadrons actually fell within its

boundaries. While charged hadrons deposit their energy in the HCAL as well, it can

be approximately subtracted based on the momentum measurement of their tracks

in the tracker. Hence, in our simulation, we exclude the energy of charged hadrons

from the HCAL measurements, except for those that fail track reconstruction.

• Photons (γ).

Associated with the typical ECAL granularity, we implement a grid with cell sizes of

0.02 × 0.02 in the η-ϕ space. Photons contributing to the same cell are considered a

single photon. We assume that contributions from electrons (except for those that fail

track reconstruction) are subtracted based on their track measurements and neglect

the electromagnetic energy depositions due to muons and charged hadrons.

• Electrons (e±), except for those failing track reconstruction and then counted as

photons.

• Muons (µ±), except for those failing track reconstruction.

2.3 Reconstruction of KS and Λ decays

Since energetic KS mesons and Λ baryons are more common in strange than in down-quark

jets, it is useful for the purpose of strange-quark tagging to attempt identifying them from

their decay products. In addition, since Λ baryons are more common in b-baryon than in

b-meson decays, while KS mesons are more common in b-meson decays, reconstructing KS

and Λ decays is also useful for the purpose of b-baryon/b-meson discrimination.

The KS meson decays as KS → π+π− with a 69% branching ratio, and KS → π0π0

with a 31% branching ratio. The Λ baryon decays as Λ → pπ− with a 64% branching

ratio, and Λ → nπ0 with a 36% branching ratio. We attempt to reconstruct KS and Λ as

intermediate particles for decays to charged hadrons that occur at a distance greater than

0.5 cm and less than 50 cm from the beam axis. The lower bound helps to avoid confusion
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with prompt tracks that originate from the interaction point, while the upper bound repre-

sents the radius beyond which track reconstruction becomes essentially impossible due to

an insufficient number of tracker layers that can be used. As mentioned above, we simulate

the track reconstruction efficiency as a function of the track production radius based on

ref. [48]. If both charged hadron tracks from the KS or Λ decay are reconstructed, we

remove them from the list of charged hadrons and store them as a reconstructed KS or Λ

object instead.

Apart from the Λ baryon, other relatively long-lived hadrons that are common in b-

baryon decays are the Σ+ and Σ− baryons [49, 50]. The dominant decays of these particles,

Σ+ → pπ0, Σ+ → nπ+, and Σ− → nπ−, produce kinked track signatures. Each of the two

segments of the kinked track may or may not be reconstructible, depending on the tracker

layers it passes through. Due to this nontrivial dependence on the specifics of the tracking

detector and tracking algorithms, we will not consider the identification of these signatures

in this paper, for simplicity. See, however, related studies in refs. [51–56].

2.4 Jet clustering and preprocessing

The objects defined in sections 2.2 and 2.3 are clustered into jets using the anti-kt algo-

rithm [57, 58] with a radius parameter R = 0.4.

We consider the two leading jets in each event. In the case of ss̄ or dd̄ production,

we assume the two leading jets to be s-quark or d-quark jets, respectively. Quark and

antiquark jets are included together in our samples, but we note that for some applications

it can be useful to treat them separately. For bb̄ production, we include b hadrons as soft

ghost particles during jet clustering, and then examine which jets contain a b baryon and

which ones contain a b meson. Jets without b hadrons are discarded. After this procedure,

the ghost particles are removed from the jets.

Properties of the jets and their constituents are recorded for the analysis. Recorded

jet properties are pT , η, the number of constituents, and the fractions of the jet energy

contributed by each type of constituent: photon energy Eγ , electron energy Ee, muon

energy Eµ, charged hadron energy ECH, neutral hadron energy ENH, reconstructed KS →
π+π− energy EKS

, and reconstructed Λ → pπ− energy EΛ (including Λ). In the case of b

jets, instead of ECH, we use two separate variables, ECH,PV and ECH,SV, for charged hadrons

originating from the primary vertex and those from the secondary vertex, respectively, as

detailed in section 2.2.

For the jet constituents, the identities are recorded in binary form. We also record the

transverse momentum pT of each constituent i, normalized with respect to the jet pT ,

pnormT,i =
pT,i
pT,jet

. (2.1)

The positions of the jet constituents in the η-ϕ space, (ηi, ϕi), are expressed in terms of

polar coordinates (r, α) centered on the jet axis, such that

ηi − ηjet = ri cosαi , (2.2)

ϕi − ϕjet = ri sinαi , (2.3)
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Figure 1: Properties of d-quark and s-quark jets in our samples for pT,jet > 200 GeV and

pT,jet > 45 GeV. Median values are given in the legends.

where α = 0 is defined by the location of the most energetic constituent. In addition,

we flip the signs of all αi values if the total momentum on the left side of the α = 0

line is greater than on the right side. This standardizes the data and removes physical

redundancies before feeding the data into the neural networks.

3 Basic discriminating variables

In this section, we look at the distributions of several simple variables that characterize the

jets. Some of them could potentially be used to distinguish between s-quark and d-quark

jets, or between b-baryon and b-meson jets.

3.1 Strange vs. down jets

We first examine variables that characterize the entire jet, including pT,jet, ηjet, and the

number of constituents, for s-quark and d-quark jets. Their distributions are shown in

figures 1a, 1b, and 1c, respectively. The distributions of pT,jet and ηjet are essentially

identical between the d-quark and s-quark jets in our samples, as expected from our choice

of the production processes. The number of constituents is higher for higher-pT jets, as

expected, and tends to be slightly higher in d-quark jets than in s-quark jets.
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Figure 2: Distributions of the constituent types with the highest transverse momentum

(pT ) in s-quark and d-quark jets for (a) pT,jet > 200 GeV, (b) pT,jet > 45 GeV.

Figure 2 shows the distributions of the identities of the constituents with the highest

pT within each jet. As expected, we observe that it is more common for s-quark jets than

for d-quark jets to have a neutral hadron or a reconstructed KS as the most energetic

constituent, while it is the other way around for photons. It is related to the fact that an

s quark often produces an energetic KL or KS meson, while d quarks produce energetic π0

mesons (which decay to photons) more frequently.

Figure 3 shows the mean energy fraction contributed by each type of constituent within

the jet. Related to the previous observations, we see that the energy in neutral hadrons

(as well as reconstructed KS decays, especially for low-pT jets) is greater for s-quark jets,

while the energy in photons is higher for d-quark jets. Consequently, s-quark jets deposit a

larger proportion of their energy in the HCAL, while d-quark jets tend to deposit a greater

fraction of their energy in the ECAL.

The final step in our analysis uses Receiver Operating Characteristic (ROC) curves.

An ROC curve characterizes the discriminating power of applying a threshold to a given

variable. It presents the signal efficiency (εs) vs. the background efficiency (εb) achieved at

varying threshold values. In the present case, the signal efficiency corresponds to correctly

identifying s-quark jets, and the background efficiency indicates the fraction of d-quark

jets incorrectly identified as s-quark jets. For each of the variables, we construct an ROC

curve and compute the Area Under the Curve (AUC). The AUC serves as a metric for

the discriminative power of the variable. Random guessing would give an AUC of 0.5,

whereas an AUC of 1 indicates perfect discrimination, and an AUC of 0 also signifies

perfect discrimination but with an opposite threshold direction. Figure 4 presents the

ROC curves for the ten most discriminative jet and constituent features.1 The neutral

1Features of constituents beyond the fifth most energetic one are not considered for this plot since

they are less likely to be meaningful as individual variables and because they are not available in all jets.

However, features of all the constituents of each jet will be made available to the advanced neural networks.
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Figure 3: The mean energy fractions contributed by the various types of constituents in

d-quark jets (left) and s-quark jets (right) for (a) pT,jet > 200 GeV, (b) pT,jet > 45 GeV.

hadron energy and photon energy, followed by the identity of the most energetic particle,

whether it is a neutral hadron or a photon, show the highest/lowest AUC values, implying

they are the most discriminative features. Figure 5 shows the distributions of the three

most discriminative features identified in figure 4.
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Figure 4: ROC curves for the ten most discriminative features in s-quark (signal) and d-

quark (background) jets for (a) pT,jet > 200 GeV and (b) pT,jet > 45 GeV. Both particle and

jet-level features from section 2.4 are included. The particles are numbered by decreasing

pT values. The kinks present in curves corresponding to particle identities are due to the

binary nature of the variable. The AUC values are given in parentheses in the legends,

where the features are ordered based on the absolute distance of their AUC from 0.5.
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Figure 5: Distributions of the three most discriminative features from figure 4 in d-quark

and s-quark jets for (a) pT,jet > 200 GeV, (b) pT,jet > 45 GeV.
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Figure 6: Properties of b-meson and b-baryon jets in our samples for pT,jet > 200 GeV

and pT,jet > 45 GeV. Median values are given in the legends.

3.2 Bottom baryon vs. meson jets

In this section, we extend our analysis to distinguishing between b-baryon and b-meson

jets, which is an example of fragmentation tagging.

Figure 6 presents the distributions of pT,jet, ηjet, and the number of constituents within

b-meson and b-baryon jets. The distributions of pT,jet and ηjet are essentially identical

between the b-meson and b-baryon jets, as expected. We also see that jets containing b

mesons demonstrate a slightly higher constituent count, on average, than those containing

b baryons.

Figure 7 shows the distributions of the identities of the constituents with the highest

pT in b jets containing a b baryon vs. those with a b meson. We see that neutral hadrons

are more common as the leading constituents in b-baryon jets. This can be attributed to

the Λ baryons and neutrons that are produced in many of the b-baryon decays, in line

with baryon number conservation. While b-meson decays often produce neutral kaons,

they will usually carry less energy due to their lower mass. Nevertheless, we see that

reconstructed KS decays appear more frequently as the leading constituents in b-meson

jets, and reconstructed Λ decays in b-baryon jets, as expected.

Figure 7 also shows that photons are more common as the leading constituents in b-
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Figure 7: Distributions of the constituent types with the highest transverse momentum

(pT ) in b-meson and b-baryon jets for (a) pT,jet > 200 GeV, (b) pT,jet > 45 GeV.

meson jets. This can be attributed to π0 decays. While pions are common in decays of all

b hadrons, the fact that b-baryon decay products necessarily include a baryon with a mass

of about 1 GeV leaves less room for energetic pions. Leptons are also more common in

b-meson jets. While leptons from b → c transitions are expected to contribute similarly to

both types of jets, leptons from c → s transitions are less common in b-baryon decays due to

the small leptonic branching ratio of the Λ+
c (about 4% per lepton flavor) relative to those

of the D mesons (16%, 7%, and 6% per flavor for the D+, D0, and D+
s , respectively) [49].

They are also less energetic because the necessity of having a baryon in the final state

leaves less energy available to leptons.

Figure 8 presents the mean energy fractions of each type of constituent within the jet.

The behavior is similar to that observed for the most energetic constituent: the neutral

hadronic energy and reconstructed Λ energy are higher in b-baryon jets, while the energy

fractions in photons, leptons, and reconstructed KS mesons are larger in b-meson jets.

Lastly, we construct ROC curves for the different features and compute the resulting

AUC scores. Figure 9 presents the ten most discriminative features. The neutral hadron

energy and photon energy, along with the identity of the most energetic particle in the jet

(Particle 1), exhibit the highest/lowest AUC values. For low-pT jets (figure 9b), the energy

in reconstructed Λ baryons is the strongest discriminator for εs ≲ 14%. The efficiency here

is limited by the probability for the jet to contain a Λ baryon and for its highly displaced

Λ → pπ− decay to be reconstructed in the tracker. This discriminator is much less useful

for high-pT jets because the probability for the Λ to decay sufficiently early in the tracker

becomes too small. Figure 10 shows the distributions of the three most discriminative

features identified in figure 9.
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Leptons include electrons and muons.
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Figure 9: ROC curves for the ten most discriminative features in b-baryon (signal) and b-

meson (background) jets for (a) pT,jet > 200 GeV and (b) pT,jet > 45 GeV. Both particle and

jet-level features from section 2.4 are included. The particles are numbered by decreasing

pT values. The kinks present in curves corresponding to particle identities are due to the

binary nature of the variable. The AUC values are given in parentheses in the legends,
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– 15 –



0.00 0.25 0.50 0.75 1.00
Neutral Hadron Energy

0

1

2

3

4

5
No

rm
al

ize
d 

Co
un

ts

AUC = 0.664

b-meson jets
b-baryon jets

0.00 0.25 0.50 0.75 1.00
Photon Energy

0.0

0.5

1.0

1.5

2.0

2.5

3.0

No
rm

al
ize

d 
Co

un
ts

AUC = 0.390

b-meson jets
b-baryon jets

0.00 0.25 0.50 0.75 1.00
Particle 1: Neutral Hadron

0

2

4

6

8

10

12

14

No
rm

al
ize

d 
Co

un
ts

AUC = 0.597

b-meson jets
b-baryon jets

(a) pT,jet > 200 GeV

0.00 0.25 0.50 0.75 1.00
Neutral Hadron Energy

0

1

2

3

4

5

6

7

No
rm

al
ize

d 
Co

un
ts

AUC = 0.679

b-meson jets
b-baryon jets

0.00 0.25 0.50 0.75 1.00
Photon Energy

0.0

0.5

1.0

1.5

2.0

2.5

3.0

No
rm

al
ize

d 
Co

un
ts

AUC = 0.391

b-meson jets
b-baryon jets

0.00 0.25 0.50 0.75 1.00
Particle 1: Neutral Hadron

0.0

2.5

5.0

7.5

10.0

12.5

15.0

No
rm

al
ize

d 
Co

un
ts

AUC = 0.596

b-meson jets
b-baryon jets

(b) pT,jet > 45 GeV

Figure 10: Distributions of the three most discriminative features from figure 9 in b-

baryon and b-meson jets for (a) pT,jet > 200 GeV, (b) pT,jet > 45 GeV.

4 ML-based taggers

We will now describe the format of the data that will be fed into the NNs and the architec-

tures we will be using (implemented with PyTorch [59]), and then analyze the performance

of the taggers.

4.1 NN inputs

Jet properties The whole-jet properties, as described in section 2.4, are the jet’s pT ,

η,2 number of constituents N , and the energy fractions carried by the different types of

constituents: photon energy Eγ , electron energy Ee, muon energy Eµ, charged hadron

energy ECH (in the b-jets case, we use two separate variables: charged hadron energy from

the primary vertex ECH,PV and charged hadron energy from the secondary vertex ECH,SV),

2Since we designed the samples to have similar jet pT and η distributions, these two features are not

useful for discrimination. We still provide them to the NNs since their values can be useful for interpreting

some of the other features, whose distributions have some dependence on the jet pT and η.
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neutral hadron energy ENH, reconstructed KS energy EKS
, and reconstructed Λ energy EΛ

(including Λ). The jet’s pT , η, and the number of constituents N are shifted and scaled to

have a mean of 0 and a standard deviation of 1. This is done to ensure that all features are

within a similar range, which is beneficial for the stability and convergence of the machine

learning algorithms.

Constituent properties The constituent properties, as discussed in section 2.4, are the

normalized transverse momentum (pnormT,i ), the angular position relative to the jet axis in

terms of r and α, and the identity of the constituent. The identity is represented by a set

of discrete variables, corresponding to photons, electrons, muons, charged hadrons (in the

case of the b-jets analysis, there are separate entries for charged hadrons from the primary

and those from the secondary vertex), neutral hadrons, and reconstructed KS/Λ particles.

For each constituent, the corresponding entry is set to 1 if it is a positively charged particle,

a neutral hadron, or a reconstructed Λ baryon, and −1 if it is a negatively charged particle

or a reconstructed KS meson, while the other entries are set to 0.

Graph representation We represent each jet as a graph, implemented with Deep Graph

Library (DGL) [60]. The graph nodes represent the jet constituents. Each node’s features

include the properties of both the jet and the constituent. We employ a fully-connected

topology, where edges are formed between every pair of nodes. For an edge between node i

and node j, a vector is initialized with a list of the jet properties, the constituent properties

from node i, and the constituent properties from node j. We leave it to each of the NNs

to construct useful edge features based on these physical inputs. Reverse edges (between

nodes j and i), are included as well, with the order of the nodes in the vector swapped, to

allow the independent flow of information in each direction. Each graph in our simulated

dataset carries a label to denote the jet type: ‘0’ for d-quark jets or b-meson jets, and ‘1’

for s-quark jets or b-baryon jets.

Datasets Our strange-tagging datasets contain about one million jets, equally distributed

between s-quark and d-quark jets. Our fragmentation-tagging datasets contain about one

million b jets, with a distribution of 30% b-baryon and 70% b-meson jets (after we discarded

a large fraction of the meson jets to avoid a bigger imbalance between the two classes due

to the natural rarity of baryons). The datasets are split into training (72%), validation

(18%), and testing (10%) samples.

4.2 NN architectures

One architecture we use is a variant of a Graph Attention Network (GAT) [22, 23], a

type of Graph Neural Network [24, 25]. In this architecture, the node features are updated

iteratively with aggregated features of all other nodes, with weights determined through an

attention mechanism. In the first iteration, the aggregation weights are determined by an

embedding of the physical features of the two nodes and the jet features, as described above.

In subsequent iterations, the updated features of the node pairs are used to determine the

weights. Finally, the features of all nodes are aggregated and processed to produce the
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classifier output—a number between 0 and 1. The full structure of this NN is described in

appendix A.1.

The most sophisticated NN architecture we consider is based on the idea of the Par-

ticle Transformer (ParT), introduced in ref. [29] and inspired by the famous transformer

architectures [26, 27]. Its central element is the scaled dot-product attention mechanism,

used in two ways. First, in particle attention blocks, learned linear projections are applied

to each node’s features to produce three vectors: query (Q), key (K), and value (V ). Each

node sends its query to all other nodes. The other nodes respond with their values, with

a weight that depends on the similarity (dot product) between the query and their key, as

well as on the edge features. (Different from ref. [29], the edge features in our implementa-

tion are not hand-crafted physical quantities but are instead generated by the NN based on

the physical properties of the two particles and the jet, as mentioned above.) The original

node features are then updated based on these weighted values. This process is repeated

several times. Each iteration enhances the information carried by each node as a result of

its interactions with the other nodes in the graph. Moreover, several sets of queries, keys,

and values, known as heads, operate in parallel, implementing multihead attention. After

the particle attention blocks are completed, a class token—an additional node that does

not represent any particle—is introduced. In class attention blocks, the class token sends

queries to all nodes in the graph and, based on the returned weighted values, develops

an understanding of the jet as a whole. This procedure is also repeated several times.

The class token features are eventually processed to produce the ParT output. For many

additional details, see appendix A.2.

We also implement the simplest possible NN architecture—a Multilayer Perceptron

(MLP)—that is only given the whole-jet properties and the properties of the most energetic

constituent. The purpose of including this architecture alongside more complex models like

the GAT and ParT is to serve as a baseline for performance comparison. By evaluating how

well these sophisticated NN architectures, which are given the properties of all constituents,

perform against the MLP, we can see whether the tasks in question actually benefit from

the architectural advantages of these more complicated models. The details of our MLP

are given in appendix A.3.

4.3 Performance

We now present the results obtained with each of the tagger types for each of the classifi-

cation tasks.

4.3.1 Strange tagging

Figure 11 presents the distributions of the NN outputs for the test datasets. The over-

lapping distributions show that it is challenging for all the models to clearly distinguish

between s-quark and d-quark jets.

The ROC curves characterizing the performance of the different models are presented

in figure 12. Figure 13 zooms in on the region of low (although still sizable and relevant)

signal efficiencies. We can observe that if we choose, for example, to accept εs = 10% of
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Figure 11: Distributions of the NN outputs for s-quark and d-quark jets for (a) pT,jet >

200 GeV, (b) pT,jet > 45 GeV, for ParT (left), GAT (middle) and MLP (right). The median

value for each distribution is indicated in the legend.

the signal events, the background efficiency is εb ≈ 4% for pT,jet > 45 GeV, and 5% for

pT,jet > 200 GeV. In other words, the taggers improve the s/d ratio by a factor of ∼ 2.

Figure 12 shows that all the NNs outperform the most discriminative individual fea-

tures (cf. figure 4). However, all the models have very similar performance, which is also

quite similar to what has been obtained with the simpler architectures explored in the past:

BDTs [19], CNNs [19], LSTM RNNs [20, 21] and FNNs [21]. The sophisticated GAT and

ParT architectures do not bring any improvement in performance, suggesting that the jet

data does not contain much useful information beyond what can be captured by a simple

combination of hand-crafted variables. This leads us to believe that achieving significantly

better strange-tagging performance with the ATLAS and CMS detectors is unlikely, at

least with the physical inputs that we assumed to be available and potentially relevant.
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Figure 12: The strange-tagging ROC curves for the different architectures we have used:

ParT, GAT, and MLP, for (a) pT,jet > 200 GeV, and (b) pT,jet > 45 GeV. The plots show

the signal efficiency (εs), which is the fraction of s-quark jets passing the threshold on

the NN output, as a function of the background efficiency (εb), indicating the fraction of

d-quark jets incorrectly identified as s-quark jets by the model. The AUC values are given

in parentheses in the legends.
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Figure 13: Zoomed-in ROC curves of figure 12 for s-quark vs. d-quark jet classification

by the NN models for (a) pT,jet > 200 GeV, (b) pT,jet > 45 GeV.
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Figure 14: Distributions of the NN outputs for b-baryon and b-meson jets for (a) pT,jet >

200 GeV, (b) pT,jet > 45 GeV, for ParT (left), GAT (middle) and MLP (right). The median

value for each distribution is indicated in the legend.

4.3.2 Fragmentation tagging

The distributions of the NN outputs from the b-baryon/b-meson taggers are presented in

figure 14. All the models show potential for a decent level of discrimination if one does not

insist on having O(1) efficiencies.

The corresponding ROC curves and their AUC values are presented in figure 15, where

b-baryon jets are taken to be the signal. The GAT and ParT models demonstrate similar

performance, which is significantly better than that obtained with the MLP, which in turn

is significantly better than that obtained with any individual feature (cf. figure 9).

We zoom in to low efficiencies in figure 16. We see that for a signal efficiency of

εs = 10%, for pT,jet > 200 GeV, the ParT and GAT models have a background efficiency

of only εb ≈ 1.25%, which is better than the MLP by a factor of 1.4. For pT,jet > 45 GeV,

the ParT model has a background efficiency as low as εb ≈ 0.67%, which is slightly better

than the GAT, and a factor of 1.6 better than in the MLP case. Relative to the original

samples, the best taggers improve the baryon-to-meson ratio at this signal efficiency by a
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Figure 15: The fragmentation-tagging ROC curves for the different architectures we have

used: ParT, GAT, and MLP, for (a) pT,jet > 200 GeV, and (b) pT,jet > 45 GeV. The plots

show the signal efficiency (εs), which is the fraction of b-baryon jets passing the threshold

on the NN output, as a function of the background efficiency (εb), indicating the fraction

of b-meson jets incorrectly identified as b-baryon jets by the model. The AUC values are

given in parentheses in the legends.
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Figure 16: Zoomed-in ROC curves of figure 15 for b-baryon vs. b-meson jet classification

by the NN models for (a) pT,jet > 200 GeV, (b) pT,jet > 45 GeV.
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factor of 8 in the pT,jet > 200 GeV case, and 15 in the pT,jet > 45 GeV case.

4.4 Robustness to measurement errors

To assess the robustness of our results against detector resolution effects (which were not

initially simulated), we conducted a test by introducing a random 5% measurement error

to the transverse momenta of all jet constituents. We then trained our models on this

modified data and subsequently tested them on similarly altered data. By comparing

the ROC curves and AUC values with and without these induced errors, we observed no

significant sensitivity to these effects.

5 Summary and discussion

Jet identification is a broad and imperfectly solved problem in collider physics. In this

paper, we addressed two different cases of jet identification at the LHC using variables

that are measurable in the ATLAS and CMS detectors.

The first case is strange tagging, where we considered the most challenging scenario,

which is differentiating between jets originating from strange and down quarks. A strange-

quark tagger can in principle be useful for measuring the CKM matrix elements Vts and

Vtd in top-quark decays, and Vcs and Vcd in W decays. It can also improve the kinematic

reconstruction of top-quark decays. Additionally, it can increase the sensitivity to new

physics scenarios that involve strange-quark production. Building a strange tagger has

been attempted several times in the past, including with machine learning techniques,

with a moderate level of success [18–21]. In this work, we approached the same problem

with different and more sophisticated neural network architectures.

The second case is fragmentation tagging, which in our example differentiates between

bottom-baryon jets and bottom-meson jets, but would more generally identify the partic-

ular bottom hadron that was produced in the jet. This approach can also be extended to

other quark flavors. A fragmentation tagger can be useful for more inclusive measurements

of fragmentation functions and for reducing background in the proposed b-quark polariza-

tion and spin correlation measurements [41–43]. To our knowledge, this work is the first

attempt at using machine learning for inclusive fragmentation tagging.

The problem of fragmentation tagging is similar to that of discriminating between s and

d-quark jets. First, in both problems, the pattern of parton showering is the same in the two

classes, and therefore cannot be used for discrimination. In addition, the basic properties

of the displaced vertex are the same for the different b hadrons, which is analogous to the

absence of such a typical displaced vertex in both s and d jets. On the other hand, a

remaining handle that can be used in both problems is the different probabilities for the

appearance of the various final-state particles in the jet and their kinematics. These stem

from the differences in the hadronization processes in the different jets, followed by hadron

decays.

In both cases, we structure the jet into a graph format, which represents jet constituents

by nodes and uses the properties of each two constituents, combined with the properties of

the jet as a whole, as input for edges connecting the corresponding pair of nodes. Such a
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representation enables the employment of more advanced architectures like the GAT and

ParT. These neural networks attempt to identify complex patterns distinguishing between

the jets to achieve the desired classification.

In strange tagging, we found that the GAT and ParT architectures provided with

the full jet constituent data did not perform significantly better than a simple MLP that

combined the features of the jet and the leading constituent. This extends the result

of ref. [19], where it was shown that CNNs applied to jet images did not significantly

outperform BDTs that used a small number of key whole-jet variables or even a single

hand-crafted variable.

Fragmentation tagging, on the other hand, shows promise, especially with the more

advanced NN architectures. Our results call for a variety of further studies. These include

refining the classification to specific b hadrons, applying the classification to subsets of

jets (e.g., those with semileptonic decays), as motivated by particular applications, and

extending the framework to other quark flavors. This will likely motivate additional types

of input features. Another important question to address is the systematic uncertainties

associated with reliance on simulation (in our case, Pythia). It would also be beneficial to

develop a scheme to train, or at least calibrate, the classifiers on experimental data. We

hope to address some of these questions in future work.
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A NN details

This appendix provides the detailed descriptions of the NNs implemented in this work.

A.1 Graph Attention Network (GAT)

Our Graph Attention Network (GAT) architecture, inspired by refs. [22, 23], consists of

node and edge embeddings, a graph attention block that iterates n times, and a linear

block.

Node and edge embeddings To transform the physical input features of each node

into a more useful representation, we start with Batch Normalization (BN) [61], and then

employ three MLP layers with (128, 512, 128) neurons, with each of the layers preceded

by Layer Normalization (LN) [62] and followed by the GELU activation function [63].

Similarly, for the edge features, we start with BN and then employ three MLP layers with

(32, 64, 16) neurons, applying GELU and LN between the layers, and concluding with

BN followed by the sigmoid activation function, which is applied to each of the final layer

neurons to produce 16 edge weights within the range (0, 1).
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Graph attention block This block updates each node’s features by aggregating the

features of all other nodes. The 128 features of each node are divided into 16 groups of

8 features, each corresponding to one of the 16 edge weights. Each weight is applied to

aggregate the features within its respective group. The node’s own feature vector is also in-

cluded in the sum, which is then divided by the total number of nodes. The resulting vector

is transformed through an MLP block comprising two layers, where the first layer doubles

the feature dimension, and the second layer restores it to the original dimension of 128,

with GELU and LN applied after the first layer. Subsequently, a residual connection [64]

followed by a dropout [65] is applied.

The edge weights are then recalculated by attending to the updated node features.

First, the features of each pair of nodes i and j are concatenated to create new edge features

wij = [hi, hj ] (where hi and hj are the updated node features). These edge features are

then transformed through two MLP layers with (64, 16) neurons, with a GELU activation

function and LN between the layers, and concluding with the sigmoid activation function

applied to each neuron to produce the new weights (attention coefficients).

The entire graph attention block iterates n = 10 times.

Linear block After the graph attention blocks, the features are averaged across all nodes

to form a single vector representing the entire graph, hmean. The features are also summed

across all nodes to form another single vector, hsum. We then concatenate these vectors

into h = [hmean, hsum]. This concatenated vector h is processed through a linear layer

comprising 64 neurons, followed by a GELU activation function. Subsequently, a second

linear layer with a single neuron and the sigmoid activation function produces a number

within the range (0, 1) as the NN output.

A.2 Particle Transformer (ParT)

In this section, we review the scaled dot-product attention mechanism from ref. [26] and

the Particle Transformer (ParT) model of ref. [29].

Attention mechanism The scaled dot-product attention mechanism starts by trans-

forming each element (token) of the input data through learned linear projections into

three vectors: a query Q, a key K, and a value V . Conceptually, the query is like a ‘search

term’ for identifying relevant information, the key acts as a ‘label’ for each data point, and

the value contains the actual data that the mechanism ultimately focuses on based on the

computed relevance. Attention scores are computed by calculating the dot product of the

query of one token and the key of another, scaling it by
√
dk,3 where dk is the dimension-

ality of each key and query, and applying the softmax function to obtain the weights that

will eventually multiply the values:

Attention(Q,K, V ) = softmax

(
QKT

√
dk

)
V , (A.1)

3The scaling by
√
dk is done to prevent the dot product from becoming too large in magnitude (which

would force the softmax function to give a number very close to 1), which can cause vanishing gradients

during backpropagation [26].
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Figure 17: The Scaled Dot-Product Attention (left) and Multi-Head Attention mecha-

nisms (right) from ref. [26].

as illustrated on the left side of figure 17.

The right side of figure 17 also depicts how the basic attention mechanism is expanded

in Multi-Head Attention (MHA). Rather than processing a single set of Q, K, and V ,

MHA enhances this approach by employing multiple instances of the attention mechanism

(“heads”) in parallel enabling the simultaneous processing of the data with several different

sets of weights. This design allows the model to focus on various aspects of the input

simultaneously. The results from the different heads are then concatenated and linearly

transformed to produce the final output.

The variables Q, K, and V in eq. (A.1) are tensors of dimension (H,N, dk),4 where

H is the number of heads and N is the number of tokens (which is the number of nodes

in the context of GNNs). The number of features, dk, is taken to be the input dimension

divided by the number of heads, to facilitate incorporating residual connections. The dot

product (in the feature space for each pair of nodes and each head) QKT produces a tensor

of dimensions (H,N,N). The softmax function is applied over the last dimension of this

tensor. The resulting attention scores are multiplied by the value tensor, producing a

tensor with dimensions (H,N, dk). To make this more explicit, we can write eq. (A.1) in

components as follows:

Attention(Q,K, V )hni =
∑
m

softmaxm

 1√
dk

∑
j

QhnjKhmj

Vhmi . (A.2)

Particle Transformer (ParT) architecture As illustrated in figure 18, the architec-

ture is segmented into four parts: node and edge embeddings, particle attention blocks,

class attention blocks, and MLP. Firstly, the node and edge features are processed in the

4In general, the feature dimensionality in V can be different from those of Q and K, but we will not be

using this freedom.

– 26 –



Figure 18: The Particle Transformer (ParT) architecture adapted from ref. [29]. Figure

(a) illustrates the overall architecture of ParT, showing how the data is processed through

sequential blocks. Figure (b) details the particle attention block, which includes the pair-

wise multi-head attention (P-MHA) mechanism and linear transformations for feature pro-

cessing. Figure (c) describes the class attention block, where a class token is integrated

to extract global information from the particle nodes via the MHA mechanism and linear

transformations.

node/edge embedding stage. The output subsequently passes through the particle atten-

tion block L times. Following that, the output progresses through the class attention block

M times. Ultimately, it is processed by the MLP, and after the final linear layer, the

sigmoid function is activated to produce a value ranging from 0 to 1.

Node and edge embeddings The embedding procedure maps the physical data into a

new vector space, using an MLP for the node features and a convolutional approach for the

edge features. The node features, after Batch Normalization (BN) [61], are passed through

three linear layers with 128, 512, and 128 neurons, with each of the layers preceded by

Layer Normalization (LN) [62] and followed by a GELU activation function [63]. The edge
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features, after BN, are processed through four layers of pointwise 1D convolution5 with

64, 64, 64, and 8 channels, with BN and GELU after each layer, except for the last layer,

where GELU is not applied. The resulting edge features for each pair of nodes6 form the

so-called interaction matrix U .

Particle attention block The particle attention block comprises two main parts, as

described in figure 18(b). The first part consists of the pairwise multi-head attention (P-

MHA) with LN layers before and after the P-MHA. The P-MHA mechanism is similar to

the MHA mechanism described above, except that the pairwise interaction matrix U is

incorporated as a bias,

Attention(Q,K, V ) = softmax

(
QKT

√
dk

+ U

)
V , (A.3)

to integrate information about the relationships between nodes. The dimension compati-

bility between U and QKT is achieved by ensuring that the number of edge features (after

the embedding) aligns with the number of heads. Our P-MHA is configured with 8 heads.

The same U is used across all particle attention blocks. A dropout [65] is applied after the

softmax.

The second part of the particle attention block is constructed from an MLP with two

linear layers, each preceded by LN, with a GELU activation function and a dropout between

the layers. The first linear layer projects the input into a dimensionality of 512, while the

second transforms it back to the original input dimension.

Residual connections [64], preceded by dropouts, are included after each of these two

parts.

The particle attention block is repeated L = 8 times to deepen the network’s ability

to learn complex patterns.

Class attention block The core concept of the class attention blocks is to generate a

global graph-level representation. This is achieved by introducing a class token hclass [27],

which is a single node, not corresponding to any particular jet constituent, with the same

number of features as the constituent nodes h. The features of hclass are initialized be-

fore the first class attention block by learnable parameters. Subsequently, the class token

computes graph-level features by sending queries to the nodes h (and to itself).

The structure of the class attention block, which is described in figure 18(c), is similar to

that of the particle attention block, with the same hyperparameters, except that dropouts

are not included. The main difference is that instead of the P-MHA, the standard MHA

described at the beginning of this section is employed, with Q, K, and V computed as

Q = Wq hclass + bq , (A.4)

K = Wk z + bk , (A.5)

V = Wv z + bv . (A.6)

5While the MLP and the pointwise convolution act similarly, we stick to the methodology presented

in [29].
6Edges from a node to itself are not included.

– 28 –



Here, z = [hclass,h] is the concatenation of hclass and h, where h is the output of the last

particle attention block, and Wi and bi with i ∈ {q, k, v} are learnable weights and biases,

respectively.

The class attention block is iterated M = 2 times. In each iteration, the particle

embeddings h (the output from the last particle attention block) remain unchanged, while

hclass is updated. This process allows the class token to iteratively extract information

from the particle embeddings through multiple class attention blocks.

Final MLP layers The final stages of the model comprise two linear layers to process the

output from the class attention blocks and generate the final prediction. The representation

obtained from the class attention blocks is passed through a linear layer, followed by a

GELU activation function, to transform it into a lower-dimensional space with 64 neurons.

This is followed by a second linear transformation, reducing the dimensions to a single

number. Finally, the sigmoid activation function is applied, which brings the output to the

range (0, 1), forming the model prediction.

A.3 Multilayer Perceptron (MLP)

The MLP we use comprises five layers with (128, 256, 512, 64, 1) neurons, with a GELU

activation function and LN after each layer, except for the final one, where the sigmoid

activation function is used.

A.4 Hyperparameters

For all models presented, including the ParT, the GAT, and the MLP, we have standardized

the initialization of hyperparameters. The batch size is set to 128. The loss function is

Binary Cross-Entropy (BCELoss). All the dropout rates are 0.1. The Adam optimizer [66]

is employed with a learning rate of 1×10−4 and a weight decay of 1×10−5. A learning rate

scheduler is utilized to reduce the learning rate by a factor of 0.1 if there is no improvement

in the validation loss for a duration of 10 epochs. The training is ended when there is no

improvement in the validation loss over 20 epochs. The inference is done with weights from

the point with the lowest validation loss. For strange tagging with pT,jet > 200 GeV, this

point for the ParT, GAT, and MLP models was at 27, 28, and 36 epochs, respectively,

while for pT,jet > 45 GeV, it was at 13, 36, and 29 epochs, respectively. For fragmentation

tagging with pT,jet > 200 GeV, the lowest validation loss for the ParT, GAT, and MLP

models was attained at 26, 40, and 41 epochs, respectively, while for pT,jet > 45 GeV, it

was at 31, 29, and 31 epochs, respectively.
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