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Abstract: If “dark quarks” from a confining hidden sector are produced at the LHC,

they will shower and hadronize to dark sector hadrons, which may decay back to Standard

Model particles within the detector, possibly resulting in a collimated spray of particles

resembling a QCD jet. In this work we address scenarios in which dark hadrons decay

with a measurable small displacement, such that the relevant background is dominated by

heavy-flavor jets. Since dark sector parameters are largely unconstrained, and the precise

properties of a dark QCD-like theory are difficult to compute or simulate reliably in any

case, model-independent, data-based searches for such scenarios are desirable. We explore

a search strategy employing weakly supervised machine learning to search for anomalous

jets with displaced vertices. The method is tested on several toy signals, demonstrating

the feasibility of such a search. Our approach has potential to outperform simple cut-based

methods in some cases and has the advantage of being more model-independent.
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1 Introduction

The diversity of particles and interactions in the Standard Model (SM), along with the

multiple questions that the SM leaves unanswered, make it plausible for additional sectors

of particles to exist in nature. One simple possibility is an exotic QCD-like sector [1].

The fermions and gauge bosons of this sector can be charged under a new (“dark”) gauge

group and neutral under the SM. They are termed dark quarks and dark gluons, in analogy

with QCD. If the dark gauge group confines at low energies, the spectrum of this sector

will contain composite states neutral under the new gauge group—dark hadrons. One

motivation for these models is the possibility that dark hadron species that are stable on

cosmological scales may account for dark matter [2–5]. However, such models are interesting

also if they do not play this role.

If some portal (for example, a heavy mediator) couples the SM with the hidden sector,

dark quarks can potentially be produced at the LHC. If dark quarks are produced, they will

undergo parton showering and hadronization in the dark sector, similar to QCD quarks.

Species of dark hadrons that are stable on detector scales will escape the detector leaving

a trail of missing energy. On the other hand, some species may be unstable, decaying back

to the SM within the detector and forming a peculiar jet of SM particles. In this work we

aim to obtain better sensitivity to such types of objects, known as dark jets.

The collider signature of dark jets (see ref. [6] for a review) is greatly influenced by dark

sector specifics. Many typical models would contain light dark pions π′, and dark vector

mesons ρ′ and other hadrons with masses of order of the dark sector confinement scale

ΛQCD′ . In such scenarios, dark jets can be coarsely characterized by three parameters: the

average fraction of momentum carried by stable (invisible) dark hadrons rinv, dark pion

mass mπ′ , and dark pion lifetime τπ′ .

In cases with sizable rinv, a key signature will be missing energy /ET aligned with a jet.

This scenario of semivisible jets was analyzed in refs. [7, 8], where a search program for

such models was proposed. References [9–11] suggested also making use of jet substructure

variables. A search for resonant production of semivisible jet pairs was conducted by CMS

in ref. [12]. It employed the cuts motivated by ref. [8] to probe for models with intermediate

rinv and promptly decaying visible dark hadrons. This search also used a boosted decision

tree with jet substructure inputs motivated by refs. [9, 10]. ATLAS has performed a search

for nonresonant production of semivisible jets in ref. [13]. Potential use of supervised

deep neural networks (NN) for the classification of prompt, semivisible jets was studied

in refs. [14, 15], weakly supervised learning was considered in ref. [16], and the use of an

unsupervised NN, an autoencoder, was considered in ref. [17].

Other types of dark jet scenarios, where missing energy is no longer a dominant sig-

nature, are also possible. For example, dark pions with macroscopic flight distances, cτπ′

of order 1 − 10 cm, will manifest as highly displaced objects within the jet. A novel re-

construction object, Emerging Jet, has been proposed for the classification of such jets in

ref. [18]. A search for such objects, which are jets with few or no tracks originating from the

primary vertex, was later conducted by CMS [19]. This search was sensitive to scenarios

with large dark pion flight distance, where QCD background is scarce.
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Overall, the large number of unknown dark sector parameters (gauge group, con-

finement scale, number of dark quark flavors and their masses, additional interactions

within the dark sector, type of couplings to the SM and their strength), combined with the

difficulty of simulating dark sector showering and hadronization reliably, call for model-

independent and simulation-independent searches for anomalous jets. Machine learning

(ML), and in particular weakly supervised ML, is a natural tool for such a task.

In this work we propose to employ weakly supervised ML for a largely model-independent,

data-based search that would be sensitive to anomalous jets (such as dark jets) containing

mildly displaced decays, so that the background is dominated by heavy-flavor jets. We will

not assume the anomalous jets to contain missing energy since that case has already been

explored a lot in the literature, but will instead rely on the presence of displaced objects.

We will assume the anomalous jets to be pair produced in a decay of a heavy resonance.

The rest of the paper is organized as follows. In section 2 we review the relevant ideas

of weakly supervised machine learning. In section 3 we describe the proposed search, ex-

amine the most important backgrounds and define the features that will be made available

to the NN. In section 4 we define the datasets of signals and background that we use to

simulate the search. We present the search simulation in section 5. We discuss the results

and state our conclusions in section 6. Appendix A describes the event generation. The

details of the neural network classifier are provided in appendix B. Jet feature distribu-

tions of all benchmark signals compared with the background distributions are presented

in appendix C. The fit procedure used for estimating bump significance is described in

appendix D.

2 Weakly supervised machine learning

While the most traditional ML approach, that of fully supervised learning, can provide

very powerful classifiers, using it to search for physics beyond the Standard Model (BSM)

requires specifying the exact BSM scenario that is being searched for (and being able to

simulate it reliably). This makes fully supervised methods very model specific. In recent

years, methods have been developed which lessen signal model dependence for selecting

the test statistic. These methods provide different amounts of model independence, with

the common trade-off of model independence vs. signal sensitivity.

An example of a completely model-independent test statistic is the output of an au-

toencoder trained on data (e.g., refs. [20–23]). This unsupervised learning method, while

being completely model agnostic, lacks sensitivity to many signals [24, 25].

A more moderate approach, in the realm of weakly supervised learning, requires knowl-

edge of class proportions. In fully supervised training the true class of each training exam-

ple, e.g. signal/background, is known and provided to the NN. Knowledge of class propor-

tions means only knowing what fraction of training examples belong to each class. Using

class proportions alone, a classifier can learn to distinguish between classes, while training

directly on the mixed data. In ML literature this method goes by the name Learning from

Label Proportions [26, 27]. It was shown to be effective in quark/gluon discrimination,

where calculation of flavor proportions is possible [28, 29].
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This was extended to cases where label proportions are unknown, with the sole re-

quirement of two event groups that have different signal proportions—this was termed

Classification Without Labels (CWoLa) [30, 31]. To implement it in a search, one must

separate the data to signal- and background-rich groups, based on some property of the

signal model. In the case of a signal resonant in some parameter, the signal-rich sample

can be obtained from selecting events near the resonance. This method goes by the name

Extended Bumphunt [32] and was implemented by ATLAS in ref. [33]. Using CWoLa in a

monojet search to enhance its sensitivity to semivisible jets was proposed in ref. [16].

Another approach, Tag N’ Train [34], suggests using signal dijet topology to obtain the

mixed samples. This method uses cotraining, with the dataset of dijet events being split into

two views of each event, one containing first-jet features and the other containing second-jet

features. A classifier is trained to discriminate signal-like first jets from background-like first

jets. A second classifier is similarly trained on second-jet features. Finally these classifier

predictions are combined amounting to an event classifier. Each of the jet classifiers is

trained using CWoLa, where signal- and background-rich labels are obtained from some

criterion on the other jet in the event. In ref. [34] this criterion was taken to be a cut on the

output of an autoencoder trained on the jet. It was shown in [34] that Tag N’ Train and

Extended Bumphunt can be effectively combined in searches for a dijet resonant signal. In

the current work, we adapt this last approach to suggest a new search for dark jets.

3 Proposed search

We propose a largely model-independent, data-based search that would be sensitive to

resonantly pair-produced anomalous jets containing mildly displaced decays.

3.1 Strategy

We first select for dijet events with displaced objects, as will be described in section 3.2.

Next we define signal and background regions in dijet invariant mass based on a mediator

mass and resonance width hypothesis.

An event classifier is obtained according to the following procedure. As in Tag N’

Train [34], each of the two leading jets in each event may be assigned a signal- or background-

rich weak label according to some condition on the “other jet” (among the two) in the event.

In Tag N’ Train, the “other jet” condition was based on an autoencoder output, which is

fully signal model independent. We propose to use some model assumption, namely the

fact that dark jets will often have more constituents than SM jets.1 Therefore, we choose

jet constituent count, nobj, as our weak classifier.2 The two jets are ordered by descend-

ing pT and labeled j1 and j2. Signal-rich labels are assigned to jets within the signal

1One could also design an analogous search that would be sensitive to scenarios in which BSM jets have

fewer constituents than SM jets.
2Other quantities, such as the number or the properties of the displaced vertices in the jet, could serve

as alternative weak classifiers. Since our goal is to define a model-independent search, we want the criterion

defining the weak labels to be simple and general and not optimized for any particular scenario. The

more detailed use of the various features that might distinguish signal from background in each particular

scenario is left to the neural network.
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region for which the other jet constituent count is greater than some chosen threshold nS
obj.

Background-rich labels are assigned to jets coming from the entire mass range (signal re-

gion and sidebands) for which the other jet constituent count is smaller than some chosen

threshold nB
obj. Using these S/B-rich labels, two classifiers are trained, one on j1s and the

other on j2s. We define our test statistic for the event as a whole to be the product of the

two jet classifier outputs. This quantity will tend to have higher values for signals than for

background events. To avoid inference of events used for training, the data should be split

into k-folds. The preceding steps should be repeated k times, each time leaving a different

fold out of training. The event classifier not trained on a given fold is used to classify the

fold events.

The classifier is applied to both signal-region and sideband events, and a cut with

efficiency ϵD for the data in that entire mass range is applied on the classifier output.

The optimal value of ϵD, i.e., most sensitive to signal, is model dependent and therefore

several values should be used. After applying the cut, the invariant mass distribution in

the sidebands is interpolated into the signal region. The expected event count in the signal

region, based on the interpolation, is compared to the measured number of events in the

signal region. The significance of the excess is estimated based on Poisson statistics and

systematic uncertainties of the interpolation.

The search is to be conducted in the form of a bump hunt in dijet invariant mass, i.e.

each mediator mass hypothesis, mZ′ , is considered separately. Resonance width can either

be determined from simulation or scanned over (e.g., as in the BumpHunter [35]).

Once a significant excess is identified by the NN, the jets from the events that pass

the NN cut can be examined manually to understand their nature.

3.2 Event selection

Event selection for the proposed analysis is performed in two steps: a primary selection

for dijet events adhering with trigger limitations, and a more tailored selection for events

with displaced objects. Event selection requirements are summarised in table 1.

3.2.1 Primary selection

The main motivation for the primary selection is to adhere with trigger limitations. To

ensure this, we follow the cuts of an ATLAS dijet resonance search [36]. First, the two jets

are required to have pT > 150 GeV and |η| < 2. Two more event level cuts are applied.

The first is based on half the rapidity separation of the leading jets, y∗ = (y1 − y2)/2.

The absolute value of this observable tends to be smaller for s-channel processes, such

as our resonant signal. To increase signal purity we therefore require |y∗| < 0.8. The

second requirement is a minimal azimuthal separation between leading jets, ∆ϕ(j1, j2) =

|ϕ1 − ϕ2| > 1, to prevent excessive overlap between the jets. Finally, a lower bound of

1133 GeV on dijet invariant mass mjj is required to ensure compliance with the trigger [36].

3.2.2 Displaced object selection

We wish to select for dijet events with displaced objects. The criterion we chose for such

events is that at least 20% of the jet transverse momentum should be carried by tracks
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that are associated with reconstructed displaced vertices. To suppress contributions from

long-lived SM hadrons, vertices with two tracks and vertex mass close to the Λ or K0
S

masses (computed with the appropriate particle identity assumptions for the products) are

discarded. A summary of event requirements is given in table 1.

pjetT > 150 GeV

|η|jet < 2

mjj > 1133 GeV

|y∗| < 0.8

∆ϕ(jj) > 1∑
disp.vert.

pvertexT /pjetT > 0.2

Table 1: Event selection summary. Both leading jets (highest pT ) must satisfy pT , η, and

displaced vertex requirements.

3.3 Standard Model background

Displaced vertices are primarily a signature of events containing heavy flavor (b or c)

quarks. We therefore expect the leading SM background for our analysis to be dijet events

where both leading jets are of a heavy flavor. To estimate the background magnitude and

composition we generated events in four groups:

• “bb events” contain a pair of b-flavored jets at the parton level. These events are

primarily bb̄, with smaller contributions from bb and b̄b̄.

• “cc events” contain a pair of c-flavored jets, analogous to the above.

• “bc events” contain one b-flavored jet and one c-flavored jet.

• The fourth group consists of the remaining dijet events (which we will call “other”),

which are events that contain only one or no heavy-flavor jets at the parton level.

Event generation, including details about detector simulation and vertexing, is described

in appendix A.

The total background cross section after the selection described in section 3.2 is ∼
0.13 pb.3 The leading contribution (∼ 50%) comes from bb events. The next dominant

background (∼ 37%) comes from light or semi-light QCD events, i.e., with less than two

final state heavy quarks at the parton level (the “other” category above). This group is

dominated by events with gluons splitting to heavy quarks, a process that is significant in

3To reduce the computational burden, our simulation used leading-order matrix elements, followed by

parton showering. However, higher-order QCD corrections, including hard jet radiation, can have some

effect on the production cross section, the selection efficiency, and the properties of the two leading jets.

While our data-based search methodology is not directly dependent on the simulation details, quantitative

claims about the range of scenarios that can be discovered or excluded may be affected.
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the hard events under consideration [37]. The remaining groups, bc and cc, account for

10% and 3% of the events, respectively. The selection efficiencies of the different groups

are summarized in table 2.

Group Nprim Npass ϵDO σprim (pb) σ (pb)

bb 1066652 100551 0.094 0.71 0.067

jj (“other”) 671729 62 9.2 · 10−5 530 0.049

cc 2059665 27069 0.013 0.98 0.013

bc 577405 9163 0.016 0.24 0.0038

Table 2: Selection efficiencies and magnitudes of different SM channels. The cross section

after the primary selection, σprim, is derived from the generation level cross section of

group events obtained from MadGraph at leading order times the efficiency of the primary

selection. Displaced object efficiency is presented with respect to events after primary

selection, namely ϵDO =
Npass

Nprim
(where Nprim and Npass refer to the numbers of our MC

events). The final available cross section is determined according to σ = ϵDOσprim.

3.4 Jet features used for classification

The cotraining step of the search requires a choice of jet classification model and jet repre-

sentation. We chose to represent each jet as a list of high-level features as input to a dense

NN model. A complete description of the NN model we used is provided in appendix B.

More complex representations and architectures, such as a long short-term memory (LSTM)

network on lists of vertex features, were also considered. In our testing, these were outper-

formed by the simple dense architecture and therefore abandoned. This could change as

the amount of analysis data grows since more data often favors more complex networks.

Jet features include vertex features chosen to represent the properties of displaced

objects within a jet and general jet features that encode complementary jet information.

We consider the following vertex features: vertex mass, vertex transverse displacement

D0 divided by the boost factor γβT , fraction of jet’s transverse momentum carried by the

vertex tracks, and vertex track count. For the features above, in the case of more than one

reconstructed vertex, the median value across reconstructed vertices is used. The boost

factor, γβT , is computed according to

γβT =
pvertexT

mvertex
(3.1)

where pvertexT is the magnitude of the vector sum of pT s of tracks associated to the vertex.

Vertex mass is calculated according to

m2
vertex =

(∑
tracks

√
p2
track +m2

π±

)2

−

(∑
tracks

ptrack

)2

(3.2)

i.e. the tracks are assigned the charged pion mass for estimation of their energy, and the

sum is over all tracks associated with the vertex. We also supply the total number of
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reconstructed vertices in the jet, excluding the primary vertex and the number of particle-

flow objects in the jet – nobj.

In our toy dark sector models that will be described in the next section, the discrimi-

nation power of each of these features varies with dark sector parameters. The dark pion

mass mπ′ directly affects mvertex. Increasing dark pion mass also decreases the number of

vertices per jet and increases the number of tracks per vertex. The dark pion lifetime τπ′

directly affects (D0/γβT )
vertex and also indirectly affects the number of vertices. For larger

dark pion lifetime, more displaced vertices are distinguished from the primary vertex and

therefore the number of displaced vertices increases.

4 Benchmark datasets

While the search is intended to be largely model independent, it is useful to test the strategy

on some examples. Since the detailed physics of confining hidden sectors is not known well

and is very model dependent, and the simulation tools are limited too, we consider a set

of simplistic toy models, defined as follows.

4.1 Benchmark hidden sectors

We base our toy models on the scenario that is obtained in the Pythia8 Hidden Valley

module [38] for an SU(3) gauge group with a single quark flavour. We consider fully vis-

ible jets, i.e. rinv = 0, which manifests as no excessive missing transverse energy. We

consider six combinations of the remaining two parameters, with values (mπ′ , cτπ′) =

{5 GeV, 10 GeV}×{0.1 mm, 0.2 mm, 0.3 mm}. Other mass parameters of the dark sector—

confinement scale, constituent dark quark mass, and vector meson mass—were scaled with

mπ′ , starting at ΛQCD′ = 5 GeV, mq′ = 5 GeV, and mρ′ = 10.5 GeV for mπ′ = 5 GeV. The

probability for creating dark vector mesons is kept at its default value of 0.75. We assume

the dark vector mesons decay promptly and exclusively to dark pion pairs: ρ′ → π′π′. Our

simulated dark pions decay exclusively to SM down quark-antiquark pairs: π′ → dd̄. De-

cays to heavier flavor quarks are in principle possible for mπ′ values considered and perhaps

even motivated by helicity suppression. However, we found such scenarios less interesting

as they produce many additional displaced vertices from the decays of the heavy flavor

quarks, amounting to a signal too distinct from QCD background. The benchmark Hidden

Valley parameters are summarized in table 3.

We test the sensitivity of our proposed search to resonant dijet events produced via

pp → Z ′ → q′q̄′ with mZ′ = 2 TeV. We assume an interaction Lagrangian of the following

form:

L ⊃ −gqZ
′
µq̄γ

µq − gq′Z
′
µq̄

′γµq′ , (4.1)

where the first term describes the Z ′ coupling to SM quarks and the second to dark quarks.

4.2 Benchmark datasets

Our background dataset contains 106k events that passed the full event selection in the

dijet invariant mass range 1400 GeV ≤ mjj ≤ 2400 GeV. The majority, 89k, are bb events
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Gauge group SU(3)

ΛQCD′ 5 / 10 GeV

nq′ 1

mq′ 5 / 10 GeV

mπ′ 5 / 10 GeV

mρ′ 10.5 / 21 GeV

cτπ′ 0.1 / 0.2 / 0.3 mm

rinv 0

Table 3: Hidden Valley parameters used for the six benchmark signal configurations.

and the rest, 17k, are cc events. As can be seen in table 2, these two channels combined

account for the majority of QCD events that pass selection. We would ideally simulate the

entire QCD dijet sample (rather than only bb and cc); however this is too computationally

expensive for us due to low selection efficiencies of the displaced objects cut. If we rescale

the cross section so that the total background cross section is correct, then based on the

analysis of section 3.3 this example corresponds to an integrated luminosity of ∼ 800 fb−1

available for the analysis.

We will analyze in detail the example of a Z ′ with mass mZ′ = 2 TeV and a negligible

width relative to the experimental dijet invariant mass resolution. Motivated by the shape

of the resulting dijet invariant mass distribution (see, e.g., figure 5a), whose width is not

very model dependent since it is dominated by the experimental resolution, we define

the signal region to be the invariant mass range mjj ∈ [1600, 2000] GeV.4 We define the

sidebands as mjj ∈ [1400, 1600)∪ (2000, 2400] GeV. These boundaries are chosen such that

the sidebands and the signal region contain comparable numbers of background events.

Approximately 20% of the background events are in the signal region. Signals, one of the six

hidden sector configurations described in section 4.1, are injected to this background. Signal

size, which we will vary, will be presented in terms of signal fraction fS = NS/(NB +NS),

where NB and NS and the background and signal event count in the entire mass range

(signal region and sidebands) after event selection.

The feature distributions for the different benchmark signals (and the background)

are provided in appendix C. The most discriminating features for this set of benchmarks

are the number of objects in the jet, vertex count, and transverse momentum fraction.

One can also see that as dark pion displacement increases, from 0.1 mm to 0.3 mm, the

number of signal vertices increases because more dark pions decay outside the primary

vertex resolution. Vertex mass is a stronger discriminator for the 10 GeV dark pion mass

in comparison to the 5 GeV case.

4This choice of the mass window is based on the region in which the resonant contribution appears in

our Delphes simulation. In an actual experimental analysis, this choice should be reconsidered based on

a more accurate simulation of the corresponding detector and jet energy scale corrections that are applied

to the reconstructed jets.
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5 Example search

In this section we present results of an example search conducted on a simulated benchmark

dataset. We provide a detailed account for the case of a dark sector with mπ′ = 10 GeV

and cτπ′ = 0.2 mm with a signal fraction fS = 0.5%, where the number of signal events is

NS = NB · fS
1−fS

= 530 events. We provide aggregated results for different signal fractions

of all other benchmark signals.

5.1 Weak jet classifier

We used the number of particle-flow objects, nobj, of each jet to assign a signal-rich or

background-rich (weak) label for the other jet, as described in section 3.1. Background-like

threshold, nB
obj, was taken to be the 25% (lower) quantile for the number of particle-

flow objects. Signal-like threshold, nS
obj, was taken to be the 75% (upper) quantile for the

number of particle-flow objects (amounting to nB
obj = nS

obj). The softer signal-like threshold

is complemented by the invariant mass region selection so that after both cuts the signal-

and background-rich labels are approximately balanced. The thresholds were chosen after

trying a number of alternatives and finding that results are not very sensitive to this

choice. Using tighter signal- and background-rich thresholds amounts to a higher effective

signal fraction for training. This comes at the cost of less data available for training. A

quantification of this tradeoff is left for future works.

Jet constituent count thresholds corresponding to the chosen quantiles are nthresh
obj =

24 for cuts on j1 and nthresh
obj = 25 for cuts on j2. The difference stems from a slightly

higher object multiplicity for second jets. These values were unaffected by the small signal

fractions considered and are therefore the same for all signals and all signal fractions.

From cutting on j1 and j2 constituent counts, and requiring that signal-rich jets come from

signal-region events, we obtain two background-rich and two signal-rich samples.

In the 0.5% signal fraction case of the (mπ′ , cτπ′) = (10 GeV, 0.2 mm) signal, these

cuts leave 26292 (23906) background-rich jets and 27824 (28432) signal-rich jets from cuts

on j2 (j1) constituent counts. From an initial 0.5% signal fraction in the entire dataset,

the enriched signal fractions are 1.59% (1.56%) in the signal-rich samples and 0% (0%) in

the background-rich samples from cuts on j2 (j1) multiplicities.

5.2 Weakly supervised event classifier

After applying the weak cuts to the 0.5% signal fraction case of the signal with (mπ′ , cτπ′) =

(10 GeV, 0.2 mm), 51% (49%) of jets were assigned weak labels according to nj1
obj (n

j2
obj).

Of these events, 10% are put aside for validation to avoid overfitting. A classifier, described

in appendix B, is trained to distinguish between the remaining 46% (44%) of events using

j1 (j2) features and the weak labels. After weak-label assignment and putting aside of

the validation set, 48704 jets and 47104 jets are available for training j1 and j2 classifiers,

respectively. The classifiers were trained for 100 epochs. Learning curves are presented

in figure 8. To evaluate the classifiers’ performance, a new dataset of 35k signal and 35k

background events was generated. NN outputs and receiver operating characteristic (ROC)

curves for the 0.5% signal fraction case of the (mπ′ , cτπ′) = (10 GeV, 0.2 mm) signal are
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(a) j1 classifier
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(c) combined: jpred1 · jpred2

Figure 1: NN output distributions for j1, j2, and combined classifiers, for the scenario

with (mπ′ , cτπ′) = (10 GeV, 0.2 mm), fS = 0.5%.

shown in figures 1 and 2. ROCs comparing discrimination of classifiers trained on different

signal fractions are shown in figure 3. As expected, classifier performance deteriorates as

fS is decreased. Still, even at fS = 0.1%, the classifier is very powerful. However, going to

much lower signal fractions is not relevant because they will not be detectable eventually

in the bump hunt procedure that is discussed in the next subsection. ROCs comparing

the outcomes for the different benchmark signals with 0.5% signal fraction are shown in

figure 4.

5.3 Identifying and quantifying an excess

Our null hypothesis, which we will confirm in the following, is that the dijet invariant

mass distribution of the background after the NN cut is still well described by a smoothly

decreasing function. We construct the following test statistic to probe for deviations from

this hypothesis due to a possible signal. We bin the events (with a bin size of 50 GeV in

our example) and fit the sidebands to the following three-parameter function

dN

dmjj
= p0

(1−mjj/
√
s)p1

(mjj/
√
s)p2

, (5.1)

also used in ATLAS [39] and CMS [40]. The fit parameters pi were constrained to positive

values. We estimate the number of expected events in the signal region using the fit and

compare it to the measured number of events in the signal region. Our test statistic is the

excess

t =
N sig.reg.

meas −N sig.reg.
exp√

σ2
meas + σ2

exp

. (5.2)

The uncertainty in the measured counts is estimated by Poisson statistics as σ2
meas =

N sig.reg.
exp . The uncertainty in the expected counts is obtained by linearly propagating pa-

rameter fit uncertainties. Further details of this procedure are provided in appendix D. We

obtain test statistic values for different cut efficiencies of the NN. To avoid training many

classifiers, as would be done in the k-fold procedure described in section 3.1, we use the
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Figure 2: Solid curves are ROCs for NN jet classifiers trained using cotraining, and

the event classifier obtained from their product, for the scenario with (mπ′ , cτπ′) =

(10 GeV, 0.2 mm), fS = 0.5%. Dashed curves are ROCs for the weak jet classifiers

(constituent count of each jet) and the event classifier obtained from their sum. Shaded

areas signify 1σ statistical uncertainty, where for a cut leaving NB background events out

of a total N0
B background events, we used σ = N0

B/N
2
B ·

√
NB. The curves were terminated

at NB < 10 (1/ϵB = 3500).

entire 106k event dataset for semisupervised training and continue with inference on a new

(same size) dataset. This is similar to the k-fold procedure for a large enough k.

Let us now exemplify the search with one realization of a background and signal

sample. Invariant mass distributions subject to NN cuts of varying efficiency are presented

in figure 5 for the (mπ′ , cτπ′) = (10 GeV, 0.2 mm) signal with fS = 0.5%. The invariant

mass spectrum of the entire dataset after the event selection described in section 3.2 is

shown in figure 5a. The test statistic significance prior to any further cut is −0.72σ. (The

negative sign indicates a downward deviation.) The invariant mass spectra after applying

the NN cuts with ϵD = 2%, 1%, 0.6% are shown in figures 5b, 5c, 5d, respectively. Apart

from the significances obtained with fit to the sidebands, the information tables at the

bottom of these plots show also the significance estimates that would be obtained from the

naive calculation of nS/
√
nB in the signal region. As expected, since it does not account

for the statistical fluctuations in the sidebands and for the potential contributions in the

sidebands due to the signal tails, the naive estimate of the significance is unrealistic, and

– 12 –



0.0 0.2 0.4 0.6 0.8 1.0

εS

100

101

102

103

104

1/
ε B

fS
0.001

0.0025

0.005

εS = εB

Figure 3: ROCs comparing classifiers trained using weakly supervised learning with vary-

ing signal fractions fS of the benchmark signal with (mπ′ , cτπ′) = (10 GeV, 0.2 mm).

it is crucial to simulate the fit to the sidebands like we did.

Significance as a function of ϵD for different signal fractions is presented in figure 6.

The significance peaks at ϵD ∼ fS , peaking at higher data efficiencies for greater signal

fractions. For fS = 0.25% and fS = 0.5% the signals pass the discovery threshold of 5σ

whereas the fS = 0.1% signal falls short. Significance obtained for different benchmark

signals with fS = 0.5% is presented in figure 7. All benchmark signals are discoverable at

this signal fraction.

We also test for the bump significance in a dataset with no signal. This corresponds to

the fS = 0 curve in figure 6. The significance fluctuates between ∼ 0 and 2 σ for the values

of ϵD considered, which reassures us that no large, spurious bump is carved in the analysis.

However, a similar significance trend was observed in a second background realization we

tested, suggesting that some ∼ +1σ bias exists in our significance estimation. A more

detailed study, which would involve generating a large number of background realizations,

will be needed to quantify the size of this apparent bias more precisely. Additionally, one

could explore whether the bias could be reduced by using a different fitting function. More

sophisticated methods to reduce sculpting (e.g., along the lines of ref. [41]) could also be

explored.

While the weakly supervised machine learning method outlined here is working well, it

is interesting to ask how it performs relative to simpler methods. An obvious comparison in

– 13 –



0.0 0.2 0.4 0.6 0.8 1.0

εS

100

101

102

103

104

1/
ε B

mπ′ , cτπ′
5 GeV, 0.1 mm

5 GeV, 0.2 mm

5 GeV, 0.3 mm

10 GeV, 0.1 mm

10 GeV, 0.2 mm

10 GeV, 0.3 mm

εS = εB

Figure 4: ROCs comparing classifier discrimination for different benchmark signals. All

classifiers were trained with fS = 0.5%.

the case of our benchmark models is to cutting on the jet constituent multiplicity variable.

Instead of the loose cut on the multiplicity that was used in the ML approach for producing

the weak labels, we apply tight cuts on the sum of the multiplicities of the two jets and

use the same sidebands fit procedure. Table 4 summarises the bump significance obtained

when cutting on the output of the weakly supervised event classifier and when cutting on

the sum of object multiplicities of both jets, for all benchmark signals. The (mπ′ , cτπ′) =

(5 GeV, 0.3 mm) signal was discovered at fS = 0.25% and all the rest were discovered at

fS = 0.1%. For these signal fractions it was usually the case that cutting on multiplicity

slightly outperformed the NN. (Note, however, that significance values like 5σ and higher

are somewhat uncertain because they assume the fluctuations due to the fit uncertainties to

remain Gaussian far on the tails. Also, the bias discussed in the previous paragraph needs

to be quantified for both methods. Therefore, small differences should not be taken too

seriously.) The exception is the (mπ′ , cτπ′) = (5 GeV, 0.3 mm) signal that was discovered

with higher significance by the NN at fS = 0.25%.
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Figure 5: Invariant mass spectrum of events passing NN cut with varying selection ef-

ficiency ϵD. The sidebands are shaded. The significance in the “true” rows corresponds

to true nS/
√
nB within the signal region. The significance in the “sideband fit” rows is

obtained from the fit parameters according to eq. (5.2).
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Figure 6: Bump significance as a function of selection efficiency at four signal fractions

for (mπ′ , cτπ′) = (10 GeV, 0.2 mm) signal.
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signals at fS = 0.5%.
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fS mπ′ cτπ′ maxσNN maxσnobj

0.1% 5 GeV 0.1 mm 5.4 σ 7.2 σ

0.1% 5 GeV 0.2 mm 5.2 σ 5.9 σ

0.1% 5 GeV 0.3 mm 4.3 σ 4.8 σ

0.25% 5 GeV 0.3 mm 9.6 σ 8.6 σ

0.1% 10 GeV 0.1 mm 5.4 σ 6.8 σ

0.1% 10 GeV 0.2 mm 4.9 σ 7.2 σ

0.1% 10 GeV 0.3 mm 4 σ 5.6 σ

Table 4: Comparison between object multiplicity cut and weakly supervised NN cut. The

columns maxσNN and maxσnobj
correspond with the maximum bump significance across

selection efficiencies ϵD for cuts on NN output and cuts on the sum of object multiplicities

of both jets, respectively. For this we consider ten values of ϵD spaced log uniformly in the

range [0.001, 0.1].

6 Summary and conclusions

A hidden (“dark”) confining sector may reveal itself at the LHC in the form of anoma-

lous jets, dubbed dark jets, whose properties are very model dependent. In this work we

considered dark sectors with dark hadron lifetimes similar to heavy-flavor QCD quarks.

A main feature of jets arising from such a sector is displaced vertices from the decays of

dark hadrons. We propose using the features of reconstructed vertices to further capture

the properties of the displaced objects. The dark sector scenarios we consider are comple-

mentary to the ones considered in most of the papers on the subject, which assume the

presence of missing energy or very large vertex displacements or do not take advantage of

displaced vertices.

The wealth of data collected at the LHC offers an opportunity to harness machine

learning to discriminate BSM from SM signatures. A traditional approach to doing so

is using MC simulations of signal (or a mix of signals) events and of SM events to train

a NN. This paradigm has drawbacks. There are large uncertainties in simulating events,

introduced by modeling uncertainties of nonperturbative QCD processes (and in our case

also those of the dark confining sector) as well as detector modeling. Another drawback is

a lack of generality which translates to reduced sensitivity (if any) to signals not used for

training. This is a problem when sensitivity to a wide range of signals is required. Dark

sector details are largely unconstrained, allowing for a wide range of dark jet signatures.

In this work we propose using the weakly supervised method Tag N’ Train in searches for

dark jets with displaced vertices. Tag N’ Train is a weakly supervised method to obtain

a dijet event classifier. The procedure starts with a weak jet classifier. We propose using

a cut on jet constituent multiplicity for this stage. This choice makes use of the fact that

many dark sector models produce high multiplicity jets. Using the weak labels obtained
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from the weak classifier, two classifiers are trained, one for each of the two leading jets in

the event. We use dense NN supplied with displaced vertex features, including number

of displaced vertices, vertex transverse displacement, vertex mass, number of associated

tracks, and the fraction of transverse momentum carried by the vertex out of total jet

transverse momentum. Jet constituent multiplicity was also supplied.

We tested this procedure on simulated events with a set of toy dark sector scenarios.

We showed that the vertex features can be good discriminators between heavy flavor quark

jets and dark jets. We demonstrated a concrete example of a search for resonant dark

jet pairs with displaced vertices. The search is conducted in the form of a bump hunt

where different mass hypotheses are tested separately. We presented a detailed analysis

of the example of a 2 TeV resonance. The resonance mass hypothesis was incorporated

in the weak classifier—only jets coming from events within the signal region in invariant

mass were candidates to be assigned the signal-rich label. After training the NNs and

applying them to simulated data, the significance of the bump was estimated for different

NN selection efficiencies. The semisupervised classifier succeeded in learning from auxiliary

features specific to the signal that was present in the data for signal fractions as small as

0.1%.

However, at least for the range of examples we examined, the sensitivity of our machine

learning method turned out to be comparable (with the details of the comparison depending

on the model) to what can be achieved by using the number of objects in the two jets,

which by itself is a search that has never been done and is worth pursuing. One cause of

the NN not offering a big advantage is the low signal fractions. The discrimination power

of CWoLa often deteriorates with decreasing signal fraction while a cut on the number of

objects in the jets is unaffected. The effective signal fraction can always be increased by

tightening the thresholds of the weak classifier. However, this comes at the cost of fewer

events available for training the NN. Therefore, this method might improve as more data

is collected and available for analysis.

It could be interesting to extend this method to dark sectors with promptly decaying

dark hadrons, where a very different set of features and different backgrounds will be

relevant. Another interesting direction would be to consider nonresonant dijet production,

where the Tag N’ Train method naturally remains applicable.
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A Event generation

Parton level events at collider energy of 13 TeV were generated using MadGraph5 [42]

with the NN23LO1 [43] PDF set. A massive Z ′ mediator with couplings to SM quarks and

dark quarks was implemented using the Universal FeynRules Output (UFO) files from [8].

Some parton-level cuts, softer than the eventual selection cuts of section 3.2, were applied

in MadGraph to save computation time for the background: jet pT > 100 GeV, mjj >

1 TeV, jet |η| < 3, and ∆R(j1, j2) > 1. Showering and hadronization were simulated

using Pythia8 [44]. Dark-sector showering was done using Pythia8’s Hidden Valley

module [38]. Detector simulation was conducted with Delphes 3 [45] using the ATLAS

detector card with added track smearing according to [46]. Jets were reconstructed from

calorimeter deposits using the anti-kT algorithm [47] with jet radius R = 0.7. Particle-

Flow5 constituents were then assigned to jets based on their angular distance (∆R) from the

axes of the reconstructed jets. Vertices were reconstructed with the Adaptive Vertex Fitting

algorithm (AVR) [48] using default parameters (σcut,p = 2, σcut,s = 6, and wmin = 0.5),

implemented in the RAVE toolkit [49]. All event tracks were used for primary vertex

reconstruction while only tracks belonging to a given jet were used to find secondary

vertices.

B Neural network architecture

We use a dense neural network architecture built and trained using Keras [50] with Tensor-

Flow [51] backend. The network has four hidden layers with 32, 16, 16, 4 nodes, respectively.

These parameters were coarsely optimized to avoid over/under fitting. The first hidden

layer activation is the Leaky Rectified Linear Unit (LeakyReLu). For the remaining three

layers Exponential Linear Units (ELU) were used. A sigmoid function was applied to the

output. Each hidden layer except the last was followed by a dropout layer with a rate of

0.1. A network summary is provided in table 5. Binary cross-entropy loss function and

Adam optimizer were used for training. Each input feature was globally shifted and scaled

according to the sample mean and standard deviation of the training data. These scale

and shift values are saved. When new data is to be inferred by the classifier it is scaled

and shifted by the same values. Examples of learning curves are shown in figure 8.

5Particle Flow is an algorithm to reconstruct track and calorimeter tower measurements into a list of

electrons, muons, charged hadrons, neutral hadrons, and photons.
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Layer (type) Output shape # Parameters

Layer-1 (Dense) (None, 32) 224

activation (LeakyReLU) (None, 32) 0

dropout (Dropout) (None, 32) 0

Layer-2 (Dense) (None, 16) 528

activation (ELU) (None, 16) 0

dropout (Dropout) (None, 16) 0

Layer-3 (Dense) (None, 16) 272

activation (ELU) (None, 16) 0

dropout (Dropout) (None, 16) 0

Layer-4 (Dense) (None, 4) 68

activation (ELU) (None, 4) 0

Output (Dense) (None, 1) 5

Total parameters: 1,097

Table 5: NN summary.
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(a) j1 classifier
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Figure 8: Learning curve of j1 (left) and j2 (right) classifiers training on (mπ′ , cτπ′) =

(10 GeV, 0.2 mm) signal with fS = 0.5%. Since the validation set is evaluated without

use of the dropout layers it is not surprising that the validation set loss is smaller than the

training set loss.
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C Feature distributions

This appendix presents the feature distributions for the benchmark signals and the back-

ground based on events in the mass region mjj ∈ [1400, 2400] GeV after event selection.

C.1 (mπ′ , cτπ′) = (5 GeV, 0.1 mm)
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Figure 9: Distributions of vertex displacement D0/γβT , vertex mass mvertex, vertex trans-

verse momentum fraction pvertexT /pjetT , number of tracks associated to vertex ntracks, to-

tal number of jet constituents nobj, and total number of reconstructed displaced vertices

nvertices (not including primary vertex). If more than one vertex is reconstructed in a given

jet the median value for vertex features is taken. The step-like features in the distribution

of pvertexT /pjetT are an artifact of requiring the sum of this variable over all jet vertices to

be greater than 0.2. Jets with only one displaced vertex, which are the majority of back-

ground jets, are constrained to values greater than 0.2. Jets with two displaced vertices

are constrained to a median greater than 0.1, etc.
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C.2 (mπ′ , cτπ′) = (5 GeV, 0.2 mm)
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Figure 10: Distributions of vertex displacement D0/γβT , vertex mass mvertex, vertex

transverse momentum fraction pvertexT /pjetT , number of tracks associated to vertex ntracks,

total number of jet constituents nobj, and total number of reconstructed displaced vertices

nvertices (not including primary vertex). If more than one vertex is reconstructed in a

given jet the median value for vertex features is taken. The step-like features in the

distribution of pvertexT /pjetT are an artifact of requiring the sum of this variable over all jet

vertices to be greater than 0.2. Jets with only one displaced vertex, which are the majority

of background jets, are constrained to values greater than 0.2. Jets with two displaced

vertices are constrained to a median greater than 0.1, etc.
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C.3 (mπ′ , cτπ′) = (5 GeV, 0.3 mm)
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Figure 11: Distributions of vertex displacement D0/γβT , vertex mass mvertex, vertex

transverse momentum fraction pvertexT /pjetT , number of tracks associated to vertex ntracks,

total number of jet constituents nobj, and total number of reconstructed displaced vertices

nvertices (not including primary vertex). If more than one vertex is reconstructed in a

given jet the median value for vertex features is taken. The step-like features in the

distribution of pvertexT /pjetT are an artifact of requiring the sum of this variable over all jet

vertices to be greater than 0.2. Jets with only one displaced vertex, which are the majority

of background jets, are constrained to values greater than 0.2. Jets with two displaced

vertices are constrained to a median greater than 0.1, etc.

– 23 –



C.4 (mπ′ , cτπ′) = (10 GeV, 0.1 mm)
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Figure 12: Distributions of vertex displacement D0/γβT , vertex mass mvertex, vertex

transverse momentum fraction pvertexT /pjetT , number of tracks associated to vertex ntracks,

total number of jet constituents nobj, and total number of reconstructed displaced vertices

nvertices (not including primary vertex). If more than one vertex is reconstructed in a

given jet the median value for vertex features is taken. The step-like features in the

distribution of pvertexT /pjetT are an artifact of requiring the sum of this variable over all jet

vertices to be greater than 0.2. Jets with only one displaced vertex, which are the majority

of background jets, are constrained to values greater than 0.2. Jets with two displaced

vertices are constrained to a median greater than 0.1, etc.
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C.5 (mπ′ , cτπ′) = (10 GeV, 0.2 mm)
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Figure 13: Distributions of vertex displacement D0/γβT , vertex mass mvertex, vertex

transverse momentum fraction pvertexT /pjetT , number of tracks associated to vertex ntracks,

total number of jet constituents nobj, and total number of reconstructed displaced vertices

nvertices (not including primary vertex). If more than one vertex is reconstructed in a

given jet the median value for vertex features is taken. The step-like features in the

distribution of pvertexT /pjetT are an artifact of requiring the sum of this variable over all jet

vertices to be greater than 0.2. Jets with only one displaced vertex, which are the majority

of background jets, are constrained to values greater than 0.2. Jets with two displaced

vertices are constrained to a median greater than 0.1, etc.
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C.6 (mπ′ , cτπ′) = (10 GeV, 0.3 mm)
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Figure 14: Distributions of vertex displacement D0/γβT , vertex mass mvertex, vertex

transverse momentum fraction pvertexT /pjetT , number of tracks associated to vertex ntracks,

total number of jet constituents nobj, and total number of reconstructed displaced vertices

nvertices (not including primary vertex). If more than one vertex is reconstructed in a

given jet the median value for vertex features is taken. The step-like features in the

distribution of pvertexT /pjetT are an artifact of requiring the sum of this variable over all jet

vertices to be greater than 0.2. Jets with only one displaced vertex, which are the majority

of background jets, are constrained to values greater than 0.2. Jets with two displaced

vertices are constrained to a median greater than 0.1, etc.
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D Fit procedure

The sidebands were fit using scipy.curve fit, scipy’s [52] implementation of nonlinear

least squares fit. The fit optimizes the cost function L = rT r where ri is the residual in

the i’th bin divided by the uncertainty in measured bin counts. The bin count uncertainty

in a bin with n counts was taken to be
√
n according to Poisson statistics. The statistical

uncertainty of expected counts in the signal region was estimated according to

σ2
exp = Var

 ∑
x∈sig.reg.

N(x,p)

 ≈ Var

 ∑
x∈sig.reg.

dN

dp
(x, p̂) · (p− p̂)


=

 ∑
x∈sig.reg.

dN

dp

T

Cov

 ∑
x∈sig.reg.

dN

dp

 ,

(D.1)

where N(x,p) is the fit function from eq. (5.1) multiplied by the bin size, p is a ran-

dom variable vector of fit function parameters, and p̂ are the estimated parameters. The

covariance matrix for the parameters is estimated by

Cov =
L

m− n
(JTJ)−1, (D.2)

where L is the cost function at p̂, m is the number of points used for the fit, n is the

number of parameters (= 3), and J is the Jacobian of r with respect to the parameters,

evaluated at p̂.
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