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Searching for physics beyond the Standard Model is one of the main tasks of experimental physics.
Candidates for dark matter include axion-like ultralight bosonic particles. Comagnetometers form
ultra-high sensitivity probes for such particles and any exotic field that interacts with the spin
of an atom. Here, we propose a multi-atom-species probe that enables not only to discover such
fields and measure their spectrum but also to determine the ratios of their coupling strengths to
sub-atomic elementary particles, electrons, neutrons and protons. We further show that the multi-
faceted capabilities of this probe may be demonstrated with synthetic exotic fields generated by a
combination of regular magnetic fields and light-induced fictitious magnetic fields in alkali atoms.
These synthetic fields also enable the accurate calibration of any magnetometer or comagnetometer
probe for exotic physics.

Searching for physics beyond the Standard Model
(BSM) is one of the main tasks of experimental physics
if we are to explain yet ill-understood phenomena such
as the strong CP problem [1], neutrino oscillations [2, 3],
matter-antimatter asymmetry [4], dark energy [5, 6], dark
matter (DM) [7, 8], and the period of cosmic inflation [9–
12] and what preceded it. One class of BSM scenarios
that can be probed with comagnetometers is dark mat-
ter in the form of axion-like particles (ALPs) [13]. These
are light spin-0 particles that arise generically as pseudo-
Nambu-Goldstone bosons of spontaneously broken global
symmetries. They are commonly long-lived and can be
produced in the right amount during the cosmological
evolution of the universe to account for the observed DM
abundance. For ALP masses ma ≪ 1 eV, these ultra-
light bosonic particles will have high occupation num-
bers and behave as a classical field oscillating with fre-
quency f ≃ ma/(2π). One of the strong motivations for
ALPs is the QCD axion – a hypothetical particle natu-
rally emerging from a solution to the strong CP prob-
lem [1, 14]. While the simplest DM scenarios would re-
quire the QCD axion to be too heavy to be probed with
comagnetometers, there exist scenarios in which a much
lighter QCD axion can naturally produce the observed
DM abundance [15–17].

There are several ways or “portals” for ALPs to access
the Standard Model particles [8, 18]. In particular, they
would, in many cases, couple to Standard Model fermion
fields ψ via an interaction term of the form

L =
gf
fa
∂µa ψ̄γ

µγ5ψ , (1)

where a is the ALP field, fa is the spontaneous
symmetry-breaking energy scale, and gf is a model-
dependent and fermion-dependent coupling factor (anal-
ogous to charge and dimensionless in ℏ = c = 1 units).
There are several ongoing experiments with the goal of
detecting such an interaction [19–21]. A pertinent aspect
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is that in the nonrelativistic limit, one obtains an inter-
action that is analogous to the interaction of a spin with
a magnetic field, and follows the Hamiltonian:

H ≈ −gf
fa

S

|S|
· ∇a , (2)

where S is the fermion spin (|S| = 1/2 is the maximum
spin projection), and ∇a is the spatial gradient of the
ALP field. While the couplings gf in the simplest QCD
axion models are commonly O(1), which would make the
effect extremely small, there exist scenarios in which they
are enhanced exponentially [22]. Relevant in particular
in the context of this work are scenarios in which the
couplings to electrons are enhanced relative to couplings
to nucleons, such as one of the scenarios in Ref. [22]. The
ALP couplings to electrons and neutrons are subject to
constraints from star cooling [23] and neutron star cool-
ing [24], respectively. These bound the possible signal
size from a galactic ALP DM halo, making it challenging
for comagnetometers to observe. However, if the ALP
DM is not homogeneous but forms ALP stars that the
Earth encounters once in a while, or produces a halo
around the Sun, its signals can be detectable. Domain
walls of the ALP field are another possible target for co-
magnetometers. These and additional possibilities are
reviewed in Ref. [25].
Currently, comagnetometers are becoming the sen-

sor of choice for testing ALP-fermion interaction theo-
ries [26–29] due to their high sensitivity, relative simplic-
ity, and their unique feature of attenuating low-frequency
magnetic fields [30] while keeping their sensitivity to spin
interactions with exotic fields [31]. A comagnetometer
comprises an alkali vapor and a noble gas with a non-zero
nuclear spin confined in a glass cell. A pump laser polar-
izes the alkali vapor along the axis of the beam (z-axis, see
Fig. 5 in the appendix), which polarizes the noble gas via
spin-exchange collisions along the same axis [32]. Typi-
cally, a second alkali is added to increase the noble gas’s
pumping efficiency and the probed alkali’s polarization
homogeneity [33], but for simplicity, we will neglect this
third species as it has little impact on the fundamental
physics. The cell is heated to have a high vapor density

ar
X

iv
:2

31
2.

05
89

4v
1 

 [
he

p-
ph

] 
 1

0 
D

ec
 2

02
3



2

FIG. 1. Coupling constants of the ALP field with neutrons ξn (left) and protons ξp (right) in units of the coupling with
electrons ξe deduced from two atomic coupling ratios RN = ξA/ξN with the same alkali atom (A =39K) and two different noble
gas atoms (N =3He, 21Ne). The atomic coupling ratio is obtained from simultaneous measurements in two comagnetometers
with the same atomic species but different operation parameters. The values of the sub-atomic elementary particle coupling
constants are calculated using nuclear spin-contents for the alkali and noble-gas atoms, as given in Table II in the Appendix.
To emphasize variations of the nucleon coupling within the range −10 to 10, values below and above this range are represented
by the blue and red colors at the edge of this range. Most of the points in the R1–R2 plane require the coupling to protons
to be larger than to neutrons because the proton spin fractions in both noble gases according to the models from Table II are
small. All the values RN can be simulated by a synthetic exotic field produced with a combination of a regular and fictitious
light-induced magnetic fields.

and placed inside a magnetic shield. A linearly polarized
probe laser beam is sent along the x-axis and measures
the spin projection along this axis. If there were no no-
ble gas, a magnetic field along the y-axis would cause the
spin to precess in the x-z plane and be detected by the
probe beam [34]. When the polarized noble gas is added,
the alkali atoms are affected by the magnetic field in-
duced by the polarized gas. This field can be countered
by applying an external magnetic field equal in ampli-
tude but with an opposite sign (“compensation field”).
Now the net field affecting the alkali is zero, as we had
before the addition of the polarized noble gas, but with
a major difference: The polarized noble gas will follow a
slowly varying transverse magnetic field (with respect to
the pump and probe axes), causing the net magnetic field
sensed by the alkali to remain (close to) zero, effectively
attenuating magnetic field noise. The latter makes the
comagnetometer a leading probe for BSM spin interac-
tions, as it attenuates the low-frequency response to reg-
ular magnetic fields but not to pseudo-magnetic exotic
fields that presumably interact with spins via different
couplings.

Unlike the magnetic field, which interacts with the
electron and nucleon spins with coupling strengths given
by their magnetic moments, the ALP exotic field can
couple to the electron, proton and neutron spins with

unknown arbitrary strengths. Coupling to the electronic
spin affects only the alkali atoms, which have non-zero
electronic spin, while coupling to nuclear spin would
mainly affect the magnetization in the vapor cell due
to noble gas in the comagnetometer, whose density is
much larger than that of the alkali gas. Furthermore,
coupling to the nucleons will also affect the spin of the
alkali through the large magnetic field induced by the
polarized noble gas on the alkali. An exotic field cou-
pling ratio between the coupling to the electron and nu-
cleon spins that is significantly different from that of the
magnetic field, would evade the compensation effect and
lead to a strong response from the comagnetometer. We
briefly note that for the magnetic shielding to not atten-
uate exotic fields that couple to the electron spin, one
should use shielding whose operation is based on electric
current (conductors or superconductors) rather than spin
(soft ferromagnets or ferrimagnets) [35].

While detecting a signal related to ALP exotic fields
can reveal the field’s existence and some of its spectral
properties, it cannot determine the absolute amplitude of
this field because the coupling of the field to the atoms is
not known. Furthermore, coupling to the atoms depends
on the atom’s specific nuclear and electronic structure.
By detecting a signal in a single comagnetometer, it is im-
possible to determine the coupling constants of the exotic
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field with the elementary sub-atomic particles or the cou-
pling to each of the atomic species. Here, we propose a
scheme that uses simultaneous detection in a few comag-
netometers, some of them with different atomic species,
to determine the ratios of coupling constants to the el-
ementary fermions. We further show that this scheme
can be readily demonstrated with the help of a synthetic
exotic field.

In addition, we describe how the synthetic field may
also be used to calibrate the comagnetometers. Calibra-
tion is a major problem in BSM searches because one can-
not generate a calibration field for sensors that have not
yet detected a real signal. Recently, it was proposed to
calibrate a comagnetometer by comparison of a detailed
theoretical model to the frequency-dependent measure-
ments of a magnetic field [36]. However, magnetic fields
always interact with the electronic and nuclear spins of
atoms with the same coupling strength ratio related to
their magnetic moments and, therefore, cannot be used
directly to calibrate the response of the comagnetometers
to fields that may interact with the spins in a completely
different way.

We begin by presenting in Fig. 1 an example of the out-
put of the new probe, namely the determination of the
ratios of the different fundamental couplings between the
exotic field and the elementary sub-atomic particles. The
coupling constants ξf ≡ gf/fa of the exotic field to the
sub-atomic fermions (f = e, n, p for electrons, neutrons
and protons) are not known and may be extracted from
atomic measurements using comagnetometers. However,
a single measurement in an atomic comagnetometer can-
not reveal these constants because each comagnetome-
ter uses two atomic species: alkali atoms and noble gas
atoms and the coupling of the exotic field to each of the
atomic species is a weighted sum over its couplings to the
sub-atomic particles. In particular, the coupling to the
nucleus of a given atom is given by ξnuc = σnξn + σpξp,
where σn and σp are the fractional contributions due
to neutron and proton spins to the spin of the spe-
cific nucleus. In our scheme, we first extract the ratio
RN ≡ ξA/ξN of the coupling of the exotic field with the
alkali atoms (A) and the noble gas atoms (N) used in
a pair of comagnetometers with the same atomic con-
stituents. Then, by taking the results of such a ratio
from two pairs of comagnetometers using different atomic
species we can also extract the coupling ratios ξn/ξe and
ξp/ξe of the elementary subatomic particles, as demon-
strated in Fig. 1.

Let us now detail how a synthetic field enables a direct
way to demonstrate, calibrate, and optimize the comag-
netometer response to ALP-electronic/nuclear spin inter-
action, and utilize this understanding to explain how the
suggested novel probe enables the measurement of the
fundamental couplings. Using a laser to apply an oscil-
lating electric field near the alkali optical resonance re-
sults in an AC Stark shift for the alkali, which manifests
itself as a fictitious magnetic field via the vector polar-
izability [37], while this field does not exist for noble gas

as the latter has only scalar polarizability [38]. In addi-
tion, the laser field frequency is tuned near the resonance
frequency of a given alkali atomic species and therefore
affects mainly these atoms. This makes the light-induced
fictitious magnetic field indistinguishable from an exotic
field that couples only to the alkali spin. Generating a
synthetic field that couples only to the nuclei of the noble
gas is also possible in a comagnetometer by applying a
magnetic field and compensating its effect on the alkali
by generating an equal and opposite light shift fictitious
magnetic field. This way, the magnetic field affects only
the polarized noble gas, mimicking the effect of exotic
field coupling only to the noble gas nucleus. A general
model with an arbitrary ratio between the coupling fac-
tors of the exotic field to the spins of the alkali and the
noble gas can be tested using a combination of regular
and fictitious light-induced magnetic fields. Figure 5 in
the appendix depicts the proposed experimental setup.
We note that generating synthetic fields by non-magnetic
spin interaction with different coupling strengths to elec-
tronic and nucleon spins can also be used in atomic mag-
netometers without the polarized nucleus of a noble gas,
but a comagnetometer is preferred due to its high sensi-
tivity, its ability to attenuate the response to magnetic
fields and the variability of its response to different cou-
pling ratios of exotic fields to fermions.
We now put the synthetic field and all other interac-

tions into one equation. Specifically, the dynamics due to
the interaction of the spins of the gases (ng species) with
the magnetic, exotic and optical fields and the interac-
tion between the spins is described by the set of Bloch
equations for the polarizations Pj of the different species
(1 ≤ j ≤ ng)

Ṗj =
1

qj

{[
γj

(
B+

∑
k

λjkM
k
0Pk + Lj

)
+ ξjb

]
×Pj

+
∑
k

κjknk(Pk −Pj)−Rpj(Pj − s)− ΓjPj

}
,

(3)

where we sum over all existing species (index k). Pj

are normalized to a maximal length of unity, B is the
magnetic field vector, and Lj is the fictitious magnetic
field (AC Stark shift) due to the interaction between the
laser light field and the atoms. Here γj are the gyromag-
netic ratios: electron gyromagnetic ratio γe for the alkali
atoms, γN for the nuclear spin of the noble gas, and qj
are the nuclear slowing-down factors for the alkali atoms
and 1 for the noble gas. The pseudo magnetic field due
to an exotic field interaction, b, is proportional to the
exotic field gradient ∇a. It couples to the atoms via
the constants ξj , representing the coupling to the elec-
tronic and nuclear spins of each species. These coupling
factors emerge from the coupling strengths ge/fa, gp/fa
and gn/fa for the exotic field interaction with the spin of
the electrons, protons and neutrons in the atoms [39]. In
addition to the coupling to external fields, each species
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j experiences an effective magnetic field induced by the
magnetization of each of the other species k through the
coupling factors λjk, which include a geometrical and
temperature-dependent enhancement factor. The mag-
netization is proportional to the normalized polarization
Pk and the maximal magnetization Mk

0 = µknk where
n is the density and µ is the magnetic moment of the
atom k. The second line of Eq. (3) includes the incoher-
ent processes: laser pumping with a rate Rpj (typically
Rpj ̸= 0 only for one alkali gas) and direction unit vector
s, spin exchange with a rate proportional to κjk [33] and
Γj accounts for all the remaining relaxation processes for
species j.

Here we are interested in the steady-state solution of
the coupled Bloch equations in response to a monochro-
matic exotic field. A method for obtaining this solution
for an arbitrary number of species is given in the ap-
pendix. We consider the simple case of two species: a
single alkali gas (j → A, specifically potassium) and a
noble gas (j → N , specifically 3He or 21Ne). The specific
parameters of the model system are given in Table I in
the appendix. The coupling constant ξN of the noble gas
to the exotic field is solely due to the interaction of the
exotic field with the proton and neutron spins. On the
other hand, the coupling constant ξA of the alkali atom
with the exotic field may have an electronic and nuclear
contribution.

In Fig. 2, we present the steady-state response to a
transverse (with respect to the pump axis) magnetic
field perturbation as a function of the perturbation fre-
quency. At low frequencies, the response is attenu-
ated by the mechanism described above. The same re-
sponse is expected for a pseudo magnetic exotic field
if ξA/ξN = γe/γN , such that the exotic field mimics a
magnetic field. However, in the general case the two cou-
pling constants may have an arbitrary ratio RN ≡ ξA/ξN
and the response is then expected to be much stronger
if RN ̸= γe/γN . It is interesting to note that the at-
tenuation near RN = γe/γN is bigger than for exactly
RN = γe/γN as the signal due to exotic field coupling to
the electron is out of phase from the signal due to exotic
coupling to the nucleon [31], resulting in a destructive
interference. Alternatively, near RN = −γe/γN there
could be an increase in the signal as the transverse com-
ponent of the noble gas does not compensate for the field
affecting the alkali but actually adds to it, resulting in an
increase in signal at that value. Those features, and oth-
ers can be seen in Fig. 3 where we show the steady-state
response of the system to an exotic field perturbation
with a frequency of 1Hz along the y-axis of the setup,
as a function of the ratio RN between the exotic field
coupling to the alkali and noble gas.

Now that we have covered all the basic elements,
we are able to show how the multi-atom-species probe
works. The interaction of ALP-fields involves three un-
known coupling parameters: ξe, ξp and ξn for the inter-
action with electrons, protons and neutrons. A single-
frequency measurement of a comagnetometer with given

FIG. 2. Response of a 39K-3He comagnetometer to a (weak)
1 pT magnetic field oscillating with frequency f . The mag-
netic field perturbation is along the y-axis, perpendicular to
the pump and probe beams (Fig. 5). The response is the
steady-state solution of Eq. (3) for the x component of the
polarization of the probed alkali. The gray area represents po-
larization values below the minimal detectable value, which
was taken to be the maximal polarization generated by an
oscillating magnetic signal of 10 fT. It can be seen that low-
frequency magnetic fields are attenuated as expected from a
comagnetometer.

alkali and noble atoms may reveal the frequency of the
exotic field but would teach us nothing about the ampli-
tude of the field and the coupling strengths, which con-
stitute four unknowns. For small perturbations, the re-
sponse of the comagnetometer is linearly proportional to
the field amplitude by of the exotic field. Let us now con-
sider two comagnetometers with different response curves
P j
x(Rj , by), where P

j
x and Rj , for j = 1, 2 represent the

alkali polarizations and coupling ratios of the two comag-
netometers. The ratio P 1

x/P
2
x is independent of the field

amplitude by. If the two comagnetometers have the same
noble gas but different response curves due to different
system parameters (such as gas pressures, pumping rates,
etc.), then the ratio of the responses may reveal the value
of the coupling ratio RN for the nucleus of the noble gas.
The response of different comagnetometers (and the ratio
of their response) as a function of RN can be experimen-
tally simulated by a synthetic exotic field combined from
the two applied fields Ly and By: For any given values
of ξA (coupling to the alkali) and ξN (coupling to the
noble gas) the following perturbations along the y-axis
simulate an exotic field:

By =
ξN
γN

by , (4)

Ly =

(
ξA
γe

− ξN
γN

)
by . (5)

The coefficients ξA and ξN are linear combinations of
the fundamental coupling coefficients of the proton and
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FIG. 3. Response of a 39K-3He comagnetometer to an ex-
otic field perturbation of different frequencies as a function
of the ratio between its coupling to the alkali and noble gas
RN = ξA/ξN . The magnitude of the effective pseudo mag-
netic fields bA ≡ ξAb/γe and bN ≡ ξNb/γN , corresponding to
the coupling with the alkali and noble gas, was normalized
to be

√
|bA|2 + |bN |2 =

√
2 pT for any value of RN in order

to keep the response as a function of RN independent of the
field strength, and that at RN = γe/γN the exotic field will
be equivalent to a 1 pT magnetic field. The gray area, as in
Fig. 2, represents the range of values of Px below the minimal
detectable value.

neutron, with coefficients that depend on the specific nu-
cleus [39], and in the case of ξA also of the electron. The
ratio of the response of two comagnetometers as a func-
tion of RN is depicted in Fig. 4 for two different pairs
of comagnetometers with a different noble gas, such that
the two comagnetometers in each pair have different re-
sponse curves due to two different pumping rates: op-
timal and low (for details, see Table I in the appendix).
We assume the alkali to be the same in all the comagne-
tometers only for simplicity of discussion. Simultaneous
measurement of an exotic field signal in the four comag-
netometers may enable the determination of the coupling
ratios for the sub-atomic elementary particles. Measure-
ment of RN1

and RN2
from the response ratios of two

comagnetometers that share the same noble gas N1 or
N2, respectively, may reveal the exotic field coupling ra-
tios using the following equations:

ξe + (qA − 1)(σA
p ξp + σA

n ξn)

σN1
p ξp + σN1

n ξn
= RN1

, (6)

ξe + (qA − 1)(σA
p ξp + σA

n ξn)

σN2
p ξp + σN2

n ξn
= RN2

, (7)

where ξe, ξp and ξn are the exotic spin couplings to the
electron, proton and neutron, respectively. The σp and
σn are the fractions of the nuclear spin due to proton
and neutron spins, respectively, in the alkali (A) or one
of the noble gases (N1,2) [39], whose values are given in

Table II in the appendix. Solving the set of two equations
would reveal the ratios gp/ge and gn/ge. In fact, a set
of only three comagnetometers where one of them has a
different noble gas is sufficient for determining these ra-
tios, but the example of two pairs of comagnetometers
is simpler to present. In Fig. 4, we show the ratios be-
tween the responses of two pairs of comagnetometers as a
function of the ratio between the fictitious magnetic field
perturbation Ly and the regular magnetic field pertur-
bation By, which corresponds to the coupling ratios RN

of the noble gases used in the comagnetometers. These
differential responses enable the output of the probe, as
presented in Fig. 1.

FIG. 4. Response ratios of different comagnetometers to a
synthetic exotic field perturbation at 1Hz as a function of
the ratio between the light shift (L) and magnetic (B) fields
in the system. The latter ratio is related to the ratio of exotic
field coupling to the alkali and noble gas spin as L/B + 1 =
γN
γe

RN [see Eqs. (4) and (5)]. The response ratios of a 39K-
3He and a 39K-21Ne comagnetometers with optimal pumping
rate, PO

x , to a 39K-3He and a 39K-21Ne comagnetometers with
a low pumping rate, PL

x , are shown in solid red and dotted
blue, respectively. The inset shows how each value of RN

can be synthetically generated by a combination of a light
shift field and a magnetic field (yellow and magenta lines,
respectively) using the experimental scheme in Fig. 5. The
dashed black line shows a possible RN measurement in each
pair of the comagnetometers. By comparing the amplitude
ratios of the exotic field signals measured simultaneously in
the comagnetometers (see text) to the values appearing in
these curves, the exotic coupling ratios can be found. While
the same value of a response ratio can usually be obtained
at two different points on the curve, this apparent ambiguity
can be resolved by looking at the response ratio of a pair of
comagnetometers with different noble gases (see Table III in
the appendix).

As an outlook we note that in this work the analy-
sis was made utilizing the magnitude of the response.
However, the phase of a comagnetometer response to an
exotic field perturbation also carries information [31] that
can be utilized whether the two comagnetometers experi-
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ence the same perturbation [40] or with a time delay. An
additional future improvement would come from work
narrowing the uncertainties concerning proton and neu-
tron spin fractions in the different elements [39]. If theo-
retical models are not accurate enough, improvement of
accuracy can be achieved by utilizing additional species
of noble gas with different spin contents (e.g., 129Xe).
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Appendix A

For any real Cartesian vector a, we define a complex
value

a⊥ ≡ ax + iay. (A1)

It follows that the transverse complex part of the vecto-
rial product of two vectors is given by

(a× b)⊥ = i(−a⊥bz + azb⊥), (A2)

and

(a× b)z =
i

2
(−a⊥b∗⊥ + a∗⊥b⊥). (A3)

Working on Eq. (3), let us first assume that the ap-
plied magnetic field and the pumping direction s are in
the same direction, ẑ. Then, in the absence of additional
perturbations, all the polarizations are in the same direc-
tion, and the steady-state solution (Ṗj = 0) for Eq. (3)
reads

Rpj =
∑
k

[(∑
k′

κjk′nk′ + Γj +Rpj

)
δjk

− κjknk

]
P k
z .

(A4)

This can be written in a matrix form as

K̂Pz = Rp , (A5)

and has the solution

Pz = K̂−1Rp . (A6)

The equations for the transverse components of the
polarization are then

Ṗ j
⊥ = i

γj
qj

[
−b̄j⊥P

j
z −

∑
k

λjkM
k
0 P

k
⊥P

j
z + bjzP

j
⊥

+
∑
k

λjkM
k
0 P

k
z P

j
⊥

]
+

1

qj

∑
k

κjknk(P
k
⊥ − P j

⊥)−

(Γj +Rpj)P
j
⊥ . (A7)

where b̄j⊥ ≡ B⊥ + Lj
⊥ +

ξjb⊥
γj

is the perpendicular com-

ponent of the effective magnetic field acting on species j.
This can be written in a matrix form

Ṗ⊥ = ÂP⊥ − i
γ

q
b̄⊥Pz, (A8)

where the last term is a vector where each component is
a product of the effective transverse field and the polar-
ization in the longitudinal direction, and the matrix Â is

given by

Âjk = −i 1
qj

{
γjP

j
z λjkM

k
0 + κjknk +

δjk

[
iγj

(
bjz +

∑
k

λjkM
k
0 P

k
z

)
−

∑
k

κjknk − Γj −Rpj

]}
. (A9)

Let us now take the transverse field perturbation to be
monochromatic with frequency ω

b̄⊥(t) = b̄⊥(0)e
−iωt . (A10)

By assuming a similar time-dependence of the solution
P⊥ we obtain

−iωP⊥ = ÂP⊥ − i
γ

q
b̄⊥Pz . (A11)

The solution is then readily given by

P⊥(ω) = −[Â+ iω1̂]−1 γ

q
b̄⊥Pz . (A12)

The polarization vector in response to a transverse field
with frequency ω is

P(t) = P+e
iωt +P−e

−iωt , (A13)

where P± are complex. The actual polarization vectors
are

Px = Re{P} , Py = Im{P} . (A14)

It follows that the amplitudes of the response to an input
magnetic field with a given amplitude are

√
2⟨P2

x,y⟩ =
1

2
|P+ ±P∗

−| . (A15)

The + and − signs refer to the x and y components, re-
spectively (defined with an input field in the x direction).
The phases of the output signals with respect to the in-
put signal are given by the argument of the respective
complex quantities

ϕx,y = arg{P+ ± P ∗
−} . (A16)

The following parameters in Table I were used for gen-
erating Figs. 2, 3 and 4.
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FIG. 5. Schematics of the experimental setup generating a
synthetic exotic field in a comagnetometer. A pump laser
propagating along the z-axis is circularly polarized using a lin-
ear polarizer (LP) and a quarter-wave plate (λ/4) and tuned
to the alkali resonance. A linearly polarized probe beam laser
is detuned from the alkali resonance and propagates along the
x-axis. A light-shift laser (LS laser) is detuned from the al-
kali resonance and propagates along the y-axis. The LS laser
is circularly polarized and is frequency-modulated using an
EOM modulator (mod). After traversing the vapor cell, the
probe beam polarization angle is measured using a Wollaston
prism and a differential amplifier (Diff. Amplifier). The vapor
cell (Cell) is placed inside a magnetic shield (Shield), and a
set of coils (Coils) are added to nullify any residual magnetic
field, including the magnetic field induced by the polarized
atoms. By choosing a proper value of the light shift field and
magnetic field (see text), it is possible to synthetically gener-
ate exotic fields with a different coupling to the electron and
nucleus, allowing us to directly and accurately measure the
system sensitivity to authentic exotic fields.
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