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Abstract: Many models of physics beyond the Standard Model include towers of particles

whose masses follow an approximately periodic pattern with little spacing between them.

These resonances might be too weak to detect individually, but could be discovered as a

group by looking for periodic signals in kinematic distributions. The continuous wavelet

transform, which indicates how much a given frequency is present in a signal at a given

time, is an ideal tool for this. In this paper, we present a series of methods through

which continuous wavelet transforms can be used to discover periodic signals in kinematic

distributions. Some of these methods are based on a simple test statistic, while others

make use of machine learning techniques. Some of the methods are meant to be used with

a particular model in mind, while others are model-independent. We find that continuous

wavelet transforms can give bounds comparable to current searches and, in some cases, be

sensitive to signals that would go undetected by standard experimental strategies.
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1 Introduction

Experimental searches for physics beyond the Standard Model often look for peaks or

dips in kinematic distributions. Although this is certainly well motivated, there exist

potential signals that can take far more complicated forms and which have received very

little attention.

One such possibility is periodic signals. These are a typical signature of models that

include a large number of similar resonances with small mass splitting. Such models include

the linear dilaton scenario [1–4], discrete and continuum clockwork models [3, 4], certain

limits [5–7] of the Randall-Sundrum model [8] and more exotic warped extra dimensions [9].

An example of the two-photon invariant mass distribution is shown in figure 1 for the

clockwork/linear dilaton (CW/LD) scenario [4].

Intuitively, one may think that taking the Fourier transform of a distribution like

this would be an ideal strategy to exploit its periodic nature. There are however some

complications with this in practice, as in most scenarios signals do not repeat themselves

perfectly and indefinitely. For example, the repetitions might only occur over a finite

interval. The position of that interval, which could potentially be used to discriminate

signal from background, is essentially lost when passing to frequency space. Also, the

frequency of the signal may not be constant. The Fourier transform would then not convey

clearly which frequency is present at which point. All in all, certain characteristics of
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Figure 1: Example of a periodic signal in the diphoton spectrum from the clockwork/linear

dilaton scenario. The parameters are set to k = 750 GeV and M5 = 3 TeV. See appendix A

for the technical details of the model and the modeling of the experimental resolution. The

inset shows the Morlet wavelet (see eq. (2.4)).

realistic periodic signals are easier to see in the time domain, while others are more clear in

the frequency domain. As such, neither the signal itself nor its Fourier transform is ideal

to discover a signal whose periodicity changes with time.

Continuous Wavelet Transforms (CWT) address these issues by projecting a given

signal over a basis of functions that are localized in both time and frequency space. An

example of such a basis function is shown in the inset of figure 1. The output of the CWT

is a scalogram, a two dimensional function which indicates how much a certain frequency is

present at a given time. The CWT of the signal of figure 1, as well as a similar but weaker

signal, is shown in figure 2 (with the input in figure 3). A signal that repeats itself with

constant frequency would appear as a horizontal line, while one whose frequency changes

with time as a line that moves up and/or down. A varying amplitude of the oscillations is

also directly represented in the scalogram, as well as when the signal starts and ends. This

makes the CWT very flexible when it comes to discovering generic periodic signals.

While signals of the kind shown in figure 1 can often be detected also directly by

searches for resonances (e.g., [10–14]) or searches for continuum excesses at high masses

(e.g., [10, 11, 15]), the coverage of such searches is not robust. The sensitivity of searches

for single resonant peaks on top of a smooth background is likely reduced by the presence of

neighboring partly-overlapping peaks, in a model- and search-procedure-dependent fashion.

Furthermore, the expected presence of multiple peaks is not being exploited in an optimal

manner by such searches. Searches for continuum excesses will have reduced sensitivity for

scenarios in which the signal does not extend to high masses or it makes comparable positive

and negative contributions to the spectrum due to quantum interference (see, e.g., [16–18]).

In some cases, interference can even lead to pure deficits in the spectrum [18], challenging

both the resonant and the continuum searches. It is also useful to note that the CWT

analysis is almost insensitive to the systematic uncertainty on the normalization of the
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Figure 2: Examples of scalograms for the CW/LD with k = 750 GeV. (a) CWT of the

smooth falling background from ref. [10] without statistical fluctuations. (b) CWT of the

background with statistical fluctuations. (c) CWT of the signal alone, without statistical

fluctuations, for M5 = 3 TeV. (d) CWT of the same signal + background for M5 = 3 TeV.

(e) CWT of the signal + background with statistical fluctuations for M5 = 3 TeV. (f) CWT

of the signal + background with statistical fluctuations for M5 = 5 TeV.
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Figure 3: Mass spectra leading to the scalograms of figure 2. The black (solid), blue

(dotted) and red (dashed) lines correspond to (b), (e) and (f), respectively.

background mass spectrum. The CWT approach is thus complementary to the existing

search strategies and is therefore worth exploring.

Although the amount of work on CWT in the context of collider searches has been

limited up to now (see ref. [19]), they have been used in many different fields of sci-

ence. For example, they have been used in astronomy [20], biology [21], chaos theory [22],

geophysics [23, 24], mechanical engineering [25] and signal processing [26]. Work on the

statistical significance of signals in CWT includes refs. [27–35].

The goal of the current paper is to demonstrate that continuous wavelet transforms

can be used to discover periodic signals in kinematic distributions, in particular in the

context of new physics searches at colliders. To do this, we will present a series of methods

through which CWT can be used to discover such signals. These will range from the use of

a simple test statistic to more advanced machine learning techniques. We find that CWT

can compete with current methods and in some cases be sensitive to signals that would

otherwise go undetected by current analyses.

The paper is organized as follows. We begin by defining the continuous wavelet trans-

forms more carefully. The set of methods are then introduced. Windowed Fourier trans-

forms are then presented to serve as a comparison. The different methods are then com-

pared in the context of the diphoton signal of the CW/LD benchmark, details about which

are provided in the appendix. Some concluding remarks complete the paper.

2 Overview of continuous wavelet transforms

Assume ψ(t) is a basis function localized in both time and frequency space. The continuous

wavelet transform of a signal f(t) at a scale a > 0 and translational parameter b ∈ R is
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given by a projection over rescaled and shifted version of ψ(t):

W (a, b) =
1√
a

∫ +∞

−∞
f(t)ψ∗

(
t− b
a

)
dt . (2.1)

In practice, it is a measure of how much a certain frequency is present in the signal at a

given time. The function ψ(t) is known as the mother wavelet and its rescaled and shifted

versions as daughter wavelets. The mother wavelet is required to satisfy two conditions:∫ +∞

−∞
|ψ(t)|2dt <∞ , (2.2)

cψ ≡ 2π

∫ +∞

−∞

|Ψ(ω)|2

|ω|
dω <∞ , (2.3)

where Ψ(ω) is the Fourier transform of ψ(t). The first condition is simply that the mother

wavelet has a finite norm and the second is known as the admissibility condition. The

latter implies Ψ(0) = 0, which means in turn that an admissible wavelet must integrate to

zero and as such that the CWT of a constant function is zero. Note that for practical uses

the signal might be binned, in which case the integral is replaced by a sum over bins.

We will use the Morlet wavelet throughout this article. It consists of a localized wave

packet and is given by:

ψ(t) ≡ 1√
Bπ

e−t
2/B

(
ei2πCt − e−π2BC2

)
, (2.4)

where B and C are two constants that we will take as 2 and 1 respectively. With this

choice, the wavelet transform of a signal will be maximum when its wavelength corresponds

approximately to the scale a. The second term ensures that the admissibility condition is

satisfied, though it can safely be ignored for our choice of parameters. The Morlet wavelet

is shown in the inset of figure 1. Do note that there exist different conventions on the

definition of the Morlet wavelet.1

In this article, we will be using the example of production of a set of resonances

decaying to two photons. The invariant mass of the two photons mγγ will play the role

of t. When we discuss the distribution of mγγ directly, we will say we are in mass space.

When we deal with its wavelet transform, we will say we are in frequency space. The same

ideas can be applied to dielectron, dimuon and other final states.

3 Search strategies with continuous wavelet transforms

We present in this section a series of methods through which continuous wavelet transforms

can be used to discover periodic signals in kinematic distributions. These methods will be

compared in section 4 by applying them to the CW/LD scenario [4] assuming the diphoton

dataset of ref. [10] (37 fb−1 at 13 TeV). All illustrations are also taken from examples of

that model.

1Our convention is chosen to conveniently match with that of the pywt Python package [36, 37].
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Figure 4: Example of (a) the CWT of the expected signal and background, (b) the same

CWT with statistical fluctuations, (c) the corresponding − ln p, and (d) − ln p of a typical

background. The signal parameters used were k = 750 GeV and M5 = 4 TeV.

3.1 Method 1: Model-specific search with a simple test statistic

The first strategy that we discuss is the use of a simple test statistic to detect a specific

signal. A periodic signal is reflected in a scalogram as a series of ridges, each corresponding

to a different harmonic. A given harmonic corresponds of course to a single scale for a given

mass. Typically, the first harmonic is dominant and will have a large significance before the

other harmonics are even visible. As such, we will concentrate on only the first one. Each

point of a scalogram of the measured data can be assigned a local p-value by generating a

large set of toy experiments with background only and determining which fraction of these

have a larger norm of the wavelet coefficient at that point. Statistical fluctuations are

simulated by finely binning the expected spectrum in mass space, fluctuating the number

of events in each bin according to the Poisson distribution, and then applying the CWT.

Of course, the bin size must be chosen to be smaller than the expected scale of the signal.

A signal will appear as a valley of low p-value, i.e. an extended structure. This can be seen

in figure 4. With these considerations in mind, a natural choice for a test statistic is:
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t = −
imax∑
i=imin

1

ai
ln pi(ai) , (3.1)

where the sum is over the mass bins of the scalogram, ai is the scale of the first harmonic for

bin i and pi(ai) the local p-value for bin i at scale ai. Roughly speaking, imin is where the

first harmonic starts to be discernible and imax where it stops to be. In practice, it is best

to perform an optimization of these parameters on a case by case basis. The division by

the scale is performed to counteract the fact that fluctuations typically span a mass range

of the order of their scale. This test statistic is also inspired by the Fisher method [38].

More advanced test statistics could in principle be used, but eq. (3.1) is easy to implement

and will be shown to return good limits.

3.2 Method 2: Model-independent search with a simple test statistic

Arguably the greatest strength of continuous wavelet transforms is that they can reveal a

periodic signal that was not predicted by any previously considered model. If an anoma-

lous region is present in a scalogram, a question that would need to be answered is how

significant it is. Previous work on the subject includes [28, 34].

First, bins of interest can be selected by asking that their local p-value be below a

certain value. They are then grouped into continuous regions. The test statistic (3.1) is

then applied to each region by taking the bin with the smallest p-value of each column.

The largest test statistic is kept as a hyperstatistic. The statistical significance can then

be obtained via a series of toy experiments.

3.3 Method 3: Neural network and a simple test statistic

Wavelet transforms map a periodic signal present over a background to an excess over an

extended region in a scalogram. When the amount of statistics available is limited, such

excesses can potentially be mistaken for simple statistical fluctuations of the background.

As can be seen in figure 2, the scalogram of a given signal can take a very complicated

form in practice. However, it is clear that a real signal will tend to present certain features

that are typically absent from background fluctuations and vice-versa. These features can

potentially be used to increase the statistical significance of a given signal. Trying to

manually classify them is at the very least an extremely daunting task, but it is an obvious

application of machine learning.

One possibility is to train a neural network to identify regions compatible with the

signal searched for inside a scalogram and then calculate their significance using a test

statistic. Note that after the mass spectrum is sampled with sufficient resolution to capture

the details of the signal, the resulting scalogram can be sampled in a cruder fashion thanks

to the extended nature of the excess. This helps making the size of the neural network’s

input manageable. The neural network is trained on an equal mix of pure backgrounds

and examples with signals from random points in the parameter space of the model (with

signal strength above some optimized threshold). In both cases, the network’s input is the

norm of the CWT of the signal + background divided by the expectation value of the norm

of the CWT of the background only 〈|Wb|〉. When there is a signal, the output it is trained
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Layer Parameters

Input layer 63 mass bins × 56 scale bins

Convolutional layer 1 # filters = 32

kernel size = (5, 5)

Activation: Softplus

MaxPooling 1 Pooling size = (2, 2)

Convolutional layer 2 # filters = 64

kernel size = (5, 5)

Activation: Softplus

MaxPooling 2 Pooling size = (2, 2)

Convolutional layer 3 # filters = 128

kernel size = (5, 5)

Activation: Softplus

Dense 1 # of nodes = 5000

Activation: Softplus

Output layer # of nodes = 3528

(a)

Setting Choice

Optimizer Adam

Loss function Mean squared error

# training experiments 5000

Validation split 0.2

Batch size 1000

# epochs 200

Callback Smallest validation

loss function

(b)

Table 1: (a) Structure of the convolutional neural network for the region finder. (b)

Training parameters. All parameters not specified in these tables are left at their default

Keras values.

to return is |Ws,exp|/〈|Wb|〉, where |Ws,exp| is the norm of the wavelet transform of the

expected signal. When there is no signal, the neural network is trained to return zero in

every bin. The details of the neural network we used are given in table 1. When applied to a

pseudo-experiment, the neural network will assign bins compatible with a signal-like excess

a much larger value than those associated to the background. An example of this for a

sample containing a signal is shown in figure 5, which shows that the neural network returns

a very signal-like shape. For background-only samples, the neural network typically fails

to return such well-defined regions. In principle, one could also train the neural network

to return some other function, as long as its region of maximal value corresponds to where

the excess should appear in the scalogram. All neural networks were implemented via the

Python deep learning library Keras [39] with the TensorFlow backend [40] using the

Adam optimizer [41].

Having identified the region of interest, one can select for each mass column the scale

with the largest neural network output and apply the test statistic of eq. (3.1) using the

actual value of the wavelet coefficient for this bin. A minimal value of the neural network

output is required for a bin to be counted in the test statistic. This way, the neural

network’s assessment of whether a signal-like excess is present at all, is taken into account.

We scan the value of this threshold to maximize significance. The expected sensitivity

limits are obtained by pseudo-experiments.
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Figure 5: Example of the region finder algorithm input and output. (a) The input, which

is the norm of the CWT divided by the expectation value of the background. (b) The

output, which is trained to be |Ws,exp|/〈|Wb|〉. The parameters used were k = 750 GeV

and M5 = 4 TeV. The original signal is the same as in figure 4a.

3.4 Method 4: Classifier neural network

A more powerful way to use machine learning to discover a specific signal in a scalogram is

with a classifier. First, toy experiments, with and without the signal (for a specific choice

of model parameters), are generated and finely binned mass spectra are produced. The

continuous wavelet transform of the mass spectrum is taken and rebinning is performed

to make the size of the neural network’s input manageable. The norm of each bin is then

passed as an input to a convolutional neural network whose output is trained to be one

when the signal is present and zero otherwise. The output of the neural network can then

be used as a test statistic. The structure of the neural network that we used and additional

parameters are provided in table 2.

3.5 Method 5: Autoencoder neural network

A more model-independent option to look for anomalies in scalograms is via autoencoders,

similar to their application to jet images in refs. [42, 43]. The idea is to use an autoencoder

network to compress a scalogram to a smaller set of parameters which are then used to

reconstruct the original scalogram. The neural network is then trained on backgrounds only

to reproduce the original scalogram as well as possible. After training, the neural network

should be able to reproduce the original scalogram to good approximation if applied to

a typical background sample, and fail if applied to a sample that contains a signal. One

can then use the reconstruction loss function as a test statistic. The details of the neural

network are presented in table 3 and are simply an adaption of the convolutional neural

network of ref. [43]. The input of the neural network, which is also the output it is trained

to return, is the negative log of the local p-value of each bin. Examples of inputs and

outputs of the neural network are shown in figure 6. As can be seen, the autoencoder

manages to reproduce approximately the major fluctuations of the background. At the
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Layer Parameters

Input layer 63 mass bins × 56 scale bins

Convolutional layer 1 # filters = 4

kernel size = (3, 3)

Activation: Elu

MaxPooling 1 Pooling size = (2, 2)

Convolutional layer 2 # filters = 8

kernel size = (3, 3)

Activation: Sigmoid

MaxPooling 2 Pooling size = (2, 2)

Convolutional layer 3 # filters = 16

kernel size = (3, 3)

Activation: Sigmoid

Dense 1 # of nodes = 200

Activation: Sigmoid

Dense 2 # of nodes = 100

Activation: Sigmoid

Output layer # of nodes = 1

(a)

Setting Choice

Optimizer Adam

Loss function Binary cross entropy

# training experiments 4000

Validation split 0.2

Batch size 1000

# epochs 500

Callback Smallest validation

loss function

(b)

Table 2: (a) Structure of the convolutional neural network of the wavelet classifier. (b)

Training parameters. All parameters not specified in these tables are left at their default

Keras values.

same time, as desired, it fails to reproduce the signal, which results in a much larger value

for the reconstruction loss function.

3.6 Fourier analysis as a reference

Before moving on to comparing the methods, we discuss the use of Fourier transforms to

discover periodic signals, which is the approach that was proposed in ref. [4] in the context

of the CW/LD scenario. This will serve as a reference, though it is clear that CWT are

far more general.

We define in general the power spectrum as:

P (T ) =

∣∣∣∣ 1√
2π

∫ mmax

mmin

dm
dσ

dm

1

L
exp

(
i
2πg(m)

T

)∣∣∣∣2 . (3.2)

The quantity L is the parton luminosity given for CW/LD by L(m2) = Lgg(m2) +
4
3

∑
q Lqq̄(m2) (see eq. (A.4)). The mass spectrum is divided by this quantity to counteract

the fast decrease that it causes in the signal and bring it closer to a regularly oscillating

function [4]. For a general signal, the function g(m) is defined such that the mass of the

nth resonance is related to its index by n = g(mn). This is the quantity in terms of which

the locations of the resonances are periodic and as such the quantity in terms of which
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Layer Parameters

Input layer 60 mass bins × 56 scale bins

Convolutional layer 1 # filters = 128

kernel size = (3, 3)

Activation: Elu

MaxPooling 1 Pooling size = (2, 2)

Convolutional layer 2 # filters = 128

kernel size = (3, 3)

Activation: Elu

MaxPooling 2 Pooling size = (2, 2)

Convolutional layer 3 # filters = 128

kernel size = (3, 3)

Activation: Elu

Dense 1 # of nodes = 40

Activation: Elu

Dense 2 (Encoded) # of nodes = 20

Activation: Elu

Dense 3 # of nodes = 40

Activation: Elu

Convolutional layer 4 # filters = 128

kernel size = (3, 3)

Activation: Elu

UpSampling 1 Upsampling factors = (2, 2)

Convolutional layer 5 # filters = 128

kernel size = (3, 3)

Activation: Elu

UpSampling 2 Upsampling factors = (2, 2)

Convolutional layer 6 # filters = 1

kernel size = (3, 3)

Activation: Elu

Output layer 60 mass bins × 56 scale bins

(a)

Setting Choice

Optimizer Adam

Loss function Mean squared error

# training experiments 5000

Validation split 0.2

Batch size 1000

Padding Same

# epochs 100

Callback Smallest validation

loss function

(b)

Table 3: (a) Structure of the convolutional neural network for the autoencoder. (b)

Training parameters. All parameters not specified in these tables are left at their default

Keras values.

the Fourier transform is best performed.2 Simply doing a Fourier transform in terms of

m would not lead to an optimal significance when g(m) differs too much from m. This

is because a signal that varies over a wide range of frequencies over its duration would

lead to a very wide peak in Fourier space. For CW/LD, we take g(m) = R
√
m2 − k2 (see

eq. (A.1)) [4]. Obviously, the power spectrum is expected to peak at T = 1. The value of

the peak can then be used as a test statistic.

2As the masses mn represent a discrete set and g(m) must be a continuous function, simply requesting

g(m) to reproduce the correct masses does not fully define it and a smooth interpolation needs to be

provided for the intermediate masses. In practice, there is usually an obvious definition for g(m).
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Figure 6: Examples of the input and output of the autoencoder. (a)→(b): Background-

only sample and its reconstruction after encoding. (c)→(d): Sample containing a signal and

its (mis)reconstruction after encoding. The parameters used for the signal wereM5 = 4 TeV

and k = 750 GeV. The original signal is shown figure 4a.

4 Comparison between the different methods

To compare the different methods, we apply them to the CW/LD scenario with the γγ

dataset of ref. [10]. The resulting reach in the parameter space of the model is shown in

figure 7, where the contours correspond to a median expected significance of 2 sigma. As

described in more detail in appendix A, the parameter k is approximately the mass at

which the spectrum begins, while M5 controls the cross section, which is approximately

proportional to 1/M3
5 . The structure of the resonance masses mn, if described in terms of

mn/k, is essentially independent of k and M5 in the range of parameters considered, and

the asymptotic value of the mass splittings at high mass is given by ∆m ≈ k/10.

The blue (thin solid) curve corresponds to the test statistic method of section 3.1.

The lower limit of the sum in eq. (3.1) was optimized to maximize the reach. A similar

procedure was done for the upper limit, but we found that the results were virtually

identical to those where the upper limit was taken as very large. In practice, we simply
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Figure 7: Comparison between the 2σ sensitivity of the various search methods, in the

parameter space of the CW/LD model, based on the γγ dataset of ref. [10] (see appendix A

for details). Thin lines correspond to methods designed for a specific model and specific

parameters, medium lines to methods designed for a specific model but not a specific point

and thick lines to searches for a general signal. Solid lines do not use machine learning

and dashed ones do. The regions covered by the various methods are to the left of the

corresponding curves.

took min(10k, 2.7 TeV), where the latter is the upper limit of the experimental data. In

terms of the reach in M5, the sensitivity peaks at around k ≈ 600 GeV. As k moves upward,

the limit on M5 decreases as the total number of gravitons produced decreases. As k moves

downward, the part of the spectrum in which the splittings are resolvable experimentally

also moves to lower masses, and the higher background at the lower masses lowers the

sensitivity.

The purple (thick solid) curve corresponds to the model-independent search of sec-

tion 3.2. Bins were considered as significant if their p-values were below 10%. This value

represents a fair compromise. A much lower value would reduce the sensitivity to weak

signals, while for much higher values the selected regions would have such an extent that

their interpretation would become unclear. As this approach covers a vast space of possible

models, the bounds are unsurprisingly weaker than with the previous approach.

The green (medium thickness, dashed) curve corresponds to the anomalous region

finder of section 3.3. The neural network was trained with signals with k varying from 200

to 2700 GeV and M5 varying from 1 to 6.5 TeV, where the latter number was obtained by

optimization. The reach of this method is somewhat better than that of the first method
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thanks to the neural network’s ability to assess whether a given excess is signal-like.

The red (thin dashed) curve corresponds to the classifier method of section 3.4. It

gives the strongest bounds. One should note, however, that in this case one still needs to

account for the look-elsewhere effect.

The orange (thick dashed) curve corresponds to the autoencoder of section 3.5. While

the bounds are somewhat weaker than those of some of the other methods, one should note

that the look-elsewhere effect is already taken into account in this case.

The black (thin dotted) curve corresponds to the bounds from Fourier analysis as in

section 3.6. As in ref. [4], the lower limit of the integral was taken to be mmin = k, i.e.

where the signal starts, and the upper limit mmax was optimized at each point in the

parameter space to maximize the expected significance. The bounds are mostly similar to

those obtained using the CWT and a test statistic without machine learning.

It is also interesting to ask how the reach of the CWT-based methods compares with

that of more traditional search strategies. Conveniently, CMS have performed a search for

the same CW/LD scenario, based on a similar diphoton dataset, looking for a continuum

excess at high masses [11]. Their expected 95% CL exclusion limits on M5 were around

M5 ≈ 10 TeV, which is comparable to the 2σ reach of M5 ≈ 8 TeV that we obtain here. One

should keep in mind that the performance of the two approaches may compare differently

when applied to other final states, to larger datasets, etc. Even more importantly, while

the CW/LD example that we considered here does not present any special challenge to

continuum excess searches such as ref. [11], other scenarios with oscillating signals can

be elusive to such searches. As we discussed in the Introduction, this can happen due to

negative contributions from destructive interference or due to the spectrum not extending to

sufficiently high masses. Single-resonance searches provide expected limits of M5 ≈ 5 TeV,

as obtained in ref. [4] in the approximation that the sensitivity is dominated by the most

prominent peak and that neighboring peaks do not hinder the search procedure. Obviously,

higher sensitivity will be obtained by combining the contributions of multiple peaks, and

the most natural way of implementing this in practice is via a Fourier or wavelet transform,

as we do here.

5 Discussion

The LHC experiments have by now developed very comprehensive sets of analyses that

provide good coverage of essentially all the simple final states, as well as many exotic ones.

They have discovered the Higgs boson, and progress is constantly being made on covering

more and more of the parameter space in which physics beyond the Standard Model may be

found. While no signs of new physics are seen yet, the theoretical expectation that at least

the solution to the electroweak-Planck hierarchy problem is likely to be within the energy

reach of the LHC calls for continuing the searches. However, as the LHC experiments have

by now matured, improvements in the reach of existing techniques will mostly be gradual.

It can therefore be very useful, as an alternative to just waiting, to think about new ways

of looking at the data.
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In this paper we proposed that wavelet transforms offer such a new way. It is a very

general method that can be applied to many different final states at the LHC to search for

periodic signals in kinematic distributions in a rather model-independent way. We have

also pointed out examples of theoretical models, including some that address the hierarchy

problem, for which such searches could be relevant.

We have designed and simulated five different approaches for processing the scalograms

produced by the wavelet transforms. Part of these approaches use machine learning tech-

niques, which is another direction into which new physics searches at the LHC can expand,

as has been also proposed recently in several other contexts (e.g., refs. [42–52]).

In our first approach, one assumes a specific new physics model and tests for the pres-

ence of its signature in the corresponding region of the scalogram using a simple test statis-

tic. In the second, model-independent approach, the whole scalogram is being searched

for extended regions of excess, and the most significant excess is assessed using the test

statistic. In the third approach, the scalogram is being analyzed by a neutral network,

which searches for regions of excess whose shape is consistent with excesses expected in a

given class of models. The fourth approach tests for a specific signal using the classifier

neural network, whose single output turns out to be a much more powerful test statistic

than the more pedestrian test statistic of the first three methods. Finally, the fifth ap-

proach is a model-independent analysis in which an autoencoder neural network learns the

background only, and identifies potential signals as deviations from a typical background.

We have exemplified the different methods and compared their sensitivities in the

context of the diphoton invariant mass spectrum and the clockwork / linear dilaton model.

We have also compared them with the Fourier transform method that was proposed in the

context of the same model in ref. [4].

Our reach estimates should be viewed as conservative as there are various possible

optimizations, either model-dependent or general, that we have left outside the scope of

the current study. For example, we have not explored the possibility of using wavelets

other than the Morlet wavelet. Also, we have done only very basic optimization of the

architecture and the training parameters of the neural networks, so their performance

is likely suboptimal. Nevertheless, all the methods resulted in sensitivities of up to 6–

8 TeV in M5, which is comparable to existing searches that would be sensitive to the

same scenario [4, 11]. In addition, we would like to emphasize that similar analyses are

interesting also in the dilepton [12, 15], dijet [13, 14] and other invariant mass spectra (and

possibly other kinematic variables) and that the relative strengths and weaknesses of the

different methods can vary depending on the final state, the new physics scenario, and the

integrated luminosity.

Wavelet-space searches can be of special importance if the new physics signal does

not extend to sufficiently high masses where the background is low; if the new physics

makes both positive and negative contributions to the mass spectrum (due to quantum

interference); and in situations in which the systematic uncertainty on the normalization

of the mass spectrum is a limiting factor. In these kinds of cases, signals can go undetected

by existing experimental strategies (given a finite integrated luminosity), but discovered in

wavelet-space searches.
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In conclusion, we hope to have convinced the reader that making wavelet-space searches

part of the ATLAS and CMS toolkits is a possibility worth considering.

Note added: When this work was close to completion, ref. [53] appeared, which also

proposed wavelet transforms as a way to search for new physics in kinematic distributions.

Our approaches differ substantially due to the fact that ref. [53] uses the discrete wavelet

transform based on the Haar wavelet, whereas our methods use the continuous wavelet

transform.
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A Benchmark model: clockwork / linear dilaton (CW/LD)

In the linear dilaton scenario, the Standard Model fields propagate on a brane in a space

with one relatively large extra dimension. A particular scalar field, the dilaton, with a linear

profile in the extra dimension, determines its warped geometry. The motivation for such

a setup is its ability to explain the hierarchy between the electroweak and Planck scales.

This scenario has first appeared in ref. [54], inspired by the seven-dimensional gravitational

dual [55, 56] of Little String Theory [57, 58]. More recently, the same five-dimensional

geometry has been rediscovered in [3] while exploring new applications for the clockwork

mechanism [59–61], in the limit of a large number of sites. Many phenomenological aspects

of this scenario have been studied in refs. [1, 2, 4, 62].

Most important for the collider phenomenology of the model are the Kaluza-Klein

(KK) gravitons, whose masses (using the notation of ref. [4]) are given by

m2
n = k2 +

n2

R2
, n = 1, 2, 3, . . . . (A.1)

The model parameters k and R, which are related to the curvature and size of the extra

dimension, are predicted to satisfy kR ≈ 10 if this scenario is indeed responsible for the

hierarchy. This implies a spectrum of narrowly-spaced resonances starting from mass m1 '
k, with mass splittings that grow as a function of the mode number n before reaching an

asymptotic value of ∆m ' 1/R ≈ k/10 for n� kR. Near the beginning of the spectrum,

the relative splittings ∆m/m are around a few percent (almost independent of the value

of k), while their decrease as 1/m at large n implies that at some point they fall below the

experimental resolution. The intrinsic widths of the resonances are almost always negligible

relative to the experimental resolution.

The KK graviton fields hµνn couple to the Standard Model stress-energy tensor Tµν as

L ⊃ − 1

Λn
hµνn Tµν , (A.2)
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where

Λ2
n = M3

5πR

(
1 +

k2R2

n2

)
. (A.3)

Here M5 is the five-dimensional reduced Planck mass, which is the fundamental scale of

the theory. These couplings allow the KK gravitons to be produced from gg and qq̄ in pp

collisions with the cross sections

σ(pp→ Gn) =
π

48Λ2
n

(
3Lgg(m2

n) + 4
∑
q

Lqq̄(m2
n)

)
, (A.4)

where

Lij(ŝ) =
ŝ

s

∫ 1

ŝ/s

dx

x
fi(x) fj

(
ŝ

xs

)
(A.5)

are the parton luminosities, for which we take the LO MSTW2008 PDFs [63]. These cou-

plings also allow the KK gravitons to decay to pairs of Standard Model particles, including

γγ. Heavy KK gravitons can also decay to pairs of lighter KK gravitons or KK scalars. We

account for these decays in computing the γγ branching fraction, taking the case of rigid

boundary conditions for the dilaton. However, since these decays start having an impact

only for m � k, their effect is insignificant in the range of parameters we consider in this

work. For additional details, see ref. [4]. The γγ branching fraction ends up being about

4%, almost independent of the model parameters or the KK graviton mass.

Since the parameters M5, k and R must combine to give the known value of the four-

dimensional reduced Planck mass, MP ≡ 1/
√

8πG, as M2
P = (e2πkR − 1)M3

5 /k, only two

of the parameters are independent, and we choose them to be M5 and k. The parameter

k determines the beginning of the KK graviton spectrum, while M5 fixes the cross section,

which is approximately proportional to 1/M3
5 .

We assume the experimental resolution in the diphoton invariant mass to be

σ(mγγ)

mγγ
=

√
a2

mγγ(GeV)
+
c2

2
, (A.6)

with

a = 12% , c = 1% , (A.7)

which is based on partial information from refs. [10, 64–66]. This resolution is used in

figure 1 and in the rest of the paper. We take the background from the search for heavy

resonances decaying to two photons of ref. [10] (37 fb−1 at 13 TeV), the “Spin-2 selection”.

A constant value of ε = 0.5 is taken for the acceptance times efficiency.
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