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We discuss what can be learned about unparticle physics by studying simple quantum field theories in

one space and one time dimension. We argue that the exactly soluble 2D theory of a massless fermion

coupled to a massive vector boson, the Sommerfield model, is an interesting analog of a Banks-Zaks

model, approaching a free theory at high energies and a scale-invariant theory with nontrivial anomalous

dimensions at low energies. We construct a toy standard model coupling to the fermions in the

Sommerfield model and study how the transition from unparticle behavior at low energies to free particle

behavior at high energies manifests itself in interactions with the toy standard model particles.
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The term ‘‘unparticle physics’’ was coined by one of us
to describe a situation in which standard model physics is
weakly coupled at high energies to a sector that flows to a
scale-invariant theory in the infrared [1,2]. In this class of
models, one may see surprising effects from the production
of unparticle stuff [3] in the scattering of standard model
particles. Studying such models forces us to confront some
interesting issues in scale-invariant theories and effective
field theories.

It is important to remember that unparticle physics is not
just about a scale-invariant theory. There are two other
important ingredients. A crucial one is the coupling of
the unparticle fields to the standard model. Without this
coupling, we would not be able to ‘‘see’’ unparticle stuff.
Also important is the transition in the Banks-Zaks theory
[4] from which unparticle physics emerges from perturba-
tive physics at high energies to scale-invariant unparticle
behavior at low energies. This allows us to find well-
controlled perturbative physics that produces the coupling
of the unparticle sector to the standard model. Without this
transition, the coupling of the standard model to the un-
particle fields would have to be put in by hand in a
completely arbitrary way, and much of the phenomeno-
logical interest of the unparticle metaphor would be lost.

In this Letter, we explore the physics of the transition
from unparticle behavior at low energies to perturbative
behavior at high energies in a model with one space and
one time dimension in which the analog of the Banks-Zaks
model is exactly solvable. This will enable us to see how
the transition takes place explicitly in a simple inclusive
scattering process (Fig. 1).

We begin by describing our analog Banks-Zaks
model and its solution. It is a 2D model of massless
fermions coupled to a massive vector field. We call it the
Sommerfield model because it was solved by Sommerfield
[5] in 1963 [6]. Next, we describe the high-energy physics
that couples the Sommerfield model to our toy standard
model, which is simply a massive scalar carrying a global

Uð1Þ charge. In the infrared, the resulting interaction
flows to a coupling of two charged scalars to an unparticle
field with a nontrivial anomalous dimension. We apply
the operator product expansion to the solution of the
Sommerfield model to find the correlation functions of
the low-energy unparticle operator. Finally, we study the
simplest unparticle process shown in Fig. 1 in which two
toy standard model scalars ‘‘disappear’’ into unparticle
stuff. Because we have the exact solution for the unparticle
correlation functions, we can see precisely how the system
makes the transition from low-energy unparticle physics to
the high-energy physics of free particles. The answer is
simple and elegant. The ‘‘spectrum’’ of the model consists
of unparticle stuff and massive bosons. As the incoming
energy of the standard model scalars is increased, the
unparticle stuff is always there, but more and more massive
bosons are emitted, and the combination becomes more
and more like the free-fermion cross section.
The Sommerfield(-Thirring-Wess) model [6,7] is the

Schwinger model [8] with an additional mass term for

FIG. 1. A disappearance process.
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the vector boson [9]:

L ¼ � ði@6 � eA6 Þ � 1

4
F��F�� þm2

0

2
A�A�: (1)

We are interested in this theory since it is exactly solvable
and (unlike the Schwinger model) has fractional anoma-
lous dimensions. In particular, we are interested in the
composite operator

O �  �
2 1 (2)

because, in the low-energy theory, it scales with an anoma-
lous dimension.

The solution for all fermion Green’s functions in the
model can be written down explicitly, in terms of propa-
gators for free fermions, and for massless and massive
scalar fields with mass m:

m2 ¼ m2
0 þ

e2

�
: (3)

The physical mass m plays the role in this model of the
unparticle scale �U from Ref. [1], setting the scale of the
transition between free particle behavior at high energies
and unparticle behavior at low energies. Explicitly, the
scalar propagators are [10]

�ðxÞ ¼
Z d2p

ð2�Þ2
e�ipx

p2 �m2 þ i�

¼ � i

2�
K0ðm

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�x2 þ i�

p
Þ; (4)

DðxÞ ¼
Z d2p

ð2�Þ2
e�ipx

p2 þ i�
¼ i

4�
ln

��x2 þ i�

x20

�
: (5)

The n-point functions for the O and O� fields can then
be constructed using the operator product expansion. We
will describe all of this in detail in a separate publication
[11,12]. Here we will simply write down and use the result
for the 2-point function in position space

i�OðxÞ � h0jTOðxÞO�ð0Þj0i ¼ BðxÞ
4�2ð�x2 þ i�Þ ; (6)

where

BðxÞ¼ exp

�
i
4e2

m2
f½�ðxÞ��ð0Þ��½DðxÞ�Dð0Þ�g

�

¼ exp

�
2e2

�m2
½K0ðm

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�x2þ i�

p
Þþ lnð�m

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�x2þ i�

p
Þ�
�
;

(7)

with

� ¼ e�E=2: (8)

In the short-distance limit (jx2j � 1=m2), BðxÞ ! 1, and
one obtains free-fermion behavior. In the large-distance
limit (jx2j � 1=m2), K0 does not contribute, so BðxÞ is just

a power of x2, and the 2-point function is proportional to an
unparticle propagator [13]

i�OðxÞ ! i�UðxÞ ¼ 1

4�2ð�mÞ2að�x2 þ i�Þ1þa ; (9)

where

a � � e2

�m2
¼ � 1

1þ �m2
0=e

2
: (10)

Thus at large distance and low energies, the composite
operator O scales with dimension 1þ a, corresponding
to an anomalous dimension of a for  �

2 1. For 0<m0 <
1, a is fractional, which leads to unparticle behavior. In
momentum space

i�UðpÞ¼ iAðaÞ
2ð�mÞ2a sinð�aÞð�p

2� i�Þa

¼ AðaÞ
2�ð�mÞ2a

Z 1

0
dM2ðM2Þa i

p2�M2þ i�; (11)

where the function

AðaÞ � � sinð�aÞ�ð�aÞ
21þ2a��ð1þ aÞ (12)

is positive in the range relevant to our model (� 1< a<
0). Since

Im�UðpÞ ¼ � AðaÞ
2ð�mÞ2a �ðp

2Þðp2Þa; (13)

the unparticle phase space is

�UðpÞ ¼ AðaÞ
ð�mÞ2a �ðp

0Þ�ðp2Þðp2Þa: (14)

To generate a coupling to a toy standard model, we
assume that the very high-energy theory includes the in-
teraction

L int ¼ �

2
½ � ð1þ �5Þ�	� þ � ð1� �5Þ�	� þ H:c:

¼ �ð �
2�1	

� þ  �
1�2	Þ þ H:c: (15)

that couples the fermion  of the unparticle sector to a
neutral complex scalar 	 with mass m	 � m that plays

the role of a standard model field. The interaction is
mediated by the heavy fermion � with mass M �
m;�2=m and the same coupling to A� as  . The theory
has a global Uð1Þ symmetry with charge þ1 for 	�,  �

1,
and  2, �1 for 	,  �

2, and  1, and 0 for �. Integrating out
�, we obtain

L int ¼ h

2
ðO	�2 þO�	2Þ; h � 2�2

M
: (16)

The composite operator O defined in (2) has charge �2
under the global Uð1Þ symmetry.
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In a 4D unparticle theory, the interaction corresponding
to (16) would typically be nonrenormalizable, becoming
more important as the energy increases. That does not
happen in our 2D toy model. But we can and will study
the process in Fig. 1 in the unparticle limit and learn
something about the transition region between the ordinary
particle physics behavior at energies large compared to m
and the unparticle physics at low energies.

To that end, we consider the physical process 	þ	!
Sommerfield stuff shown in Fig. 1: Because 	2 couples to
O�, we can obtain the total cross section for this process
from the discontinuity across the physical cut in the O 2-
point function. This is analogous to the optical theorem for
ordinary particle production. For 	 momenta P1 and P2,
this is


 ¼ ImMðP1; P2 ! P1; P2Þ
s

; (17)

with s ¼ P2, P ¼ P1 þ P2, and

iMðP1; P2 ! P1; P2Þ ¼ �ih2�OðPÞ: (18)

In the unparticle limit (
ffiffiffi
s

p � m), using (13) or directly the
phase space (14), we find the fractional power behavior
expected with unparticle production:


 ¼ AðaÞ
2

h2

ð�mÞ2a
1

s1�a
: (19)

On the other hand, in the free particle limit appropriate for
high energies

ffiffiffi
s

p � m, we have BðxÞ ! 1 in (6), and then


 ¼ h2

4

1

s
; (20)

which is the cross section for 	þ	! � 2 þ  1.
Since we have the exact solution, we can study the

transition between the two limits by writing (6) for arbi-
trary x as

i�OðxÞ ¼ i�UðxÞ exp½�4�ia�ðxÞ�

¼ i�UðxÞ X
1

n¼0

ð�4�aÞn
n!

½i�ðxÞ�n: (21)

At distances not large compared to 1=m, the higher terms
in the sum in (21) become relevant. Notice that, in (21), we
have expanded in a only the terms involving the massive
boson propagator. This is critical to our results. It would be
a mistake to expand i�U in powers of a. This would
introduce spurious infrared divergences because the mass-
less boson propagator is sick in 1þ 1 dimensions [14]. The
model describes not massive and massless bosons but
rather massive bosons and unparticle stuff. In momentum
space, we obtain

i�OðPÞ¼
X1
n¼0

ð�4�aÞn
n!

Z d2pU

ð2�Þ2 i�UðpUÞ

�
�Yn
i¼1

d2pi
ð2�Þ2 i�ðpiÞ

�
ð2�Þ2�2

�
P�pU�Xn

j¼1

pj

�
:

(22)

This describes a sum of 2-point diagrams in which the
incoming momentum P splits between the unparticle
propagator and n massive scalar propagators. Each � is
associated with the propagation of a free massive scalar
field, so this gives the discontinuity

�ðPÞ¼ AðaÞ
ð�mÞ2a

X1
n¼0

ð�4�aÞn
n!

Z d2pU

ð2�Þ2�ðp
0
UÞ�ðp2

UÞðp2
UÞa

�
�Yn
i¼1

d2pi
ð2�Þ22��ðp

2
i �m2Þ�ðp0

i Þ
�

�ð2�Þ2�2

�
P�pU�Xn

j¼1

pj

�
: (23)

For
ffiffiffi
s

p
<Nm, only the first N terms in (23) (those

involving the production of fewer than N massive bosons)
contribute, and (18) describes the production of unparticle
stuff plus between 0 and N � 1 massive bosons. For

ffiffiffi
s

p
<

m, we have pure unparticle behavior. As we go to higher
energies, the unparticle stuff is always present, but the
emission of more and more massive bosons builds up the
inclusive result for free-fermion production. This happens
quickly if a is small but very gradually for a close to �1.
One can easily obtain explicit results in the case of small

a, when only the first few terms in the expansion contrib-
ute. The leading correction in a comes from n ¼ 1:

�ð1Þ ¼ �a�ð ffiffiffi
s

p �mÞ ln
ffiffiffi
s

p
m

þOða2Þ; (24)

which gives the total phase space as

FIG. 2. Phase space � for the disappearance process in Fig. 1
as a function of the energy

ffiffiffi
s

p
(in units of m) for a ¼ �0:1.
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� ¼ 1

2
� a

�
ln

�
2

e�E
�mffiffiffi
s

p
�
þ �ð ffiffiffi

s
p �mÞ ln

ffiffiffi
s

p
m

�
þOða2Þ:

(25)

For energies
ffiffiffi
s

p
>m, this expression reduces to

� ¼ 1
2 þOða2Þ; (26)

that is, the free-fermion result (20). Thus, for jaj � 1 there
is a discontinuity in d�=d

ffiffiffi
s

p
at

ffiffiffi
s

p ¼ m, where a transition
occurs from pure unparticle behavior below energy m to
pure free-fermion behavior above m (see Fig. 2) [19]. To
this order, the free-fermion behavior is a sum of the un-
particle and the massive scalar contributions.

For larger values of jaj, higher powers of a must be
included in (25) to approximate the free-fermion regime.
Since each new massive scalar gives a contribution with
only one additional power of a, if a is close to�1, the free-
fermion behavior is approached very slowly. In fact, the
limit a! �1 is singular, and it corresponds to the
Schwinger model (m0 ¼ 0). As is often the case, it is not
trivial to obtain a gauge theory as the limit of a theory with
a massive vector boson. The unparticle stuff is absent since
Að�1Þ ¼ 0, and the spectrum includes only a massive
boson with m2 ¼ e2=�. The case of the Schwinger model
has been studied in Refs. [20,21].

We find this picture of the unparticle scale �U ¼ m in
the Sommerfield model very satisfying. There is a close
analog between the way m enters in the process of Fig. 1
and the way the dimensional transmutation scale �QCD

enters in inclusive processes in QCD. In QCD, the physical
states are hadrons, typically with masses of the order of
�QCD unless they are protected by some symmetry (like the

pions). But in the total eþe� cross section into hadrons (to
pick the simplest and most famous example) at high energy
E, the sum over physical states reproduces the ‘‘parton
model’’ result with calculable corrections of order
1= lnðE=�QCDÞ. We have shown that the process of Fig. 1

in the Sommerfield model works the same way, with the
physical states being the massive boson and unparticle
stuff.
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