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ABSTRACT: We develop techniques for studying the effects of self-interactions in the confor-
mal sector of an unparticle model. Their physics is encoded in the higher n-point functions
of the conformal theory. We study inclusive processes and argue that the inclusive produc-
tion of unparticle stuff in standard model processes due to the unparticle self-interactions
can be decomposed using the conformal partial wave expansion and its generalizations into
a sum over contributions from the production of various kinds of unparticle stuff, cor-
responding to different primary conformal operators. Such processes typically involve the
production of unparticle stuff associated with operators other than those to which the stan-
dard model couples directly. Thus just as interactions between particles allow scattering
processes to produce new particles in the final state, so unparticle self-interactions cause
the production of various kinds of unparticle stuff. We discuss both inclusive and exclusive
methods for computing these processes. The resulting picture, we believe, is a step towards
understanding what unparticle stuff “looks like” because it is quite analogous to way we
describe the production and scattering of ordinary particles in quantum field theory, with
the primary conformal operators playing the role of particles and the coefficients in the
conformal partial wave expansion (and its generalization to include more fields) playing
the role of amplitudes. We exemplify our methods in the 2D toy model that we discussed
previously in which the Banks-Zaks theory is exactly solvable.
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1 Introduction

Since the original formulation of unparticle physics [1, 2] as an effective field theory in
which the standard model couples only at high energies to a “Banks-Zaks” [3-5] sector
that is scale-invariant at low energies, this idea has been explored both theoretically and
phenomenologically in many papers. We start by mentioning what we find the most inter-
esting theoretical developments.

The way unparticle physics arises from weakly coupled Banks-Zaks-like theories was an-
alyzed explicitly in several examples in [6, 7]. Strongly coupled Banks-Zaks sectors can in-
clude theories in the conformal window of supersymmetric QCD [8] as discussed in [6, 9, 10],
or other supersymmetric or non-supersymmetric gauge theories [11-13]. Quite generally
(no counterexamples are known), unitary scale-invariant theories have the full conformal in-
variance [14, 15]. This imposes lower bounds on operator dimensions and dictates the tensor
structure of the unparticle propagators [7, 16, 17]. The dimension of a primary® vector op-
erator OF must be as large as d;; > 3. This would usually suppress the possible interactions
with the standard model both in the absolute magnitude and relative to the accompanying
standard model contact terms [7]. Similarly, for an antisymmetric tensor O*" dyy > 2 and
for a symmetric traceless tensor O* dy; > 4. However, scalar operators can start from
dy > 1. Spin—; operators must have dy; > 3/2, and they mostly become relevant if it is pos-
sible to describe unparticle stuff charged under the standard model gauge interactions (oth-
erwise, the fermionic unparticle operator can only couple to the standard model fields simi-
larly to a singlet neutrino.) Conformal invariance also introduces a specific dy-dependence
into the tensor structure of the 2-point functions in momentum space [7, 17]. It is also
interesting to mention the work [18] that used the conformal symmetry to study energy-
momentum correlations in unparticle stuff. In particular, they find that the total momen-
tum flux in a particular direction is always proportional to the energy flux, like for a mass-
less particle, and derive the angle-dependent correlation functions of energy and charge.

The possibility that the coupling of an unparticle operator to the Higgs would break
the low energy conformal symmetry of the Banks-Zaks sector was discussed in [9]. An inter-
action of the form (1/M3UV72)]H]2(’)UV that flows in the IR to (Ag{vad“ /MLCI{U"*Q)\H\QOM
becomes a relevant operator in the conformal sector (for diy < 4) introducing a scale
Azj_d“ ~ (Ay/ ZMM)dUV_dM Mj_d“ v%, where v is the Higgs vev. This can break the conformal
symmetry at energies £ S Ay (while preserving unparticle behavior for Ay < E < Ay).
The consequences of the breaking depend on the particular realization of the Banks-Zaks

LA primary operator is one that behaves covariantly under conformal transformations. Any operator
of a definite scaling dimension that is not a derivative of another operator is primary. In 2D CFTs these
operators are often referred to as “quasi-primary,” while the term “primary” refers to the properties of
operators with respect to the full Virasoro algebra.



sector, and in many cases rich and surprising phenomenology is expected (see [19-21] and
especially the hidden valley picture of [6]).

The fact that some conformal field theories are dual to gravitational theories in anti-de
Sitter space with one extra dimension (the AdS/CFT correspondence [22-24] or its more
phenomenological variants, such as the Randall-Sundrum models [25, 26]) can be useful for
studying various aspects of unparticle physics from a different perspective. For example,
some works on unparticle phenomenology involving internal scalar unparticle propagators
obtained divergent results for dyy > 2 [27-29]. Looking from the AdS perspective, the
authors of [30] (following an earlier work [31]) explained that for dyy > 2 (or dyy > 5/2 for
fermions) the propagator includes UV-dependent terms that do not decouple when the UV
cutoff is removed. These terms cancel the divergences, and in fact dominate much of the
physics in this range of dy. As pointed out already in [31] (see also [32]), these countert-
erms are needed in order for the two-point function to be a well-defined distribution. In
the context of unparticle physics, these are just the standard model contact terms gener-
ated from integrating out the high energy physics that couples the standard model to the
Banks-Zaks sector. An explicit example of this was presented in [7]. The renormalization
group running of such terms has been analyzed from the holographic perspective in [33].
On the other hand, the UV completion provided by the RS2 model [25] has been analyzed
in [34]. The AdS/CFT correspondence was also used in [30] for analyzing how the unparti-
cle stuff can couple to gauge interactions, similarly to their earlier suggestion of gauging a
non-local action [35] (see also [36-39]). Other uses of the AdS picture included describing
Banks-Zaks sectors in which the conformal invariance is broken in the IR [6, 30, 40] and
analyzing the possibility suggested in [41] that “unhiggs” is responsible for the electroweak
symmetry breaking [42].

The disadvantage of the AdS/CFT-based approaches is the difficulty to explicitly spec-
ify the 4D Lagrangian description of the physics. The original AdS/CFT setup can describe
the Banks-Zaks sector in its low-energy limit, the CFT. However, since the number of ex-
amples from string theory is limited, typically one needs to pick the field content and the
Lagrangian in the AdS space “by hand”,? without knowing what 4D theory is being de-
scribed. Many CFETs do not have weakly coupled AdS duals at all. Those that do are
typically large-N gauge theories with large 't Hooft coupling A (see also [43]). There is no
special reason to believe that the conformal sectors in our world should belong to this class
of theories. Some properties may work out anyway, as in AdS/QCD [44, 45], but it can
often be hard to separate a real effect from an artifact of an uncontrolled approximation.
Certain features of unparticle physics that are missed by assuming N — oo, A — oo were
discussed in [6]. Furthermore, while knowing correlation functions of CFTs is important for
unparticle physics, one would like to include the coupling to the standard model as well and
describe the UV completion of the combined theory. In order to add these non-conformal
ingredients, the AdS space needs to be modified in the IR. For example, the RS2 model [25]
cuts off the AdS space by a brane. As a result, the CFT gets cut off in the UV due to

%It is widely believed that knowing how (or whether) such a choice can actually be realized in string
theory is not essential in order for the correspondence to work.



interactions with the boundary values of the AdS fields (gravity and others) which become
dynamical fields in the 4D theory [31, 46, 47]. Unparticle physics aspects of an RS2 model
with a massive vector field in the bulk were analyzed in [34]. In general, different ways of
modifying the AdS space in the IR and regularizing its physics will correspond to different
choices of the coupling to the standard model in the UV. But unfortunately the relation
between the two sides of this extended correspondence is far from being straightforward.
Therefore, while AdS-based models can provide very useful guidance and examples, their
ability to describe realistic unparticle physics scenarios is limited.

The understanding of unparticle physics is incomplete without taking into account the
self-interactions of the low energy conformal sector. The main goal of the present paper
is to contribute to this understanding. So far most works have focused on the 2-point
function of the unparticle operator O to which the standard model couples, with a only
few excursions [6, 48] into the more complicated higher n-point functions which contain
the information about the interactions.

Scale invariance requires the 2-point function of O of dimension d to have the form?

1 d? : -
OTOWOON0) x " / o € (=)
where D is the spacetime dimension. There are two ways in which this 2-point function
can appear in physical processes. First, it can appear as an internal line in a process that
includes two standard model-unparticle interaction vertices. The momentum-space expres-
sion for the 2-point function makes the calculation straightforward. This results in interest-
ing effects due to the non-zero imaginary part at all p? [2, 27]. The other physical effect is
the production of unparticle stuff. The corresponding phase space can be determined either
from scale invariance [1] or by computing the imaginary part of the 2-point function [2]:

d—D/2

o x (p?) 0(p°) 6(p*) (1.2)

These two types of processes describe the physics at the leading order in the standard
model-unparticle coupling.

Higher order processes require additional machinery since they will depend on 3- and
higher n-point functions of O. Furthermore, we will argue that it is useful to not restrict
our attention solely to the operator O that couples to the standard model sector. Instead
we will use more of the power of conformal invariance and consider the primary operators
Oj of dimension d; of the conformal field theory. Conformal invariance requires the 2-point
functions to have the form?

)d—D/Q

(0] TO, ()04 (0)[0) o Ok o 81 / (de e~ (—p? — e (1.3)

(—22 + ie)? 2m)P

3For simplicity of presentation, we assumed here that the operator is a Lorentz scalar.

4If there is more than one operator with a given dimension and tensor structure, we can choose linear
combinations to get the d;i. Again, for simplicity of presentation, we assumed here that the operators
are Lorentz scalars, but most of what we say can be easily generalized to higher tensors. Various general
properties of conformal theories are discussed in [17, 49-52].



The &5, in (1.3) allows us to identify different primary operators with different kinds of
unparticle stuff. For each O;, there is a unique phase space given by

®; o (p2) " 000°) 6(p?) (1.4)

The form of the 3-point function is also fixed by conformal invariance. In particular
(for example), for primary scalars O; with dimensions d;:
1
x%Q)(lerdedg)/Q (w%g)(d17d2+d3)/2 (xgg)(fd1+d2+d3)/2
(1.5)

where x;; = x; — ;. This was used in [48] (in the case where all O; are the same) to

<O‘T01 (.%'1)02(.%’2)03(.%’3) ’0> X

study processes that involve 3 internal standard model-unparticle vertices. Higher n-point
functions are highly constrained by conformal invariance, but not completely determined.

Our goal in this paper is to understand how to use this structure to analyze processes in
which unparticle stuff is produced as an outgoing state. We will discuss two approaches. We
will show how to analyze inclusive processes by looking at the discontinuities across physical
cuts in the n-functions of @. And we will argue that these discontinuities are related to
a sum over primary conformal operators of squared “amplitudes” for the production of
the corresponding unparticle stuff. These amplitudes, in turn, are determined by the
coefficient functions in the conformal partial wave expansion. The resulting picture, we
believe, is a step towards understanding what unparticle stuff “looks like” because it is
quite analogous to way we describe the production and scattering of ordinary particles in
quantum field theory, with the primary conformal operators playing the role of particles
and the coefficients in the conformal partial wave expansion (and its generalization to
include more fields) playing the role of amplitudes.

We will present the basic ideas, which are valid for any conformal theory in any number
of dimensions, in section 2, and dedicate most of the rest of the paper to testing them on
the 2D example of unparticle physics that we discussed in [53]. The Banks-Zaks sector in
that example is the Sommerfield model of massless fermions coupled to a massive vector
field. This model is exactly solvable and flows to the Thirring model in the infrared, as we
will discuss in section 3. We couple the Sommerfield model to a toy standard model, which
is simply a massive scalar carrying a global U(1) charge. In the infrared, the resulting
interaction flows to a coupling of two charged scalars to an unparticle operator with a
fractional anomalous dimension. In section 4 we apply the operator product expansion to
the solution of the Sommerfield model to find the exact 2n-point functions of the unparticle
operator. We discuss the mathematical structures that appear in the solution and certain
infrared issues involved in looking at them in momentum space. Before studying self-
interactions, we briefly review in section 5 the simplest unparticle process shown in figure la
in which two toy standard model scalars “disappear” into unparticle stuff. Because we have
the exact solution for the Banks-Zaks sector correlation functions, we can see precisely
how the system makes the transition from the low-energy unparticle physics to the high-
energy physics of free particles. The answer, as we discussed in [53], is rather simple. The
“spectrum” of the model that we can see in that process consists of unparticle stuff and
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Figure 1. (a) A disappearance process. (b) A missing charge process. (c¢) A missing energy process.
The arrows indicate the flow of the global U(1) charge.

massive bosons. As the incoming energy of the standard model particles is increased, the
unparticle stuff is always there but more and more massive bosons are emitted and the
combination becomes more and more like the free-fermion production cross-section. In
sections 6 and 7 we analyze the missing charge and missing energy processes shown in
figures 1b and lc, respectively. These inclusive processes are mediated by the conformal
sector self-interactions. We show both inclusive and exclusive methods of calculation.
The spectrum again includes unparticle stuff and massive bosons, but the unparticle stuff
corresponds to operators other than those to which the standard model couples directly
(there are also massless excitations that correspond to operators of integer dimensions). We
comment on the massive bosons in section 8. In section 9 we summarize the conclusions.



2 Unparticle self-interactions

A useful concept in conformal field theories is the conformal partial-wave expansion [51,
52, 54-57] (see also [58-60] and references therein in the context of AdS/CFT), which is
a generalization of the operator product expansion (OPE). For any two operators O (1)
and Oy(z2) with an arbitrary separation between them, it is possible to write

TO1(x1)O02(x2)]0) = Z/dD:U iQr(z|x1, x2) O(x)|0) (2.1)
k

where T denotes time-ordering, Oy are the various primary operators in the theory (un-
like in the OPE, their derivatives need not be included separately) and the coefficients
iQp(x|z1,z2) are the 3-point functions of O;(z1), O2(x2) and Ok(z), with the Oy leg
amputated, namely

/de (O\T(’)k(x’)(’)k(m)]m iQk(m\xl,xg) = <0’T0k(.%'/)01(.%'1)02(.%’2)‘(» (2.2)

If Oy and Oy are scalars, the operators O are completely symmetric traceless tensors [57]
whose amputated 3-point functions Qy(x|z1,22) are fully determined, up to a constant
prefactor, by the dimensions of the three operators and the tensor rank of Oy.

Amputated 3-point functions are exactly what is needed for computing processes that
produce unparticle stuff corresponding to the operator whose leg is amputated. This follows
because using (2.1) twice we can write

(O/TO3 (£2)05 (1) 01 (1) Oa(w2)]0)
=Y [ dPe Py Qiteler. o) OTOHR)OWI0) Qo) (23
k

For example, suppose we had the coupling
Lint x ¢°O (2.4)

where ¢ is a standard model field and O is an unparticle operator. According to (2.3)
with O1 = Oy = O, by taking the discontinuity across the cut of the 4-point function of O
(figure 2), which corresponds to the inclusive process

¢+ ¢ — ¢+ ¢ + unparticle stuff (2.5)
we obtain the sum of cross-section for the processes
O+ ¢ — ¢+ ¢+ {0 stuff} (2.6)

where Oy, are the various primary operators in the theory (that do not necessarily couple
to the standard model directly). The amplitudes M of these processes are the amputated
3-point functions @ (times factors coming from the standard model), while cutting the
Oy, propagators in (2.3) gives the Oy phase spaces in (1.4).
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Figure 2. On the left: the unparticle 4-point function (schematically) with a cut over the unparticle
stuff for computing the cross-section of the process (2.5), inclusive with respect to the unparticle
stuff. The dashed lines are the standard model particles ¢. Each vertex is the interaction (2.4).
(One should include also diagrams in which the standard model particles are attached to the 4-point
function in other possible ways, as we will do in section 6.) On the right: representation (2.3) of

the 4-point function as a sum of terms, each with two amputated 3-point functions @ connected
by an O propagator. The cut through the Oy propagator allows us to interpret the terms in the

sum as related to the cross-sections of the exclusive processes (2.6).
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There are powerful tools in conformal field theory for working out these amplitudes
explicitly. The amputated 3-point function is formally proportional to the ordinary 3-point
function of O and Oy with a “shadow operator” corresponding to the third operator Oy.
The shadow operator has the same tensor rank ¢ as O, but dimension A = D — A, where
A is the dimension of O and D is the spacetime dimension. This method is based on the
D’EPP formula [61] (see also [17, 52, 54, 62]), which says that for §; + do + 03 = D (in
Euclidean space)

abP L(01)T(62) (d3) D/2 F(ZQD _53)F(12) _52)F(12) _51) 27
x (xg )51 (232 )(52 (xg )(53 = 2 \D/2—d3 2 \D/2—02 2 \D/2—01 ( : )
14 24 13 (2%,) (2%3) (233)
For solving (2.2) we can use this formula as
U e TOPTG) L TDR- 2
—A A A —A A A
(1) (302 @30 @3) R )Y (03
(2.8)

This is described graphically in figure 3. Since the 3-point function (1.5) of two scalars Oy
and Oy of dimension d with a third scalar® Oy, of dimension A, and the two-point function

of O, are
(OITO1 (1) Os(2) O (3)]0) “ (2.9
1(71) O2(w2) Ok (T3 = _ .
(waty ie) 3 (cady i) (B +ie)
C
(0T O () Ok (0)[0) = ° A (2.10)
(—x2? + ie)
where C3 and (5 are constants, we obtain the amputated 3-point function to be
_ [C(A/2)]°T(A) C
Qk(l'él‘xly-%?) - xD/2 [F(A/Q)]z F(D/Q N A) 02
8 d—A/2 1 AJ2 A/2 (2.11)
(=% + i) (—ady + i)™ (—ad, +i0) Y
In momentum space it gives the amplitude
M= 2D2HAT(AYI(D —d — A/2) C3 1(P.Q) (2.12)
IND/2—-A)T(d+A/2—-D/2)Cy ’ )
(times the standard model factors), where
dPk
I(P,Q) = / 2.13
PO=] (o migP a3 Pk = i (- (- Q-2 O

where P is the momentum incoming from the standard model at 1 and @ is the unparticle

momentum outgoing at x4. The phase space of Oy, is

7P/2 gin(m(A — — —
0@ =" AT Y @) e v
n O (@) 0Q (%) (2.14)

T 2A-D-1D(A)T(A—D/2+1)

A generalization for higher tensors exists as well. We will consider a vector operator in section 7.4.



Note that @ is positive if Co > 0 and A > D /2 —1, which is exactly the well-known bound
on the dimension of a scalar operator [17, 52]. For the limiting case A = D/2 — 1, use

. 0(Q?
i eyt =9@)
with e = A — (D /2 — 1) to obtain

8rD/2+1 ¢,

Q)= [y 1) @)@

We thus have

93D—4d+1 7.[.D/2+1 P(A) [F(D —d— A/Q)]Q Cg
T(D/2 — A)2[T(d+ AJ2 — D/2)2T(A — D/2 + 1) Cs

< 1P, Q) (@1 "7 0(Q%) 0(Q%)

MP D =
We can combine the denominators in (2.13) by using

J Zj OéjAj J

Fﬁf) _ /01 < INOD v;kz) L zj:aj 1) [T day

which gives

MPD DAL 7 D/ZHLD(A) (D — d + A/2)]2 C3
<|ieo| (@) 0@ i)

where

1 3
I(P,Q) = /o doy dog das 0 (Z aj — 1) a?id*A/%l a2A/271 agA/%l
j=1

y / dPk
(k2 + g(P, Q) + ie)P T4/

where we shifted the integration variable k and defined

9(P,Q) =ay(1— ozl)P2 —20q103QP + as(1 — ag)Q2

T(D/2—-A)2[I(d+ A/2—D/2)]2[T(A/2)AT(A—-D/2+1)Cq

(2.15)

(2.16)

(2.17)

(2.18)

(2.19)

(2.20)

(2.21)

In the following sections we will do the inclusive and exclusive calculations explicitly in

a 2D toy model, the Sommerfield model, where we consider the processes whose inclusive

descriptions are given in figures 1b and c.

,10,



3 2D toy model of unparticle physics

3.1 Sommerfield model of a Banks-Zaks sector

In this paper we apply the ideas of section 2 to analyze the unparticle stuff that appears in
the Sommerfield model [63-67], that is the Schwinger model [68] with an additional mass

term for the vector boson:%

. 1 . mé
L=9Gid —eh)p— 4F“ Fu, + 5 ArA, (3.1)

We are interested in this theory since, like the Schwinger model, it is an exactly solvable
model that becomes scale-invariant at low energies, and (unlike the Schwinger model) has
fractional anomalous dimensions. At low energies, below the vector boson mass, the theory
reduces to the Thirring model, that is the theory of a fermion with a quartic self-interaction
which is scale-invariant at all energies [69-71].

In order to solve the model, it is convenient to decompose A* as”

AP = MY + 9, A (3.2)

The Lagrangian becomes

1 2
L =iy @y —epyp ('Y + €0,A) + 2AD2A + n;O (0 VO'Y — 0, A0 A) (3.3)
If we change the fermionic variable to
U — ez‘e(V—i—Awﬁ)w (3.4)
the fermion becomes free:
2 1 2
L=i¥pu+ D900+ ACPA-" 9,40"A (3.5)
In the last term of (3.5) m2 has been replaced by
2 €
= 3.6
me=mo T+ (3.6)

in order to account for the fact that the path integral measure is not invariant under the

A part of (3.4) [72].8

50ur conventions, as in [53], are: g00 = fgu =1, ' = €% = —¢41 = €10 = 1. From the defining

properties {y*,7"} = 2¢"” and v° = — e y*y”, it follows that v#~° = —€*’v, and v+ = g"” + "+,
. . 01 0 -1 10

and we will use the representation 1° = 10) N = 10 ) N (O 1) . Then the

components ¥ and 2 describe a right-moving and left-moving fermion, respectively.
"In 2D, an arbitrary vector A* can be expanded in terms of any non-null vector k* as

_ kHEP — e*k, €k,
= 2

In the Schwinger model (mo = 0), V would be the unphysical longitudinal polarization that can be set to

A¥ A,

zero in the Lorenz gauge.
8The same effect gives mass e/y/7 to the gauge boson in the Schwinger model. See also [73].

— 11 —



We can now calculate fermionic n-point functions as

(O TWa(@) ... W5(y) ... 0) = (0|Te e (V@+A@NE)  e(V)+AwNg) o)
(0T, (x) ... T(y)...|0) (3.7)

where the subscript in 72 specifies that it acts on the spinor at point z (in our representa-
tion, 7911 = 4101, Y2 = —1py.) Using Wick’s theorem and the observation that

i / Pz e OTV(@)V(O))0) = (3.8)

mgp

, - i - 1 1 11
i / P P (0T A()A(0)]0) = <p2 2) (3.9)

(p2)2 _ m2p2 - m2 —m?2 D

we obtain that the n-point function is given by the corresponding free n-point function
multiplied by

H Co(m'z - .%'j)mj C(mz — .%'j)mjmj (3.10)

Jj>i

where i, j run over the n points and

[ €2 2 —e2/4mm?
Co(x) = exp img [D(z) — D(O)]} o (—a? + i) 0 (3.11)
F 2
Cla) = exp [i  [(Alx) = AO) = (D) - DO
= exp -2;:”2 |:K0 (m\/—az2 + ie) +1In <£m\/—x2 + ze)H (3.12)
with e
£= 62 (3.13)
where we used?
2 e—ipaz i
ale) = / (;lw]))2 p?—m? +ic T o0 (m\/_w2 * ie) (3.14)
B d’p e P* o —x? + e
D(z) = / (2m)2p2 i Ar In ( 22 > (3.15)

and 7;; and k;; are sign factors that depend on whether the operators at the two points
are the fields or their adjoints and their handedness:

) +L, ¥ and ¢* BB +1l,a=0
Mij = {—1, (¢ and ) or (¢* and ¢™*) Fig =i = {_1’ a3 (3.16)

9K, is the modified Bessel function of the second kind and zo is an arbitrary constant that will cancel
out in the following. For y — oo, Ko(y) ~ \/27; e”¥ — 0. Fory — 0, Ko(y) = —In(y/2) —ve+O(y?), where
ve = —T"(1) ~ 0.577 is Euler’s constant. Note that A(0)—D(0) = (i/2m) In (e"Exom/2) = (i/27) In (Exom)
in C(z) is finite. The D(0) term in Cy(x) does not have any effect since any n-point function has —n/2
such factors so their presence is equivalent to changing the normalization of the fermion field.
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Similar expressions for the correlation functions have been obtained by various methods in
the past [74-76].

In the short-distance limit, (2; —2;)> < 1/m?, C(x) — 1 and one obtains free-fermion
behavior.!? In the large-distance limit, (z; — xj)Q > 1/m?, Ky does not contribute, and
C(x) is just a power of 22

e? /4mm?

C(z) — [(fm)Q(—:cQ + ie€)] (3.17)

leading to scale-invariant behavior with fractional anomalous dimensions. This is the un-
particle regime. Note that m plays the role of Ay from [1].
Additional properties of the Sommerfield model are described in appendix A.

3.2 Coupling to the “standard model”
We assume that the very high energy theory includes the interaction

Line = ) [V +75)x 8" +%(1 = 15)x 6] + hc.

= p (Y3x19" + Y] x2 ) +hec. (3.18)

that couples the fermion 1 of the Banks-Zaks sector to a neutral complex scalar ¢ with
mass mg < m that plays the role of a standard model field. The interaction is mediated
by the heavy fermion x with mass M > m, u?/m and the same coupling to A* as 1.
The interaction preserves a global U(1) symmetry with charge +1 for ¢* and ¢} and
charge —1 for 5. Integrating out y we obtain!
2412

_h *2 * 42 —
Elm_2<(9¢ +0¢), L (3.19)

where the composite operator

O=4 L (1+7°) v = v (3.20)

(that has charge —2 under the global U(1) symmetry) will have a fractional anomalous
dimension at low energies.

Since this symmetry acts chirally on the fermionic field one may be concerned about
anomalies. Indeed, the axial current j°* = 1y#~%t has a non-zero divergence [73], and in
the Schwinger model the symmetry transformation gives rise to an additional term in the
Lagrangian proportional to

. e e

Lo o 0"y = = O, Ay =~ " Fp (3.21)

While this term is a total derivative, it cannot be eliminated in the Schwinger model due
to instanton configurations in Euclidean space that do not decay fast enough at infinity
and for which [ d?x Ly does not vanish [77]. This leads to the existence of degenerate 6
vacua [78, 79] that differ in the value of the symmetry-breaking condensate (O) oc €. But

10Cy(x) does not contribute a fractional power to the correlation functions of fermion bilinears.
1n a 4D unparticle theory, the interaction corresponding to (3.19) would typically be nonrenormalizable.
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x1, 0 Y2, 32 T1, 01 Y2, 32

—— .
L2, 2 y1, 3 T2, Q2 y1, 5

Figure 4. The free fermion skeleton corresponding to the 4-point function (4.2).

in the Sommerfield model (unlike the Schwinger model that has gauge invariance) we can

define a conserved axial current as

= e, (3.22)

Then, since a (non-anomalous) symmetry cannot be broken spontaneously in two dimen-
sions [80], there is no condensate. Note also that a non-vanishing condensate of an operator
with a non-zero dimension would be in conflict with scale invariance. In the Schwinger
model, the dimension of O at the IR fixed point is 0, but we will see that this is not the
case in the Sommerfield model.

4 Correlation functions of the unparticle operator

The vertices in (3.18) that couple the standard model field ¢ to the fermions of the Som-
merfield model involve also the heavy field y. Since y effectively propagates over distances
of order 1/M which are much shorter than the distances we want to consider, our effective
interactions will involve two ¢ s coupling to the leading operator in the operator product
expansion (OPE) [70, 81] of a product of two 1 s. In particular, we will be interested in

Tys(x2)tba(21) = c(z2 — 1) Pjvalz2) + - (a # f) (4.1)

that defines the operator O = 931, from (3.20) and its conjugate O* = J1ps. Using this
OPE and the exact solution for the fermionic correlation functions from section 3.1 we
will determine the correlation functions of O and O*. The coefficient function ¢(xs — x1)
will not play any role since there is also a x propagator connected between x; and xs.
Evaluating the convolution of the two at zero external momentum, that is all we need for
energies much below M, would give a constant.

4.1 2-point function

Consider the fermionic 4-point function

GW = (0|TY%, (x2) Yay (1) W5, (y2) U, (41)]0) (4.2)

We can express it as the free-fermion skeleton in figure 4, that is

G = iS5 (w1 —22) 1S5 (11— Y2) o s O 0 — 158 (21— y2) 1S (Y1 — 2) Sy 3 Oy (4.3)
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Figure 5. The sign factors (1;;, ki;) for the case a1 = B2, ag = 1 (a1 # a2).

multiplied by the bosonic factors (3.10), where 6,5 S§ (z) is the free-fermion propagator,'?

d*p , pt 1zt
Si(x) = P = — 4.4
() / (2m)? ¢ p? + ie 21 22 — ie (44)
d*p , P~ 1 =z
Sa(x) = e =— 4.5
() / (2m)? c p? + ie 21 12 — i€ (45)

where we use the lightcone coordinates!?
et =20+ 2! (4.6)
For the O and O* operators, we are interested in the case

ar =By, ax=p (1 # az) (4.7)

Only the second term of (4.3) survives, and the corresponding 7 and x factors of (3.10) are
shown in figure 5. In the limit 21 — x2 = x, y; — y2 = y this gives

Co(z1 — 22) Co(y1 — y2)
C(z1 —x2) Cy1 — y2)
On the other hand, using the OPE (4.1), we can write (4.2) in the same limit as

GW = Clz —y)*iSy(z —y)iSi(z —y) (4.8)

G = e(ay — 21) ely2 — 1) (OTO(x) 07 (4)[0) (4.9)
Comparing (4.8) and (4.9) we see that we can take ¢(x) = Cy(x)/C(z), and
T 4
iAo(x) = (0|TO(x) 0*(0)[0) = C(z)*iS3(x)iSE (x) = Clo) (4.10)

(27m)2 (—2? + ie)
At distances large compared to 1/m, using (3.17), we see that the 2-point function is
proportional to an unparticle propagator14

1
(2m)2(Em)2a (—a2 + ie) '
*We define the propagator S®(z) as dap S*(x) = —i (0| T¢a(z) 15(0)]0).

13Some properties of the lightcone coordinates are listed in appendix B.
MHere and below, we incorporate a dimensional factor of 1/(£m)2‘1 in the unparticle propagator so that

iAo(z) — iAy(x) = (4.11)

it has the same engineering dimension as the O propagator.
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where )
e 1
a=— = — 4.12
m? 1+ 7m3/e? (412)
denotes the anomalous dimension of the composite operator O = 151 (its total dimension
is dy = 1+a). For 0 < mg < oo, a is fractional, which leads to unparticle behavior.!® In

momentum space16
, iA(a) a . Aa) o a i
Bulp) = 2(ém)?e sin(ra) (=0 ~i)" = 27 (&m)2e /0 AM? (M) p? — M? +ie (4.13)
where
_ sin(wa) '(—a) 1
Al@) = =512 al(14+a)  21+2 (1 + a)]? (4.14)
Since
Im Ay(p) = -, (?7(;))% o(p*) (p°)° (4.15)
the unparticle phase space is
Bulp) = o ()" 00°)007) (4.16)

Note that in the Schwinger model limit the phase space vanishes since A(—1) = 0.
Because we have the exact solution, we can write (4.10) for arbitrary z as

iAo (r) = iAy(z) exp [—4miaA(x)] = iAy(x) Z (—4ma)"

n=0

. n
al [1A(x)] (4.17)
At distances not large compared to 1/m, the higher terms in the sum in (4.17) become
relevant. This will be important for studying the transition between the unparticle and

particle regime.

4.2 Higher n-point functions

In a similar way, for a general 2n-point function of the operator O we have

e Ly — : n
OITO(@) . O O" (1) - OO} = [ CH(;’?_;M é’f; i Gl (418)
>j J J

where Gﬁf;) is the corresponding free fermionic 4n-point function:!”

aln) _ (=)™ Tlesj (25 — 1) (Y5 — vk)?

free (47‘(2)” ij(xj _ yk)2 (419)

Thus, using (4.10),

iAo (T —
(OTO1) .- Oan) " () - 0" ()0} = . ,Z.E;&’;,_‘”ik;mi’};_yk) (4.20)
>j J J

5For mo = 0 we obtain a = —1, i.e., dyy = 0, which is the Schwinger model result [82].

'The Fourier transform is calculated on p. 284 in ref. [83].
"Note that this simple form arises from the sum over all possible contractions of the free fermion fields.
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Figure 6. The 6-point function and the 10-point function of O.

The 2n-point function involves the two-point function iAp(x), and also its inverse

iRol@)= | A; " (4.21)
We can represent the 2n-point functions diagrammatically with 2n vertices connected by
two kinds of lines: solid lines representing iAo (x; —y;); dotted lines representing Z'A@(ch —
xy) or Z'A@(yj — yi). For example, the 2-point function is just a single solid line, and the
6- and 10-point functions are shown in figure 6.

It is important to remember that these diagrams, while useful as reminders of the
structure of (4.20), are not Feynman diagrams. Eq. (4.20) is the sum of an infinite number
of Feynman diagrams and describes the full 2n-point function.'®

Although we will not always indicate it explicitly, one should remember that the solid
lines are actually directed, carrying the conserved chiral charge from an O* vertex to an O
vertex. The dotted lines are not directed. So for example we could represent the 6-point
function as in figure 7. Curiously, the charge carried by the solid lines depends on n. In the
2n-point functions, each solid line carries 2/n units of charge. It is obvious that this con-
serves charge, because n lines emerge from each O* vertex and n flow into each O vertex.

In this paper we will do most of our analysis on the O 4-point function:

| (OITO(1)O(as) O (41) O (42)]0)
_iAo(z1 —y1) iAo (x1 — y2) ido(z2 — y1) ido(z2 — y2) (4.22)
iAo(z1 — 22) ido(y1 — y2)
While its form may look peculiar, especially because of the propagators in the denomi-

nator that lead to IR divergences that we will analyze in section 4.3, it is a typical form
for conformal field theories, in any number of spacetime dimensions. More specifically,

BThis includes also diagrams that can become disconnected in certain limits, since we included such
diagrams in (4.19).
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Figure 7. The 6-point function with the direction of the charge flow indicated.

conformal invariance restricts the 4-point function of any four primary scalar operators O;
with scaling dimensions d; to have the form [49]

dp/6—(d;+d;)/2
(0]TO; (1) O2(2) Os(3) O (4)[0) = F(u, ) [ ] (7)) /o) (4.23)
1<j
where dp = dy +dy +ds+dy and F(u,v) is an arbitrary function of the conformal-invariant
cross-ratios s o s o
_ T1a T34 _ L1 T34 4.94
=2 .2 V= 92 2 (4.24)
T13 124 T14 123
When all d; are equal, like in our case of interest, this can be written more simply as
f(u,v)

(2%3)(234)

In the unparticle limit of our model, i.e., with Ap — Ay in (4.22), our 4-point function

<0|T01(561)02($2)03($3)04($4)|0> = (4.25)

matches this form with f(u,v) oc v?. The function f(u,v) can be different for other oper-
ators and in other conformal theories. However, because of the form of u and v in (4.24),

when we expand f(u,v) in powers of v and v each term will generically have powers of some
x?j in the numerator and some in the denominator, similarly to what we have in our model.

4.3 Momentum space and IR divergences

In momentum space the 2-point function (4.10) [recall also (4.17)] becomes

o a n 2 n 2 n
ido(P) =3 I [ it [H i) (275 ( P—pi =Y,
n=0 ’ i=1 j=1

(4.26)
This describes a sum of two-point diagrams in which the incoming momentum P splits
between the unparticle propagator and n massive scalar propagators.'® The discontinuity

9Similar behavior in the Schwinger model, where the unparticle stuff is absent, has been discussed
in [82, 84].
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gives the phase space

a) = (—4ma)" 2 a
LRI SR AL
" (4.27)

n 2. y
. [H (d Di 271_5(1)22 B m2)9(pg)] (27‘()252 P —py — z;pj

This is the form that we used in [53] to discuss the transition from the low-energy unparticle
regime and the high-energy free-fermion regime in our toy model. We will review this in
section 5. But to go beyond this simplest process, we need to understand the meaning of
the higher n-point functions (4.20) in more detail.

2 _, 0. But that means that its

The two point function Ap(z) goes to zero as —x
inverse (4.21) goes to oo as —x? — oo. At first (and perhaps second) sight, this looks like
a recipe for infrared divergences. Indeed, the Fourier transform of Ao(m) is very singular
as p> — 0. Formally, the dotted line propagator in momentum space can be written as an

expansion similar to (4.26):

- ) etk ) etk .
iAp(k) d°x ) = [ dz exp [dmiaA(x)]

iAp(x 1Ay ()
B —1'87T4A(_2 —a)(ém)* / d*p 1
B sin(ma (2m)2 (—p? — ie)?>te

n

*_ (47a)"™ d?p;
X ZO( n!) [H (2:)21A(p¢)

i=1

(2m)*8* [ k—p—) _p; (4.28)
j=1

The inverse of the unparticle propagator, which gave the

1

4.29
(—p? — ie)2ta (4.29)
factor in (4.28), will lead to infrared divergences. The Fourier transform
9—2(1+7) P(_,.Y) ) 1
d*x e (—a® +ie)’ = — 4.30
- F(l—l—fy)/ x e’ (—x* + ie) (—pZ—ie)H‘“/ ( )

has a well-behaved Kallén-Lehmann representation for —1 < v < 0:

sin(my) /°° ds 1
_ 4.31
T o ST p?—s+ie (4:31)

The spectral function is positive and the singularity at s = 0 is integrable. We used this
implicitly in (4.27) with v = —1—a. However, for the dotted line we needed to take v = 1+a
to obtain (4.28): this means 0 < 7 < 1, and then the integral in (4.31) does not converge
near s = 0. More practically, the factor (4.29) will lead to divergences in cross-sections.

A better approach for doing the Fourier transform of the dotted line is to use (4.30)
with v = a and get an extra factor of 22 by differentiating both sides as

9—2(2+a) F(—a)
m TI'(l1+a)

0?2 1

opop (2 —ieyre (4

/ d?z e (—2? + ie)' T = —
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where we use the lightcone components (4.6). It looks naively as if the derivatives just
reproduce (4.29). Indeed, for p? # 0

0?2 1 1
Op+op~ (—p? — ie)lta (—p? — i€)2+a

But it would be too naive to assume (4.33) for all p? because of the singularities of these

= —(1+a)? (4.33)

generalized functions at p?> = 0. The derivative operator clearly produces a well-defined
generalized function, but the singularities at p? = 0 would require special care.

We can think of two ways to deal with these infrared issues. In some situations, we
can use (4.32) directly by routing external momenta through the diagram in such a way
that we can take the derivatives outside the loop. Then we can use (4.30) and (4.31). The
other alternative is to use (4.32) with an explicit infrared cut-off. This second alternative
is instructive as well as useful, so we will outline it here. We will discuss both methods in
more detail in section 7.1 and appendix C.

Let the function fy(s) be an IR-regulated version of 1/s'+%:

1 f A
Fa(s) = { slva N5 (4.34)

0 ass— 0

(for example, we could take fy(s) = s7%/(s+ A)). Then an IR-regulated version of
~ m(1+a)’ 1

sin(ma) (—p? — ie)2+a (4.35)
is 2 N 1
Optop~ /0 ds x(s) p? — s+ e
> 1 2s
:/o ds fx(s) <(p2 s4ie)? +  — S+i€)3>
o0 2 (4.36)
:/ de)\(S)<8+Sa> 1
0 s 0s? ) p? — s +ie
= /00 ds <f)/\(s) + sf)/\'(s)> 1
0 p? — s+ e

The spectral function in (4.36) does not have a uniform sign. In fact, it is a total derivative,
so the integral over s vanishes. As A\ — 0, the deviation of

ot (B 5 16) (437

2+a s squeezed down to s = 0, but the integral over s continues to vanish.

from 1/s
Because we now have a Kallén-Lehmann representation for the dotted line, we can
safely write down the corresponding phase space from the discontinuity across the cut:

~ TAA(—2 — Q) (Em)2e 2
T A (R (R (139)
9] nln 2 n
x> (47;?) [H (Zﬂ_p)zg 2md(p — mz)é’(p?)] 2m)?8* [ k—p—)_p;
n=0 ’ i=1 j=1

We will see in appendix C how (4.36) and (4.38) work in a simple example.
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5 Disappearance process: ¢ + ¢ — U
We now review the physical process described in figure la:
¢ + ¢ — Sommerfield stuff (5.1)

Because ¢? couples to O* at low energy (from (3.19)), we can obtain the total cross-section
for this process from the discontinuity across the physical cut in the O 2-point function.
The cross-section for a given initial state I to scatter into any possible final state F' can be
obtained from the amplitude of I going back to I using the relation

Z/C@F IM (I — F)|* = = DisciM (I — 1) (5.2)
F

where ®p is the phase space of the final state F, and Disc refers to the discontinuity
across the branch cut, M(s + ie) — M(s — ie), where s = E2 . This is also known as the
optical theorem, and the right-hand side of (5.2) is often written as 2Im M (I — I). In
our particular process, for ¢ momenta P; and P», this gives the cross-section

I P,P,— P, P h?
_ mM(Py, P> — Py, 2):_3 Im Ao (P) (5.3)

o

S
where P = Py + P, and s = P2. In the unparticle limit (y/s < m), using (4.15), or directly
the phase space (4.16), we find the fractional power behavior expected with unparticle

production:
A(a) h? 1
= 5.4
g 2 (é‘m)Qa slfa ( )
On the other hand, in the free-particle limit that appears at high energies /s > m, we
have C(xz) — 1 in (4.10) and then
h%1 (5.5)
o= .
4 s

which is the cross-section for ¢ + ¢ — 15 + 1 without the Sommerfield interaction.

The transition between the two limits can be studied using the expansion in (4.27)
which shows that the general result can be described as the production of unparticle stuff
along with an arbitrary number n of massive bosons (to the extent that this is allowed
energetically), see figure 8. Along with an additional massive boson, each subsequent term
is proportional to an additional power of a. One can easily obtain explicit results in the
case of small a, when only the first few terms in the expansion contribute. For example,
the n = 1 term contributes

S

dW) = —a0(\/s —m)In \T/n + O(a?) (5.6)

which gives the total phase space at the leading non-trivial order in a as

= ; —a [m (;E 3”:) + 005 —m) ln::j +0(a?) (5.7)
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Figure 8. The cross-section for the disappearance process, based on the expansion (4.27). The long-
dashed lines are the standard model particles ¢, the solid line represents the unparticle propagator
while the short-dashed lines represent massive boson propagators. The thick line is a cut for
computing the contribution to the cross-section.

0.5}

05 : 5 5 Vs

Figure 9. Phase space ® for the disappearance process in figure la as a function of the energy +/s
(in units of m) for a = —0.1.

For energies /s > m, this expression reduces to
d=_ +0(a? (5.8)

that is the free-fermion result (5.5). Thus, for |a| < 1 there is a discontinuity in d®/d/s at
Vs = m, where a transition occurs from pure unparticle behavior below energy m to pure
free-fermion behavior above m (see figure 9).2° Interestingly, the free-fermion behavior is
obtained here as a sum of the n = 0 and n = 1 terms of figure 8.

20The linear approximation (5.7) is not valid for /s < m due to large In /s, but we have the exact
expression (4.16).
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ki1 + ko — 41—l — {3

ki + ko — 41—ty — U3

O*(y2)

Figure 10. The 4-point function (4.22), in position space on the left and momentum space on
the right. Momenta k and k' enter the diagram and k and k' leave it. The thick line is a cut for
computing the cross-section of the process (6.1).

For larger values of |a|, higher powers of @ will need to be taken into account in the con-
tributions with extra bosons in order to reach the free-fermion regime at sufficiently high
energies. Since each additional massive boson that we include gives a contribution with one
extra power of a, we will need to include N massive bosons to cancel all a-dependent terms
up to O(a’). Then the free-fermion behavior will only appear at /s > Nm (while in the
range m < /s < Nm mixed behavior will be observed, with discontinuities in d®/d/s for
each multiple of m). In the limit a — —1, the required value of N becomes infinitely large:
the condition |a”V| < 1 implies N > —lnt—a)' Note also that for a = —1 the unparticle
contribution disappears since A(—1) = 0. This limit is the Schwinger model; it has been
studied in [82, 84].

6 Missing charge process: ¢ +¢p - p+ o+ U

6.1 Inclusive treatment: general

In this section we show that it is possible to go beyond the simple calculation of section 5
to study processes in which standard model particles are radiated from the unparticle stuff.
We begin with a process in which infrared issues do not intrude at low energies. In section 7
we will consider another process in which the IR properties of the dotted line are more
immediately important.

Consider the missing charge process of figure 1b,

o(p1) + d(p2) — d(q1) + ¢(g2) + Sommerfield stuff (6.1)

Because of (3.19), and the fact that four units of U(1) charge must be carried by the
Sommerfield stuff in this process, the Sommerfield dynamics that contributes is associated
with the discontinuity across the cut in the O 4-point function (4.22) that is represented by
figure 10. We obtain one contribution to the total cross-section of (6.1) by annihilating two
¢s at y1 (and injecting k = p; +p2) and creating two ¢s at yo (and injecting k' = —q1 —g2),
and analogously for x1 and xo. More generally, k can be taken to be the sum of any two out
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of p1, p2, —q1, —q2, and k’ the sum of the remaining two. Independently, k& and k' can also
be each assigned two of these four momenta. All the possible combinations are summed
over in the cross-section. (In other words, we are taking into account the interference of all
the possible ways of attaching the standard model particles.) Let’s define the cross-section
factor o as

o= Z IM; > ®; (6.2)

where M, are the amplitudes of the various processes that contribute to our inclusive
calculation and ®; are the phase spaces of the Sommerfield stuff that is produced in these
processes. In order to obtain the actual cross-section one would still need to multiply o
by the couplings to the standard model h*, divide it by the usual factors involving the
momenta of the incoming particles, multiply by the phase space factors of the outgoing
particles and integrate over the phase space. Based on (5.2), we have

d?t3

o — _ Z/Q(Q — 0 — Uy — l3) ®(4y) d2€12 D (4s) d2€22 (l3) (27)2

(27) (27)
X ZA(Q(]{Z — 61 — 62) iA@(k)j — 51 — 53) (6.3)

where Ap(k) is the dotted line propagator in momentum space given by (4.28) (with
appropriate IR caveats), ®(p) is the phase space of the Sommerfield stuff (along with its
massive bosons) as given in (4.27), the momenta k; and k; take the values

ki, kje{p1+p2, =1 —q2, P1 —q1, P1 —q2, P2 —q1, P2 — G2} (6.4)

and we define
P =pi +p2, q=q1+q, Q=P—q (6.5)

In the unparticle limit (i.e., without the massive bosons), (6.3) reduces to

1 Afa) 1" % 0¥ gt apt do- o= di—
7= g5 (2m)0 [({m)%} Z; /0 dey dey deg dey dey dég
x 0 ((Q —fl — fg — fg)Jr) 0 ((Q — fl —fg —f3)7)
X [6?6;6;(@ — 01—l — 63)+£1_€2_€§(Q — 01— by — Eg)‘]a
x Ao(ki — b — b)) Ao(kj — €1 — C3) (6.6)
6.2 Results for small «

It is easy to compute (6.6) for |a| < 1, since then

o~ B 64im3a 9
iAp(k) = _(—k‘*kf iey? + O(a®) (6.7)

and

1 % b ot a0t a— 10— 70—
2Y)
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XO((Q =01 —Lly—3)")0((Q— 11—ty —L3)7)
X Ao(/ﬁ — 51 — 62) A@(k)j — 61 — 53)

a’h?
= D QK k) IQ k) (6.8)
1,7

where?!

0(Q — 01 — Uy — 13)
k— 00— 0)% (k — 0, — 15)°
(Q—2k)In(1—-Q/k) —(Q —2k) In(1 —Q/k)

) (k—k)(Q—Fk—Fk) 0(Q) (6.9)

To analyze (6.8) in more detail, we can consider, for simplicity, only the terms

I(Q,k,k) = / d£1 sz ng (
0

22

ki, kj € {p1 +p2, —q1 — g2} (6.10)

while omitting all the other interference terms in (6.4). Notice that for terms with k = k
or k=0Q —k, (6.9) reduces to

Q  2m1-Q/k)
(k—@Q) 2k - Q
which gives, with the definitions (6.5),

PT—qt  2Wn(¢"/PT)\ (P™—q"  2In(¢"/P7)
Ptgt Pt+4qt P=q- P~ +q

1(Q,k, k) = [k: } 0(Q) (6.11)

o=2a?0(Q°) 0(Q% ( > (6.12)
For ¢ < P, that is when most of the energy goes into the unparticle stuff (which is possible
if P> mg), o is dominated by the term

o X (6.13)

This small-g enhancement occurs because the momentum flowing through the dotted line
(whose propagator is iAp (k) ~ 1/(k?)?) is allowed to be as small as g. On the other hand,
in the limit when only a small fraction of the momentum goes into the unparticle stuff,
@ < P, the cross-section behaves as

(@)
(2!

o (6.14)

This result can be understood by observing that in this regime the points z1 and x5 in fig-
ure 10 are typically very separated from y; and ys (compared to the separation between x;

*'The following integral would be divergent for 0 < k; < Q or 0 < k; < @, but the kinematics ensures
that k; and k; never fall in these ranges.

22Tn particular, these would be the only terms present if instead of (3.19) we considered a model with
two flavors of the standard model scalars, ¢4 and ¢, with Liny = g [(9 (¢j\2 + ¢}‘32) + O~ (qﬁ\ + ¢2B)] and
asked about the process ¢a(p1) + ¢a(p2) — ¢p(q1) + ¢5(g2) + unparticle stuff.
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Q
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KT

Figure 11. A single term in (6.17). The p, and p, lines are described by (6.18) and the @ line
by (6.21). The arrows indicate the conventional direction of positive momentum. The thick line is
a cut for computing the contribution to the cross-section.

and 9 or y; and y3). Then the four solid lines are essentially connected between the same
two points and given by [iAy(X)]* o« (—=X?)~*1+%) (where X = z — 7). In momentum
space this becomes o (—Q2)3+4a. Each of the dotted lines has iAy(P) o (—P?)~%7%, so
we expect

2\3+4a

fogles 52224+2a (6.15)
This indeed agrees with (6.14) (in the limit |a| < 1 that we assumed in the derivation
of (6.14)). We will discuss this point of view in more generality in subsection 6.3.

The missing charge process in the unparticle limit does not require us to use the IR-
regulated form of the dotted line because the kinematics keeps the momentum carried by
the dotted lines away from the light cone. At higher energies, above threshold for the
production of the massive bosons, we do have to worry about these IR issues because while
the total momentum carried by the dotted line cannot be lightlike, the momentum carried
by its unparticle part can be. We will not discuss this here, because we will see a related
issue already at low energy in the process analyzed in section 7.

6.3 Inclusive treatment: series expansion

We can also obtain analytic results, in the unparticle limit, for an arbitrary a, by expanding
around the limit where the fraction of the momentum that goes into the unparticle stuff is
small: Q < P. In this limit the contribution should come mainly from configurations of
figure 10 in which (., {, < X, where

(o =11 — 29, Gy =1 — Y2, X =19 — 1o (6.16)
Expanding the 4-point function (4.22) in (,/X and ¢,/X we have

(0ITO(21)O(22) O (1) O* (y2)10) = iBus(Co) iBU(Gy) D0 (X))
C; - Czj 2 (Cm - Cy)2
X-

x [1—2(1+a) -

+4(1+a)
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(3+20) (G°+¢7) - B+40) GG
(X-)
0w\ 2@+ (GG -GGG
~(1+a) <1+ 3>(§x—<y) (x-)?
(3+20) (7 +¢7) - B+40) GG
(X-)? x+

+(1+a)

—2(1+a)” (¢ =)
+ {— < + for all asymmetric terms} + - - - ] (6.17)
Each term in (6.17) describes a diagram as in figure 11 in which momentum @ flows

through X, momentum p, = k through (;, and momentum p, = —k through (,. To
take the (-dependent factors into momentum space, note that the Fourier transform of

iAu(Q)(C)™ (¢ is

<2 d >’”<2 4 >niAu(p) = (20)™*" nﬁ1(2+a+k)7ﬁ(2+a+k) Z'Au(pz

iop*t) \iop~ o o ) (p=)"
wman L'2+a+m)T(2+a+n) iA (p)
= @™ rerap oo (619
where, as in (4.28),
x _ 22P2002m)3 (2 + a)(Em)*e i
iBu(p) = - (-1 a) (Lp? — ie)2+a (6.19)

To obtain the contribution of a term from (6.17) to the cross-section, we take the product
of two factors of the form (6.18) coming from the (, and ¢, lines and multiply it by
the discontinuity across the cut through X. To find the latter, we compute the Fourier
transform of

Ay (X))
T (6:20)
(suppose, for definiteness, that M > N) as
2 iox (XM NiAy (X)) <2 9 )M_N 2 o € 9N [iDy (X))

/dXe (X2 —ie)™ -\ 9Q- /dX (X2 —ie)M

B (—=1)M; L(=3—4a—M) (2 0 \MN o sige4m

T 2TH8at2M (21)7(Em)8e T'(4 + da + M) <z 3@‘) (—Q° —ie)

i MAN (-3 —4a— N)

- _27+8a+M+N(27T)7(§m)8a ['(4+ 4a + M) (Q+)M_N (-Qz - ie)3+4a+N (6.21)

which gives the phase space factor

iMAN(—1)N sin(4wa) T(—=3 — 4a — N _ a
26+8a+§\/[+]3/(277)7((£m))8a(r(4_|_4a +]\/_[)) (QJr)M (Q )N (Q2)3+4 H(QO)H(Q2)

@M @)Y (@) Q) @) 622)
- 2TH8a+MAN (27)6(¢m)8a (4 + 4a + M)T'(4 + 4a + N) '
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Summing the contributions of all the terms in (6.17) and adding an overall minus sign
from (5.2), we obtain

 Aulpn)Bulpy) (@2 0(Q) 0(Q)
T 27480 (27)6(¢m)Se [T(4 + 4a)]?

2+aQ+< L 1+>+<2+a><3+a><3+2a>Q+2< Lyl )

Pz Dy 4(5 + 4a) o pJZ

_(2+a)2Q+2+(2+a) Q2< 1_ I 1>
4 pipy 4 P2 pi o pipy  pypy

(24 a)®(3+a) +3<1 1) 1 1 1+4a
+ Q - 24+ a) + -
24(5 + 4a) Py Dy pi® pi?)  pipg
2+a 2 1 1 3+a)(3+ 2a 1 1 2+a
+( )Q+Q <— > ( 5)(4 ) P I
Dz Dy +4a Pz Dy Pz Py
+ {+ < — for all asymmetric terms} + - - - ] (6.23)

Summing over the 4 possibilities in (6.10) we get

CAuP)? (@) Q) 0(Q%)
25484 (27)6(Em)Be [T (4 + da))?

- 2
x[1+(2+a)<gi+g>+(2+a)2g2
2+ a)(28+3la+8a2) [ /Q*\* [Q™\? Q*QT | Q*Q”
A(5 + 4a) <P+> +<P—> +(2+a)<P2P++P2P—>
(24a)2B+a)(17+8a) [ /QT\° [Q\°
* 12(5 + 4a) <<P+> +<P—> o
Note that at the leading order in a this becomes
QtL Q) ,@ uf/ery, ey
(8 ) () () 29
28 (Q*QT  Q*Q7\ 17 ((Q*\’ (@7’
s <P2P++P2P—>+ 5 <<P+> +<P—> o

which is precisely (6.12) expanded in powers of Q/P.

(6.24)

0(Q°) 0(Q%)

6.4 Interpretation in terms of exclusive processes

What physical states of the conformal sector are produced in the missing charge process
whose inclusive cross-section we have computed here? Can the inclusive sum in (6.2) be
decomposed into distinct well-defined contributions?

To understand the answer to these questions, let’s look at our calculation from a
different point of view. Consider the series expansion that we did in subsection 6.3. Since
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we took the limit (,,(, < X, we can replace the products O(z1)O(x2) and O*(y1)O*(y2)
in (6.17) by their OPEs. In particular, using the shorthand notation

(alt) = (O[T a(X) B(O)/0} (6.26)
we can write (6.17) as
(OTO(1)0()0" (1)O" (12)]0) _
B iBu(G,)
= (%10 + | [G(0-0°10%) + ¢ (©%]0-0%)]

3+ 2a
4(5 + 4a)
1
+, (GG (0:0%10-07) + (¢ (0,0-0%0") + (¢, {0%]0,.0-07%)]
24a

—3/93 2|2 =312 93 *2
+ o5 4 oy LG OO0 + ¢, %(0%020%)]

[<;2<a%o2|0*2> + <;2<o2|830*2>] + igg@,oﬂa,o*%

34+ 2a 2. 102 A2 %2 — 2 2192 *2
+ (5 day L G @2OM0-0%) 4 (¢ (0010207
TG G0R0%0,07) + (G0, 0%02.0%)
GG 0402 0%0%) + ¢ GH0%0, 020
1 — — * — — *
g [G GG (040-0%10-0%) + ¢ (¢, (0-0%0,0-0")]
+ {— < + for all asymmetric terms} + - -- (6.27)
where we defined O? to be the leading operator in the OPE for O(z1)O(z2) with
(0%107%) = [idy(X)]* (6.28)
and the leading terms in the OPE are

3+ 2a
(5 + 4a)

(4‘363 + C*%i) (6.29)

TOC)O(0) = iA(¢) |1+ ; (¢To-+¢tos) + <<—233 + c%ﬁ)
1.5 2+a
000 12(5 + 4a)

+85’5124C;) C(CO- +C02) 0y + - } 0%(0) + - -
The coefficients of the derivative terms in (6.29) must in fact have this precise form in
order for the 3-point function (0|TO(x)O(y)O*?(2)|0) to be consistent with the conformal
symmetry. In general [85] (see also [54, 86, 87]), the contribution of all the derivatives of a
scalar operator of dimension A (in our case, the operator O? has dimension A = 4(1 +a))
to the OPE of two scalar operators of dimension d (in our case d = 1+ a), in D spacetime
dimensions, should be proportional to

1

1
(CQ)d—A/Z /0 dt[t(1 — t)]A/Q—l Nal (A +1 - 12); _zllt(l — 1) CZ |:|> o160
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- L(A+1-D/2)(=¢? D)m AJ2+m—1 _t¢-0
dA/2Z4mmer+1—D/2+m)/ dtlt(1 = 1)) ‘

1 Ca 2+A A
O((Cz)dm[ T tsaea) Y T gaiayirapp <P
44 A A
+48(1+A)(<'a)3_32(1+A)(1+A_D/2)42(4-6)D+--- (6.30)

Furthermore, there exists an explicit expression for the contribution that each rank-¢
tensor Oy, in (2.3) (together with all its derivatives) can make to the 4-point function of 4
scalars [60]. The contribution to

<0|T01(561)02(562)01($3)02($4)|0> (6.31)

where O and Oy have the same dimension d is proportional to?3

2(8=0) (=) A+l A+¢ A—t A1
KZ,AEUQ (n)d) 2F1< - ) N 7A+€777_> 2F1< ) 7A_£777+>

(x%z $§4 2 2 2 2

+{n" ="} (6.32)
where 5 F] is the ordinary hypergeometric function,

+ £

+ _ T12%34
oyt = 112 (6.33)
L13%24
and v = n? as in (4.24). In our case
T2 =Cr, T =Cy, =X, r3=X+G-§ (6.34)

Expanding (6.32) in small ¢, and ¢, with £ = 0 and A = 4(1 + a), we obtain precisely the
expression (6.17) (up to an overall prefactor that is not fixed by the conformal symmetry).
No other primary operators besides O? are required for reproducing the terms shown
n (6.17), and this confirms the interpretation (6.27). It is then obvious from (6.27) that
taking the cut in the 4-point function as we did describes the production of O? stuff:

¢+ ¢ — ¢+ ¢+ {O? stuff} (6.35)

Additional operators do appear in higher-order terms that are not written in (6.17).
In particular, at order (¢/X)* there appears the extra contribution

) ) )2 33_2 _ ;2 42
i) iBul6) BuCO 5 L (c(ng)4 + ks ) (6.36)

that must be accounted for by the two-point functions of some new operator(s) of dimension
A =4(1 +a)+2 and rank £ = 2.2

ZWe present the expression that is relevant to 2 spacetime dimensions, but an analogous expression for
4 dimensions is given in [60] as well (see also the explanations in [88]).

%n fact, it can be shown by more advanced methods that all operators of vector charge 0 and axial
charge 4 in this theory have dimensions of the form A = 4(1 4 a) +n where n is an integer [89].
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In conformal theories that are not solvable, which is typically the case in four dimen-
sions, there is no easy way to determine which operators contribute to the OPE. However,
the conserved currents of the CFT are the usual suspects to appear in OPEs and they al-
ways have their canonical dimensions. In our model, they will indeed appear in the OPE for
O*(¢) O(0) that will be relevant for the missing energy process in section 7. The conserved
current j# in our model could not appear in the OPE for O(¢) O(0) because O is charged
under the axial U(1) symmetry while j# is not. Yet further information can be obtained
based on the conformal symmetry alone. For example, an upper bound on the dimension
of the leading scalar operator in the OPE of two identical real scalars was derived in [88].
In our case, considering the operator O + O* (we are taking this combination in order
to have a real operator) this bound implies that the OPEs for O(¢) O(0) or O*(¢) O(0)
must contain a scalar operator with dimension below 0.53 + 4(1 + a). This condition is
satisfied by the operator O? (whose dimension is 4(1 + a)) that appears in O(¢) O(0). For
a> — %, the condition is satisfied even earlier by the dimension-2 operator j? that appears
in O*(¢) O(0) (we will analyze this OPE in section 7.3).

6.5 Exclusive treatment: amputated 3-point functions

We can also compute the exclusive cross-section for (6.35) directly, using the amputated
3-point function as discussed in section 2. For D =2 and d = 1 + a, (2.19) reduces to

29 = 2o 2 [F(A/Q +1- a)]2 C?? 2\ A1 0 N |7 2
ML= ra - a2+ a2 ra2)1H (@)™ @)@ )(I(P, Q)‘ (6.37)
with
- 1
I(P,Q) = /0 doy das das 6 Z a;—1 alfafA/2 a2A/271 oz3A/271
J
A2k
6.38
X / (k‘2 +g(P, Q) +Z-6)1—a+A/2 ( )
Wick rotating k', the integral over k becomes
o kdk Qi
2m - 6.39
m/o (K2 +g(P,Q)' ™2 (A =2a)[g(P,Q)**" (639
and then
MEe = FO S (@*)>716(Q%) 6(Q?) (6.40)

L1 = A)[(A/2+a)]? [(A/2)]* Co
) (zj a; — 1) a;afA/2 a2A/271 a?)A/g,l

1
X doq dog dog
/o o1 (1 = 1) P? = 201 03QP + as(1 — a3) Q] >/~

The integral in (6.40) is hard to solve analytically. However, expanding the integrand
in powers of Q/P it can be computed [90] (assuming for the purpose of calculation the
unphysical range —2a < A < 0) to give
I'(1—-A)[T(A/2)]2T(A/2 +a) 1
NA)T(1-A/2+a) (pQ)A/Q—a
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A-2a QY Q7 , (A-2a)2Q?
x[1+ A <P++P>+ 6 p? (6.41)
(A=2a)(2+A)2+A-2a) ((Q*\* (Q7\’ A—2a (Q*Q" Q*Q~
i 32(A+1) <<P+> +<P—> Ty <P2P++P2P—>>

(A=2a) (24 A—2a)(A+A)(4+A—2a) [ (QT\°  [Q\°
- 384 (A +1) <<P+> +<P—> >+

SO

2374a 7.[.4 P(A/Q o a)]2 C2 (Qg)Afl
DA M- Aj2 4 )20y (pays-2a U(@)0@)

A Qt LN, (A V@

1+<2_a><P++P>+<2_a> P2
2 _ o +\ 2 —\ 2
+<A_a>4+2A +5A — 4aA — 6a <g+> +<g>

2 8(1+A)
A QT Q*Q
+ ( 9~ “> <P2P+ + P2P>}

+<A _a> (24 A —2a) (8 + (7 + 2A)A — 2(5 + 2A)a)

M =

X

2 48(1 + A)
3 —\ 3
x((ii) +<g> >+ (6.42)
For the process (6.35) we have
1 1
AT BT grpemp O opempe O

where A and Cj follow from (6.28), and C3 from (6.29) and conformal invariance. Then
r@+a)? (@)
21410 (4 4 4a)]2 (-1 — ) (Gm)'e (P2t

- 2
X [1+(2+a) (jQ; +g> +(2+a)2g2

Qt\° Q7
(7)) + (%)

2+ 21—
e (32 + 22

e R () (1))

After multiplying this by a factor of 4 to account for the various ways of attaching the
standard model particles (6.10), this agrees with (6.24).

Mo:|* @2 = 0(Q%) 0(Q%)

28 + 31a + 8a?

) 54 )

(6.44)
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Figure 12. The 4-point function (4.22), oriented in a way relevant to the process (7.1). Momenta
P and —q enter the diagram at the bottom and leave it at the top. The thick line is a cut for
computing the cross-section.

7 Missing energy process: ¢ + ¢ — dp+ o+ U

7.1 Inclusive treatment: general

Consider the missing energy process of figure lc,

o(p1) + d(p2) — d(q1) + ¢(g2) + Sommerfield stuff (7.1)

Because of (3.19), the Sommerfield dynamics that contributes is associated with the dis-
continuity across the cut in the O 4-point function (4.22) that we now orient as shown
in figure 12, where we again use the definitions (6.5). The resulting cross-section factor
(defined as in (6.2)) can be computed by (5.2) as

2) 2) 2 2
7 _/ 26) éf)z @(62)(25)22 2lts) éf)i@(&) (iff? (2m)* (@ - Zj:@)

X ZA(Q(P — fl — 62) ZA(Q(P — fl — fg) (72)

where ®(k) is the Sommerfield stuff phase space (4.27) and ®(k) is the “phase space”
corresponding to the dotted line (4.38).

In this process it is immediately clear that we have to worry about the IR dynamics
of the dotted lines because the momentum carried by them can be light-like. We will not
perform the full computation in practice, but will explain how it can be done in principle
(numerically) using the procedures discussed in section 4.3 and exemplified in appendix C.
However, in subsection 7.2 we will be able to obtain detailed analytic results by expanding
around the limit of small unparticle momentum.

Let us argue, in two different ways, that (7.2) gives a finite result in the limit that the
IR cut-off A in (4.38) goes to zero. For simplicity, consider the low-energy unparticle limit
where we can ignore the massive bosons and use the unparticle propagator (4.13) for iAp,

,33,



and the phase spaces

A(a)

d(0) = (ng)2a9(50)9(52)(52)“ (7.3)
~ 7t A(=2 — a)(Em)?®

Each of the integration measures in (7.2) can be written as

ds de*

0 gp1 _
acde ="

(7.5)
where s = ¢2. Now the strategy is to do the integration over the spatial momenta Ejl- with
the s; held fixed. For fixed s;, this is just like computing the cross-section for producing
four particles with masses-squared s; with the amplitude-squared |M|? oc h*Ap (P — {1 —
(9)Ao(P — f1 — f3). Because this | M]? is a smooth function of the invariants, we expect
no rapid dependence of the cross-section as a function of the s;. The point is that while
the phase space in (7.4) is singular at 2 = 0, the integral over s is finite and well-defined.
This remains true when the phase space is multiplied by the smooth matrix element.

There is also another way to see that our strategy should work and that we can remove
the IR cut-off at the end, because there is another way to do the calculation. In figure 13,
we show a slightly modified diagram in which an additional momentum k is flowing in such
a way that the momenta P and ¢ flow only through the two dotted lines. We know from
the discussion in section 4.3 that the appropriate definition of the dotted “propagator” is
as a derivative. For this momentum routing, we can do the differentiations with respect to
P and ¢ and take the derivatives outside the integrals over the loop momenta, and then
none of the lines requires an IR cut-off, so the result is clearly independent of \. After
doing the loop integrations and doing the differentiations, we can set

k=P+q (7.6)

to obtain the result.

One may wonder what the result of this calculation will look like. When we took the
limit Q < P in the missing charge process (section 6) we saw that the phase space reduced
to four copies of the unparticle phase space (4.16) corresponding to the operator O. Naively,
this could be attributed to the fact that we took a cut across four solid lines. However,
this cannot be interpreted as the production of four units of @ unparticle stuff because the
O stuff in the disappearance process of section 5 has charge 2, while the putative “four
objects” in the missing charge process carry a total charge of 4, not 8. Instead, it must
be interpreted as the production of O? stuff (and stuff corresponding to higher-dimension
primary operators in the OPE), that has no relation to O stuff. Similarly, the missing
energy process that we discuss here cannot be described as the production of two units of
stuff corresponding to the solid lines iAp () and two units corresponding to the dotted lines
iAo (x) = 1/[iAo(x)]. The latter would be unsatisfactory also because the “propagator”
iAo (x) would describe an operator with dimension d = —1 — a < 0 which is unacceptable
from the physical point of view. In the next subsections we will see what actually happens.
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Figure 13. Same as figure 12 but with a different routing of momentum and an additional external
momentum k flowing through the diagram.

Figure 14. A single term in (7.8). The P and P — @ lines are described by (7.9) while the cut
through the @ line gives the phase space factor (7.18).

7.2 Inclusive treatment: series expansion

Similarly to what we did in subsection 6.3, we can easily obtain analytic results by expand-
ing around the limit where the fraction of the momentum that goes into the unparticle stuff
is small: Q < P. In this limit the contribution should come mainly from configurations of
figure 12 in which points x;, y; with ¢ = j are much closer to each other than points with
i # j. Denoting

G=Yi— i, X =x—m (7.7)

we expand the 4-point function (4.22) in small (;/X:
(0[TO(21)O(22)O* (1) O*(y2)0)

:iAu@niAuKﬁ[}+(1+wné;§% Cigigli;g)
éfCi'<2§{2-—(2-—a)<f<5’+-2§;2)
2(X)4
2 CPC3 (¢ — <)
(X—)3(X+)2

+(1+a)

+(1+a)

2 (163

+(1+a) (X2)2

+(1+a)
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SR enE (B lentend (cabtey
(X7)P
+ {— — + for all asymmetric terms} + - - - } (7.8)

+(1+a)

Written in this way, each term describes a diagram as in figure 14 in which momentum @
flows through X, momentum —P through (;, and momentum —(P — @) through (5. For
the ¢-dependent factors, note that the Fourier transform of 1Ay (¢)(¢™)™(¢H)™ is

(o) G ) = (3) Mol 52 o

k=0 k=0
_ <2>m+n (1 +a))? iAu(p)
i I'(14+a—m)T(1+a—n)@pH)m(p)"

To obtain the contribution of a term in (7.8) to the cross-section we take the product of
two factors of the form (7.9) coming from the (; and (s lines and multiply it by the discon-
tinuity across the cut through X. Apart from the first term that describes a disconnected
diagram,? all the terms in the expansion have the form

1

(X—)M(X+)N (7.10)

where M and N are integers. They describe the production of some massless stuff.26 For
finding the discontinuities across the cut, consider, for example, the 1/(X )% term. We

compute its Fourier transform as
2 ; .
/dQX el (xX*)? (20 /d2X AN —r i(Qry (7.11)
(—X?2 4 ie)? i 0Q~ (— X2+ ie)? Q? + ie '

where we used

QX T I'(—1-9)
i 2y = _ T N2 N146
fim J X xo s = Ty W s g 4 gy (7@ )
0?2
_ _ZZ (—Q? — ie) ln< Qc “) (7.12)

where ¢ is a (6-dependent) number. This gives the phase space factor

- 272 0(Q)(Q1)*3(Q%) (7.13)

25 As mentioned before, the expression we use, (4.19), does include diagrams that are disconnected in limits
where the C(z) factors in (4.18) do not connect them. Here the solid and dotted lines that connect the top
and the bottom parts of the diagram cancel each other in position space in the limit y; — z1,y2 — x2. We
will mention the disconnected term again later in this section.

ZKinematically this looks like M right-moving and N left-moving free massless fermions, see (4.4)—
(4.5). But since the M “particles” are massless and collinear (and similarly the N “particles”), their exact
number is uncertain. Furthermore, some of the 1/X * factors come from the momentum dependence of the
interactions rather than describe an additional particle (we have already seen this happening in the missing
charge process in section 6). Even though terms in which both M and N are non-zero will describe states
with mass Q% > 0, there will be no dependence on a fractional power like we had for the unparticle stuff
discussed in the previous sections.
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In the same way, we can analyze terms (7.10) with arbitrary M and N. Similarly to (7.12),
QX im M—-1 —Q? — ic

d*X =— -Q*—i 1 7.14

[ et == g g 0 () e

where c)s is a regulator-dependent number, so the Fourier transform of terms with N =0
(and analogously terms with M = 0) is

9 M iQX M1 +\M

> 0 /d2X S T AR (7.15)
i 0Q (X2 —ie)M  2M=2()M —1)! Q? + i€

and the resulting phase space factor is

Z‘M2

i M g+ 2
0 ) 1
oOM=3(\ — 1)! (Q ) (@7)d(Q7) (7.16)
For terms with M > N > 0 (and similarly N > M > 0), the Fourier transform is
2 9 \M e'@X
d*X = 1
(oo ) [#% i )
ML Mo N1 ((—QF — e @HM @)Y
B 1 d
QMAN=2(M — 1)I(N — 1)! (@) (@) n( e > AN g2 e
where the term with the unimportant prefactor das ny will not contribute to the imaginary
part. The resulting phase space factor is?’
M N 2 M1 N-1
)R 0(Q 1
2M+N*3(M—1)!(N—1)! (Q ) (Q ) (Q ) (Q ) (7 8)

Summing the contributions of all the terms in (7.8) and adding an overall minus sign
from (5.2), we obtain

o = 87%a2(1 + a) [Ay(P)]?

) s @) 0 () (E)
+1-a)(1-3) (1—“(3§a)> (ii)5+--~ 0(Q")5(Q>)  (T.19)
(=)

+87%a*(1 + a)? [Au(P)” Q [1 +(1—a) <Q+ @

P2 p2 P+ + p> +- } H(QO) H(QQ)

Nicely, the IR divergences do not appear in this approach.

We would like to note that while the cross-section (7.19) vanishes in the limit of either
a — 0 or Q — 0, there is also another process, without missing energy, whose amplitude
contains just the unparticle 2-point function as shown in figure 15a:

¢+o—0+0¢ (7.20)

7 Alternatively, notice that (7.10) can be represented as the a — —1 limit of (6.20) with ém = 27, and
then (6.22) reduces to (7.18).
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Figure 15. The amplitude (a) and the cross-section (b) of the process (7.20). The solid lines are
the unparticle propagators.

Figure 16. (a) The amplitude for the missing energy processes in the free-fermion limit, eq. (7.22).
The solid lines are ¢. (b) Similarly, the free-fermion limit of the process of figure 15a.

with
o =2(2m)° [Au(P)]?0(Q°) 8(Q) (7.21)

Figure 15b shows the diagram that is related to the cross-section of this process by the
optical theorem. In fact, the 4-point function knows about this diagram: it is described by
the disconnected term in (7.8). The contribution (7.21) is hiding behind the IR divergences
in section 7.1, similarly to the example analyzed in appendix C.

In the case a = 0, Sommerfield model reduces to a theory of free fermions and the
interaction (3.19) describes the missing energy processes

P+ — o+ o+ U1+, P+¢— O+ P+ P2+ by (7.22)
as shown in figure 16a (while the process (7.20) reduces to figure 16b). After integrating
over the phase space of the fermions, for the first process we get

Q1) 1

M2 Cyp, = 2(P+)21 - Q+/P+ 0(Q")8(Q)

(7.23)
and the second process of (7.22) is described by the same expression with {+ — —}. This
is consistent with (7.19) which for a = 0 reduces to
+)2 + +\ 2 +3\ 3
@[, @ +<Q ) +<Q > L

0(Q7)3(Q)+{+—-} (T29)

77 9(pt)2 p+ T\ p+ p+

On the other hand, the missing charge process from section 6 does not have a free-theory
counterpart, which is consistent with the fact that the cross-section (6.8) vanishes for a = 0.
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7.3 Interpretation in terms of exclusive processes

We can interpret the expansion (7.8) that we did in the (; < X limit by replacing the
products O*(y1) O(z1) and O*(y2) O(z2) in the 4-point function by their OPEs

T O*(ys) O(x;) = idu(G) + Y ex(G) Ox(i) (7.25)
k

It can be shown that in the low-energy effective theory describing the unparticle limit,
the leading operators O (z) that appear in this OPE are the components of the current
j#, products of several such operators (which include the stress-energy tensor T#), and
their derivatives (for more details, see appendix A where this current is denoted j%.). For
example, the 1/(X )2 and 1/(X*)? terms in (7.8) come from the two-point functions of j*:

14+a 1

(01T (X);j*(0)[0) = — w2 (XF)?

(7.26)

The resulting contribution to the cross-section corresponds to producing the stuff that is
created out of the vacuum by the action of j*:

b+ — b+ ¢+ {j* stuff} (7.27)

This stuff looks massless because j* has an integer dimension. Using the notation (6.26),
the expansion (7.8) can be written as
(OTO(1)Ow2)0" (51)O* (12)|0) _
iAu(Cr) iBu(C2)

- [(ﬁ\ oy GUHOTT + GO GG 0-3710-57)

2 4
GO + ORI | T GTIORIT) + G (0% 1)
+ +
6 24
GG 0-GH10% 57 + Cr G5 (0% 5 10-)
12
1 2.2 T+ T++ —(o_THH|T++
+( +Z) ™ Cf2C§2 [<T++|T++> n (1 ¢ | >42'Cz ( | ) n
—_ .2 87 .2 — 87 .2 .2
+7T4C12C22[<12’j2>+<1<j| J>‘;C2< J|J>+.”]
+ {+ < — for all asymmetric terms} + - - - (7.28)

This is in agreement with the OPE

T 0*(¢) 0(0)

+)2 — (—)\2 .
= iAy(¢) [1+m <g+j gty (€)704 ) (€)°0-j
(C*)?’@ii—(C)333j++(6+)451j—(C)48§j++m>

* 6 24
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~(1+a)] (<<+>2T+<<>2T+++(<+)3 ey ST

where the operators on the r.h.s. are evaluated at position 0. We can verify that the contri-
bution of the derivatives is exactly the way it must be to respect the conformal symmetry:
the contribution of j2 (a scalar with dimension A = 2) follows (6.30). An analogous ex-
pression for the conserved current j# (which always has dimension D — 1 in D spacetime
dimensions) is [59, 91]

3 S I'(D/2) (_C2 D)m ! D/24m—1 (-0
(CQ)df;)/2+1 — 4m m! F(D/Q + m) /0 dt [t(l — t)] et
G (-0, D+2 5 O

2 .
D+4 s (¢ a)D+_”]

* (€-9) 16 (D +1)

48 (D +1) (7.:30)

which agrees with the j# terms in (7.29), if we take into account that in 2D the conser-
vation of the vector and axial currents implies 0, 7% = 0_j5= = 0.28 Similarly, for the
stress-energy tensor T+ (which always has dimension D) we have the expression [59]

Gl o~ TP+ (=) D/2+m _t¢0
(CQ)d;iD/QJ,-l — qm m'F(D/2—|— 1 +m) /0 dt [t(l —t)] et

Ciulr <1+<'a+---> (7.31)

X (<2)d_D/2+1 2

which is consistent with (7.29).
We can also use (6.32) with

z12 = (1, 34 = (2, x4 = —X, r13=—-X+¢ —( (7.32)

to verify the contributions of the various operators directly to (7.8). The contribution of
j* (¢ =1, A = 1) should be proportional to

~i8y(G1) iy (G2) In(1 —757) + In(1 — )]

. . G TG GG+
= iAy(C1) idu(C2) &SQ)Q 14O Xf? + 1 ?){}_)22 2 (7.33)
G- (@ -GG +@7)

ZMore precisely, in order to account for the relative signs between the 57 and j~ terms in (7.29), we
should say that (7.30) describes the contribution of the axial current j°* = —e*¥7j, rather than j*.
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which exactly reproduces the terms that are attributed to j© or 5~ (and their derivatives)
in (7.28). The contribution of T* (¢ =2, A = 2) is proportional to

—12iAy(¢1) 1Ay (C2) [1 + <771_ — ;) In(1 — n_)] +{-—+}
_2,..2 _ _
= iy (C1) 10y (C2) C(lXEQ)4 [1 - Q(ClX__ @) + - ] +{——+} (7.34)

which agrees with what comes from the T%F terms in (7.28). The contribution of j2 (¢ = 0,
A = 2) is proportional to

iAu (1) il (C2) In(1 —n7)In(1 —n™)

. QG GG G-
= i8y(C1) i1Ay(C2) (x2)2 L+, 7+ (7.35)
which agrees with the j2 terms from (7.28). To summarize, in terms of Kja

from (6.32), (7.8) is exactly reproduced by

(1+a)?
2

(1+a)?

1+(1+a)Kyg+ 5

K272 + KQQ (736)

up to order (¢/X)?. In order to account for even higher order terms that are not written
explicitly in (7.8) more operators are required. For example, we find that in order to reach
terms of order ((/X)' we need to take

1+ a)? 1+ a)? 1+ a)? 1+ a)?
1+(1+a)K1,1+( 5 ) K2,2+( 5 ) K0,2+( 3|) K3,3+( 5 ) K3
1+4a)? 14 a)? 1+a) 1+a)?
+ [( n ) +( . ) }K4,4+( ) K2,4+( 8 ) Ko 4 (7.37)
(1+a)°  (1+a)? (1+a)°  (1+a)® (1+a)®
K K K
+[ s T o [T 4 T T M

In the free-fermion limit discussed at the end of subsection 7.2, operators that have,
besides the iAy(¢), both (T and ¢~ in their OPE coefficient (e.g., j2), will not contribute
to the cross-section because (7.9) vanishes for a — 0 unless m = 0 or n = 0. On the other
hand, all the operators with A = ¢ (including j#, T*”, and others) and their derivatives
contribute to the production of the fermions in (7.22). In the free theory we have j*(z) =
295 (x)Y1(x), 5~ () = 295 (x)ba(x), so it is clear why the operators j* produce the fermion
pair. However, these operators produce the two fermions at the same spacetime point.
Processes in which the two internal vertices in figure 16a are at a finite distance from each
other are described by the additional operators that include both derivatives of j* as well

as other primary operators that appear in the OPE of two 1 s.

7.4 Exclusive treatment: amputated 3-point functions

Like in section 6.5, we can verify that our inclusive results agree with exclusive computa-
tions that are based on amputated 3-point functions. For example, for the process

b+ ¢ — ¢+ ¢+ {42 stuff} (7.38)
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we know that

a 2
Ot = (7.39)

(1+a)? (y —y)%iduly —y)

01T 0" 0oy = 1 T e (7.40)
A=z, o= 47:46‘)2 . Cy= 4;1;22); (7.41)

and then (6.42) gives

1+a)?[(1—a)? 2 tQ
’Mj2’2 D2 = 2(1+4a [%\(EZ)](Q ({m;]‘la (P26)222a 0(Q") 0(Q%) [1 + (1 —a) <g+ + g_> + - }
(7.42)
in agreement with the j2 contribution to (7.19).
For the process
o+ ¢ — ¢+ ¢+ {j* stuff} (7.43)

we need a generalization of the analysis in section 2 to the case where the amputated
operator is a vector. The 3-point function, that is the analog of (2.9), is

:le3 . $§3
—xiy +ie  —a3y i€
<O‘T01(1’1)02(1'2)(’)“(1-3)’0>O( o 13 23 )
(_33%2+i€)d Bone (_55%34’2'6)(A b7z (—x§3+ie)(A L/2

(7.44)
The appropriate analog of the D’EPP formula (2.7) says that for 6; + d2 + 3+ 1 = D [52]

/dD:c4 <5u _ 2$Z3$43u> <xf4 B :E24> I'(6 + 1) (0o +1)T(63+1)

i3 T (3514) " (3 ) (9543)

: 51+ 8T (8~ )1 (5 - ) (2~ 5)
— .D/2 <9513 3523)(1 -4
L

For solving (2.2) we use this formula as

L /de4 <5“—2x533;43v> <$1f4_33l2/4> ¥ )[F <A;1)r DA +1)

(2 )df(Afl)/2 v x3, z3, 23, 2 )(A-D/2 (x§4)(A 1)/2 (x43)A
_ 2
_ D2 <x’1‘3 _x§‘3> (A—l)I’(g—A) [F(Agl)] (7.46)
iy a3 (z 2)d_(A_1)/2 ($%3)(A_1)/2 ($%3)(A_1)/2

Since in our case A = A, the amputated 3-point function is proportional to the ordinary
3-point function, with the prefactor fixed by (A.14):

2T

1 _
Q" (x3|x1, x2) l+a

(0ITO* (1) O(2) 3" (3)|0) (7.47)
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The ordinary 3-point function (A.16) in momentum space is

+
(O"(-P)O(P - Q@) =220+ 0) oy, liBulP) ~ iu(P- Q)] (T48)

Thus the amplitude for the production of j* stuff is
M;s = :sz;[ [iAu(P) — idu(P — Q)] (7.49)

Alternatively, instead of using the D’EPP formula, we could do the amputation of j#
directly in momentum space. We obtain the amputated 3-point function iQ 4 by dividing
the ordinary 3-point function (7.48) by the propagator

4 4 1+a (QF)
+0 ) it _
TR @) =1 Q2+ ic
where we used (A.14) and (7.15) with M = 2. This again gives (7.49). Yet another method

for obtaining the same result is described in appendix D.
From (A.14) and (7.16) the phase space of 5= is

(7.50)

®;:(Q) = 2(1 +a) (QF)* 0(Q*) 6(Q?) (7.51)
Thus
4\ a2
Ms > ;e = 87 (1 + a) [Ay(P)]? [1 — (1 — j&) ] 0(Q%)6(Q?) (7.52)

To compare (7.52) with our previous results, we expand it in @Q/P:

(gi)Q +(1-a) (gi)g (7.53)

11-7 £\1
+(1—a) 12a<gi> T

Ms|? @0 = 87%(1 + a) [Ay(P)]?

0(Q")8(Q%)

This is exactly what we obtain if we repeat the computation that led to (7.19) but include
only terms that are attributed to j& and its derivatives in (7.28).

8 Comments about the massive bosons

When we go to energies above the conformal region, the massive boson propagators in
iAp(x) [see (4.17)], and consequently in the higher n-point functions (4.20), start playing
a role. As we have shown in [53] and reviewed in section 5, the resulting total cross-section
for the disappearance process can be interpreted as involving phase space integrals over
the unparticle stuff with an arbitrary number of additional massive bosons, as shown in
figure 8. These massive bosons have the same origin as the massive boson of the Schwinger
model [82, 84] and are analogous to the hadrons of QCD.

This interpretation of the disappearance process motivates us to describe the higher
order processes of sections 6 and 7 analogously: production of the various types of unparticle
stuff like in the conformal limit and some number of additional massive bosons. In the

following we show that this interpretation indeed fits into a consistent picture.
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Figure 17. A term with one massive boson (the short-dashed line) in the cross-section for the
missing energy process.

8.1 Processes with a single massive boson

Consider, for example, a term in which one massive boson line is attached to a dotted line
of the missing energy process of figure 12, as shown in figure 17. We would expect this
term to describe processes in which a massive boson B is produced along with unparticle
stuff of type k:

b+ — ¢+ ¢+ {0 stuff} + B (8.1)

Naively this looks problematic because the contribution of figure 17 to the cross-section is
negative since similarly to (4.17) we can write the full dotted line propagator as

Ro(@) = .+ = b explmiaA@)] = . i )™ oA (82)
iAp(x)  iAy(x) 1Ay () = n!

Since a < 0, the prefactors of terms that include an odd number n of massive bosons are

negative, unlike in (4.17) where all the prefactors are positive. However, there actually

exist several diagrams that contribute to the process (8.1), as shown in figure 18, including

diagrams in which the boson is attached to a solid line. Only the sum of the four diagrams

should be non-negative, and this is indeed satisfied since the sum is proportional to*’

Qr(P) — Qr(P —0) (8.3)

Here we use Qk(p) to denote the conformal 3-point function of O*, O and Oy, (with the Oy
leg amputated) in momentum space, with momentum p entering the 3-point function at
the O* point, momentum @ leaving with the O, stuff (it is assumed to be the same in all
the diagrams and therefore not specified explicitly as an argument of Qx), and momentum
p — Q leaving at the O point.

29More precisely, besides the diagrams shown in figure 18, there are other diagrams (of higher order in
a) that contribute to the process (8.1), in which additional boson lines are attached between the bottom O
and O* and/or between the top O and O* of the diagrams in figure 18. They can be described by including
the corresponding terms in (8.3). The counting obviously works because it is the same as it would be with
regular Feynman diagrams.
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or (@)
—Qr(P)Qp(P = 1) Qr(P =) Qi(P — 1)

Figure 18. The leading diagrams contributing to the cross-section of the process (8.1). Here
Qr(p) denotes the unparticle amputated 3-point function with incoming momentum p at the O*
vertex. The momentum flowing through the boson line is denoted by ¢. The factor —4ma that is
common to all the diagrams, as well as the common factors of A and the phase space factors, are
not written explicitly.

2e gl
V1 =1 h ’,—"
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/7 \
/ \
7 “
/7 \
/7 N\

Figure 19. A vertex described by (8.5). The long-dashed lines are the standard model particles
¢, the solid line is the unparticle leg, and the short-dashed line is the massive boson B. The arrows
indicate the direction of flow of the chiral charge.

In the more common particle-physics language we can describe these processes as
follows. We already know that in the unparticle limit (3.19) gives the effective interaction

h
Lini = (Oud™+ 04 6?) (8.4)

where Oy is the operator O in the unparticle limit (which was often denoted simply by
O when we restricted ourselves to the unparticle limit in the previous sections). Similarly,
as we will now verify, processes in which a single additional boson is produced can be
described by including also the effective interaction

Lima=—i o (BOuo™ B0y ) (8.5)
where we used —4ma = (2¢/m)? and assumed that the massive boson field B has the

standard kinetic term 5(3“86“8. This interaction gives the vertex Vi shown in figure 19
(and its hermitian conjugate V;* = —V1). In the disappearance process with a single massive
boson (the n = 1 diagram in figure 8), we have a V; vertex and a V{* vertex, which give
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ViQr(P —1) Vi" Qr(P)

Figure 20. The leading diagrams for the amplitude for producing one additional boson in the
missing energy process. The circle marks the point at which the standard model particles inject the
chiral charge into the diagram, while the square is the point at which the opposite process occurs.
The massive boson lines are short-dashed and carry momentum ¢.

the extra factor of (2e/m)? = —4ma relative to the unparticle-only disappearance process.
This is consistent with (4.27). In the process (8.1), the four diagrams of figure 18 contain
the following vertices involving the massive bosons (the first factor is the vertex from the
bottom part of the diagram and the second from the top):

Vit Vi-W Vi v Vi vy (8.6)

The products of the two vertices are positive for the first and fourth diagrams (which are
precisely the diagrams where the boson is coming from the solid lines) and negative for
the second and third diagrams (where the boson is coming from the dotted lines), which
agrees with what we obtained above from our general approach.

Even more simply, from the perspective of the effective interaction (8.5), the sum of
the diagrams in figure 18 can be viewed as the standard calculation of [ |M|?d®, where
M is the sum of the two interfering diagrams (figure 20) that one can construct for the
amplitude of the process (8.1) using the vertex from figure 19 and its conjugate. The
relative minus sign in (8.3) appears because one diagram in figure 20 has a factor of V;
while the other has V" = V.

It is interesting to note that there exists a missing energy process in which only the
massive boson is produced, without the unparticle stuff:

¢+o—0+o+B (8.7)

This arises similarly to (8.1), except that O is the identity operator in (7.29) which gives
rise to the disconnected term in (7.28) and (7.8). This is different from the disappearance
process of section 5 where the massive bosons can only be produced together with
unparticle stuff.

We can also approach the process (8.7), and similarly the processes (8.1), from a
different point of view by considering the operator jg (or equivalently its axial counterpart

jg“ = —€Mjg,) that is discussed appendix A. In particular, the OPE contains the term

TO*(¢) O(0) D —27iiAy(C) (ot (0) (8.8)

The form of the two-point function of j§, (A.17)—(A.18), suggests the replacement

P _\/ —Z "B (8.9)
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Figure 21. The leading position-space diagrams for the amplitude for producing just a boson,
without the unparticle stuff, in the missing energy process.

Figure 22. An n-boson vertex described by (8.13). The long-dashed lines are the standard model
particles ¢, the solid line is the unparticle leg, and the short-dashed lines are the n massive bosons
B. The arrows indicate the direction of flow of the chiral charge.

where we use

(O 4+ m?)iA(z) = —i6*(z) (8.10)
to reconcile (A.18) (up to a contact term, which is ambiguous anyway). Then we can write
TOYQ)O0) > i iu(¢) ¢*0,5(0) (8.11)

This means that for small y — x
TO'(W)O@) > i ituly - =) [B(y) - B@) (5.12)

which is precisely proportional to the amplitude we would write for the process (8.7) by
summing the two diagrams in figure 21.

8.2 Processes with multiple massive bosons

The ideas discussed above can be generalized to processes with an arbitrary number of
bosons by writing

Ling = ;‘ (e*@'@e/m)B Oy ¢*% + €e/mB oy ¢2) (8.13)

This expression contains (8.4), (8.5), and similar multiple-boson vertices, as shown in fig-
ure 22. One can see that (8.13) is equivalent to our original description by noticing that
the interaction (3.19) gives

(0[T¢?(z1) ... ¢*(xn) 6™ (y1) - - 6™ (yn)|0)
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Figure 23. The leading diagrams for the amplitude for producing 2 additional bosons in the missing
energy process. For clarity, only the boson lines are shown explicitly (but the unparticle 3-point
function is also assumed to be present like in figure 20). Common prefactors are not written.

x (0|TO(x1) ... O(zn) O (y1) - .. O (yn)|0)
1, oxp [ (2¢/m)? A\ w; = u)|

) [Lis; exp | (2e/m)? il (x; — Sﬂk)] exp [(26/7%)2 iA(y; — k)
X(0[TOy (1) ... Ouu(xn) Opy (1) - - - Oy 0)

(8.14)
where we used (4.20) with (4.17), while (8.13) gives
(0| T¢? (1) - . ¢*(wn) $**(y1) - .- 6" (yn)|0)
o <O‘T6_i(2€/m)8(xl) o e—i(Ze/m)B(a:n) ei(Ze/m)B(yl) o ei(Qe/m)B(yn)’0>
< (0T O (1) .. Ou) Oy () - .- Oy () 0) (8.15)

After contracting the boson operators in (8.15) we indeed obtain the result (8.14).

To see more explicitly how (8.13) works, let us look at missing energy processes that
produce 2 bosons. Using the vertices V; and V5 from figure 22 (and their conjugates), the
amplitude for such a process is given by the sum of the diagrams in figure 23. Squaring
the amplitude and including a factor of 1/2 due to the 2 identical bosons in the final state,
the cross-section is proportional to

1

) [ 42 1@ (P == )+ Qu(P) - Qu(P— ) - QP - ) (510

On the other hand, this is precisely the result we get from our general formalism by

summing the diagrams in figure 24 where we used (4.17) and (8.2) for computing the
effects of the bosons.3°

As another check of (8.13), consider the case in which n boson lines are attached

between the two ends of an internal solid or dotted line (and for simplicity, no other bosons
are attached to these vertices). From (4.17) and (8.2) we have a factor of
—4mra)” 4dma)"
( 7:&) or ( m:) (8.17)
n! n!

39To make the agreement manifest we need to rename the integration variables ¢; < ¢2 in some of the
terms that we obtain after expanding the square in (8.16).
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Figure 24. The leading diagrams for the cross-section of producing 2 additional bosons in the
missing energy process. For clarity, only the boson lines are shown explicitly. Common prefactors
and phase space factors are not written.

in the case of a solid or dotted line, respectively. On the other hand, taking the product
of the two relevant vertices (using figure 22 and/or its conjugate) gives

<izi§>n (:in;?)n — (—dma)®  or (izij)n <izi§>n ~ ()" (8.18)

for these two cases. Dividing the expressions in (8.18) by the symmetry factor n! we obtain

an agreement with (8.17).

8.3 Massive boson decay

At the leading order in h, the massive boson B decays as

B—Uo+ ¢+ o, B—Uo+ ¢+ ¢ (8.19)
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via the vertex in figure 19 and its conjugate. The rate for each of these two modes is given by

11
I = 29 2
9 9 |IM| (8.20)
where )
4e
2 2
M[T= b (8.21)
and

Ala d2 a
o = (gni)la/@f; ACALCAN)

2 -
) [H/ (C;Sg 2m d(p; —my) H(Pg)] (27m)? 6% (p5 — pu — P1 — P2)
[

B 2 2 + m2 +
4(2m)%(Em)*e Jm (1-y/1-am3/m?) Py —mg/ﬁ P2
2 2\ @
m m
@
(=t~ )" (m— 2 - f) (522)
Pq Po
At the leading order in a and for my < m we obtain
h? €2 m 2
I~ In? < ¢> — 8.23
812 m3 [ " 12 (8:23)

9 Conclusions

The Sommerfield model is a useful toy model of the Banks-Zaks sector. It becomes
scale-invariant in the infrared, with fractional anomalous dimensions. Since all of its
correlation functions can be computed exactly, we can answer explicitly many of the
questions regarding the physics of the Banks-Zaks sector as seen by the (toy) standard
model observer, for an arbitrary coupling strength in the conformal sector. In particular,
we were able to explore the behavior of the theory away from the low-energy scale-invariant
regime and to incorporate the unparticle self-interactions. Most importantly, we believe,
we used this toy model to provide consistency checks for the two new ideas in this
paper: the extension of unparticle phase space calculations beyond the two point function
to processes involving unparticle self-interactions; and the interpretation of the result
using the conformal partial-wave expansion in terms of an “amplitude” for production of
different types of unparticle stuff. These results are sufficiently general that they should
apply to unparticle theories in 341 dimensions.
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A Operators in the Sommerfield model

The description of the Sommerfield model in terms of the free fields ¥, V, A in (3.5)
immediately allows us to compute any correlation function involving these fields. Using
this fact we were able to compute arbitrary correlation functions of the original interacting
fermionic fields v in section 3.1, and it is straightforward to extend these results to corre-
lation functions that involve A* as well. We have also analyzed in section 4 the composite
operator O that appears in the OPE

TU3Cn(0) = () 00+ (A1)

In this appendix we would like to discuss the properties of additional operators that exist in
the theory, obtained using similar methods. In particular, let’s consider the vector current
that is classically given by j# = 1y#1). We expect to find j7 in the OPE

Ty ()} (0) = Te “WOFAQ) g (¢) eVOFAO) 53 (0)
+
—iS'() + CO(OQC(O [ﬁ(m - (a_ + g a+> V(0) + A(O))] L (A2)
where J71 is the free current from

T (QWE(0) = iS(Q) + 77 (0) 4+ (43)

The auxiliary fields V and A are our own constructions. In the theory, they appear only in
the combination A¥. Thus we see from here (and the analogous expression for T, (¢)5(0))
that we should define

jF=Jt 1 2;8¢A (A.4)

which gives

@i =is'©) + YO o - (a0 Cao)| 4 @)
)

27 ¢
. : Co(C)C(C) | .- e (¢ -
tea(0u0 = 5% + L o - ¢ (Lt a )]+ ao)
It can be shown by deriving Ward identities that both j# and A" are conserved vector
currents, but they are not independent:

(0Tj"(x) A" (x)|0) # 0 (A.7)
It is useful to replace j* and A" by two linear combinations that do not mix. These are
b =(1+a) (j“ - ;A“> and  jl=—aj"+(1+ a);A“ (A.8)

Rewriting the OPEs in terms of j7 and j& we have

a —Qa +
Ti@ui =510+ PO 0w o
+j;<o>—§+ SO+ (A9
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Co(OCO) [24a o, —a ¢

Tu(Q95(0) = S () + 0, " | O+ 1 L 3r(0)
+7g(0) — g; jg(0)| +--+  (A.10)

The current ji happens to be exactly the combination whose axial counterpart j:5p =
—eM jp, is anomaly-free (unlike j°# = —e#Vj,) [73]. It has the non-canonical ratio of (1+a)
between the axial and vector charge of v, exactly as in the Thirring model [69-71, 92].
The current jg can be dropped at low energies because its correlation functions always
involve the massive propagator A(z) from (3.14). As a result, at low energies the OPEs
reduce to those of the Thirring model where j4 is the only current.3! The OPE (A.1)
also agrees with the Thirring model at low energies [70]. In terms of our parameters, the
Thirring model interaction is

2
ma € .2

Lint = 2 = — A1l
where j% = jhir, = j; Jp- A more general treatment of the operators in the Thirring
model can be found in [89].

For the product O(z)O*(y) to which we refer in section 7.3, we find the OPE

T O*(¢) O(0) = iA80(¢) [1 + 273 €0, "5 (0) = 27 (€0, ") (0)
+i e (Czauju(o) + C,u(paujp(o)) +-- ] (A.12)

In the unparticle limit we can again drop jgf to obtain
TO*(¢) O(0) = iBu(C) | 1+ im [¢*j7 (0) = ¢ (0)
iy (€057 (0) = (¢)?0-j0)] (A.13)

w2 2 2
=7 (€550 + (O] + 72RO+

where we used the fact that since both jf and jgﬁ“ are conserved aij%(x) = 0. The

two-point functions of jf. are®?

1+a ﬂ:iQ

72 (2 — ) (0T34 ()57 (0)]0) = 0 (A.14)

(0| T4 ()7 (0)|0) = —

The z-dependence is actually fixed by the requirement that j7 cannot have an anomalous
dimension since it generates a symmetry. The operators j%z are the components T++ of

31This is the reason for the name jr. Similarly, js gets its name because it is the only current that is
present in the Schwinger model.

%7t is worth saying here that (0|Tj (x)j7 (0)|0) may contain a contact term which is ambiguous since
current 2-point functions in 1+ 1 dimensions are subject to subtractive renormalization. This is analog in
1+ 1 of the ambiguity of current 3-point functions in 3 4+ 1 that leads, for example, to different forms for
the anomaly.
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LW=P—t, : A

Figure 25. As before, the solid line represents the propagator ¢A and the dotted line iA. The
momentum flowing into the diagram is P = (M, 0).

the stress-energy tensor [71]:

T " 1 . ™ 42
™ = l+a <J§‘~J% - 29“”J%JTA> T = 14 aﬁ (A.15)

while j2 is a scalar operator. The correlation functions of such products of currents can
be obtained (apart from the contact terms) by contracting the currents like free fields. It
is also useful to know the 3-point function

7 xt e
OIT0" ) 0w ) 0) = F140) " ( ;78 = 78 Yiduon)  (10)

2 .
$13 — 1€ 5623 — 1€

The two-point function of the current jg , which we discuss further in section 8.1, is
4 -+ da 2 .
(01Tj5 (2)j5 (0)|0) = 9%iA(z) (A.17)

OT33()j5 0)0) = “m?idz) —a(1 +a) | () (A.18)

B Basic properties of lightcone coordinates

The lightcone coordinates * = 2% 4 2! in 2D have the properties
o 2 + .= 1
TE= ="z 0+ = 2(80:|:61) O0=40,0_- (B.1)
1 - _ _ 1
g+7:gi+:2 g+ :g +:2 € +:—6+ :2 €7+:—6+7:—2
(B.2)
1 _ _
d’p = ,dp*dp™ 0(p°)0(p*) = 0(p")0(p7) (B.3)

Under Lorentz transformation, components of vectors transform as AT — eF1A%,
where 7 is the rapidity, so objects of the form A™B~, AT /B, A~/B~ are scalars. They
can be written in the more conventional Lorentz-invariant form as

A+ A?

ATB- = A B WA B, =
pm T A B~ A,BrFewA,B,

(B.4)
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C Numerical treatment of IR divergences

In this appendix we consider the simple (unphysical) diagram in figure 25 in order to show
explicitly how to treat the IR divergences of the dotted line in momentum space.
In position space, the diagram is simply>3

IM=— iA@(xl — xg)iAo(wl —x9) = —1 (C.1)
so in momentum space M = i(27)25%(P), which gives the “phase space”
d = 2(27)% 0(P°) 6*(P) (C.2)

On the other hand, if we want to do the calculation in momentum space, as we are sug-

gesting to do for the diagrams of section 7.1, we need to compute the integral®*

I= [ @ede, 6(8) 0 F(1) 6(8) 0() (B)" P (P~ b1 ) (C3)
According to one method of calculation, we take

F(tr) = fA(6) (C.4)

This also needs to differentiated with
62

_ (C.5)
ot or;

in order to properly account for the dotted line. But using the d-function to write £1 = P—/{o
we can just differentiate with

0? 0 0?
= P2 *
apror- — ar?) 1 a(p2y2 (€-6)
after computing the integral.®> According to the second method we just take
F(t) = [A(6) + GF(6) (C.7)

The resulting ®(P?) should reproduce the d-function from (C.2) in the sense that

Pmax Pmax 2
/ dP+/ dP~ o(P7) —1 (C.8)
0 0 2(2m)?

for Ppax > A. The integral is finite despite the fact that <I>(P2) is a function of P2 alone

because

Pr%lax
/ dP? ®(P?*) — 0 (C.9)
0

33Since this is not a diagram that actually exists in our theory, we do not expect factors of i to work out,
so we added a minus sign in order for it to match with what we get using our algorithm.

340ne should further multiply this by 16sin? (ra) in order to obtain the phase space with the
correct prefactor.

35We used the regulated fi(¢1) in (C.4) for numerical convenience.
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=y
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Figure 26. The dashed line shows the regulated §-function 6ee(P?/A?) from (C.11). The solid
line is the numerical result for the integral (C.3) with (C.7), that is proportional to ®(P?). (For
P?, we use units in which A\ = 1.)

== . . . : P2
0.1 1 10 100 1000 ™max

Figure 27. The solid line presents the two-dimensional integral over our numerical “é-function”,
as in (C.8). The dashed line (normalized arbitrarily) demonstrates (C.9). (For P2, we use units
in which A =1.)

To confirm the viability of this procedure, we have performed the calculations described

here numerically [90]. We used

1 s
with a regulated #-function
3
Oreg () = Z ¢n exp(—nx) (C.11)
n=0

with the coefficients ¢, chosen such that 0.e(0) = 6}.,(0) = 0 and Oyeg(x) — 1 for z > 1.

reg

The results for a = —1/2 are presented in figures 26 and 27. The specific data we show
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were obtained using (C.7). A computation using (C.4) yielded results that were essentially
the same.

D An alternative method for amputating the j* leg

Based on the observation that for j# we have A = A, we expect (and confirm in the
following) that the amputated 3-point function is proportional to the ordinary 3-point
function. The latter is given by (A.16) and can be written as

(0[T5*(2)O"(21)O(x2)|0) = €9, f (|1, 2) (D.1)

where the derivative is with respect to x and

f(x|z1,22) = (1 4+ a) ; [In(—(z — 22)? 4 i€) — In(—(z — x1)% + i€)] idy(x1 — z2) (D.2)

™

We also write (A.14) as

1+a

(272 (oro” In(—x? + ie) — 2mi g“”52(x)) (D.3)

(0[T5*(x)5" (0)]0) =
For using (2.2), note that

" = /de 0" In(—(2' — x)? +ie) €,,0” In(—(x — 21)? + ie)
= 4mie" 9, In(— (2’ — x1)? + i€) (D.4)
Then the effect of the first term of (D.3) is to multiply the 3-point function by

1+a) (D.5)

s

At the same time, the second term of (D.3) multiplies the 3-point function by

1

—(1+a) (D.6)
2
Thus the amputated 3-point function that would satisfy
/de (01T ()" (2)[0) iQ (w[a1, x2) = (0| Tj*(2")O" (21)O(x2)[0)
is
2 ) N
Q(zlzy, 22) = — O[T (2)O0%(21)O(x2)[0) (D.7)

which agrees with (7.47).
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