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Abstract

While the extraordinary Hall effect (EHE) has been known for more than a cen-

tury, there is still no consensus regarding the importance of the various factors which

may be responsible for this effect in different materials. Particularly, a new type of

models (relating the EHE to the Berry phase effect in the crystal momentum space)

has been intensively discussed in the last several years. The topics of this thesis

are centered around the EHE in the itinerant ferromagnet SrRuO3. This material

has drawn much attention in the last years due to its unusual properties, which in

some cases were interesting for themselves, and in other cases provided a convenient

playground for investigating general material properties.

In order to explore the EHE in SrRuO3, we needed to understand and investi-

gate the anisotropy of the paramagnetic susceptibility in SrRuO3 and the connection

between magnetoresistance and magnetization. The work on these issues yielded

results which are interesting and important even beyond their contribution to the

understanding of the EHE in SrRuO3, and they are also described in this thesis.

In Chapter 1 we provide an introduction to the EHE, and give an overview of the

material properties of SrRuO3. In Chapter 2 we give general experimental details.

Chapter 3 describes an experiment in which we probe the magnetization-dependence

of the EHE by performing measurements as a function of the magnetic field. By this
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experiment we refute the recently suggested explanation for the strange behavior of

the EHE in SrRuO3 in terms of the Berry phase model. In Chapter 4 we explore

the EHE of SrRuO3 in the paramagnetic state. This experiment also reveals a strik-

ingly large anisotropy in the paramagnetic susceptibility of SrRuO3, which can be

measured over a wide range of temperatures by using the EHE. Chapter 5 presents

evidence for a non-trivial dependence of the EHE on the direction of the magnetiza-

tion. Chapter 6 summarizes the main results. In Appendix A we establish a simple

relation between the magnetic resistivity and the magnetization in SrRuO3, which

allows us to investigate the magnetic critical behavior by measurements of resistivity.

The results of this Appendix have relevance to several methods and conclusions from

the main text.
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Chapter 1

Background

1.1 Extraordinary Hall effect (EHE)

Ordinary Hall effect (OHE)

Hall effect appears when a sample carrying an electric current I lies in magnetic

field B. The Lorentz force deflects the charge carriers, creating an excess surface

charge on the sides of the sample. This charge produces a transverse electric field EH

in the sample given by

EH = −R0J×B, (1.1)

where J is the current density (J = I/A, where A is the sample cross-section area),

and R0 = −1/ne is the Hall coefficient (n is the charge carrier density). Consequently,

a transverse voltage VH is created. In the measurement configuration depicted in Fig.
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Figure 1.1: Hall effect measurement configuration.

1.1, the “Hall resistance” RH = VH/I is given by

RH =
R0Bz

t
. (1.2)

The Hall effect can be also written in terms of the transverse resistivity ρxy = Ey/Jx

as

ρxy = R0Bz. (1.3)

Extraordinary Hall effect (EHE)

In magnetic materials the Hall effect includes, in addition to the ordinary Hall

effect (OHE), an “extraordinary” (or “anomalous”) Hall effect (EHE), which depends

on the magnetization M. (The contribution of M to the OHE through the relation

B = H + µ0M is usually much smaller than the EHE, and many times cancelled

altogether due to the demagnetization effect.)
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Commonly the EHE has been attributed to spin-dependent scattering and de-

scribed as:

ρEHE
xy = Rs(ρ)µ0M m̂ · n̂, (1.4)

where m̂ is a unit vector in the direction of M, n̂ is the normal to the measurement

plane, and Rs is the extraordinary Hall coefficient which depends on the electrical

resistivity ρ as

Rs(ρ) = aρ + bρ2, (1.5)

The linear term in Eq. (1.5) is due to a spin-dependent preferred direction in scat-

tering (“skew scattering”) [1], which appears when spin-orbit interaction is included

in the treatment of scattering from a short-range potential well. The quadratic term

is due to a lateral displacement involved in the scattering (“side jump”) [2], which

becomes evident when scattering of a wave-packet is considered.

Recently, it has been claimed that Berry phase effect [3] in the crystal momentum

space (k-space) also gives rise to EHE in some materials [4, 5, 6]. This EHE is

intrinsic: it does not involve scattering, but it depends on the occupied Bloch states.

In this model, the EHE is described as

ρEHE
xy = −ρ2σBP

xy (M) m̂ · n̂, (1.6)

where the Berry phase transverse conductivity σBP
xy (M) does not depend on ρ, and

the dependence of σBP
xy on M can be calculated from the band structure.1 In the

framework of the semiclassical picture, the equations of motion for an electronic wave

1In general, σBP
xy may depend also on the direction of M relative to the crystal.
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packet moving in the n-th band are [7]

ṙ =
1

h̄
∇kEn(k)− k̇×Ωn(k), (1.7)

h̄k̇ = −e(E + ṙ×B), (1.8)

where

Ωn(k) = i∇k × 〈un(k)|∇kun(k)〉 (1.9)

is the Berry phase curvature, determined by the Bloch functions eik·run(k).2 While

the OHE is described by the second term in Eq. (1.8), the term involving Ωn(k)

in Eq. (1.7) does not have a classical counterpart and it represents an additional

transverse velocity, which gives rise to the EHE. First, this mechanism was invoked

to explain the EHE in (III,Mn)V ferromagnetic semiconductors [4], then in SrRuO3

[5] (which is examined in Chapter 3), and later it was shown that the Berry phase

effect in k-space should be the dominant mechanism even in iron [6]. Actually the

Berry phase mechanism for the EHE has been suggested by Karplus and Luttinger

[8, 9]3 fifty years ago, but it has been largely disregarded later.

The k-space Berry phase mechanism should be distinguished from the Berry phase

effect related to a motion in a topologically non-trivial spin background in real space,

which recently has been also proposed as a source of EHE for some materials [11].

Finally, Hirsch [12] has analyzed, in the framework of classical electrodynamics,

2The Berry phase along a path C in the n-th band is

γn(C) = i

∮

C

〈un(k)|∇kun(k)〉 · dk (1.10)

3However, the term “Berry phase” does not appear in their work since the Berry phase effect
was discovered much later [3]. The relation between this Hall effect and the Berry phase has been
noticed by Chang and Niu [10].
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the motion of a magnetic moment in a periodic lattice potential. This yields an

additional contribution to the EHE with Rs of the order of R0. Commonly, this

contribution does not play an important role because the total Rs is much larger

than R0.
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1.2 Strontium ruthenate (SrRuO3)

1.2.1 General

The interest in SrRuO3, a compound which is probably not found in nature,

has originally arisen from the possibility of using this material as a metallic elec-

trode or buffer layer in various heterostructure electronic devices which are based

on materials with a perovskite-type crystal structure (such materials include high-Tc

superconductors and ferroelectrics) [13, 14, 15]. The good thermal conductivity and

the remarkable chemical and thermal stability of SrRuO3 (stable up to 1200 K in

oxidizing or inert-gas atmospheres [16]; unchanged in structure up to 685 K [17]) are

a great advantage for many applications.

In addition to the possible applications, SrRuO3 has drawn much attention in the

last few years due to its unusual properties, which in some cases were interesting

in themselves, and in other cases provided a convenient playground for investigating

general material properties. Some of these properties are described in the foregoing

sections.

1.2.2 Crystalline structure

The unit cell of SrRuO3 is shown in Fig. 1.2(a). SrRuO3 belongs to the perovskite

group of minerals, which is a group of oxides with a general formula of ABO3 (in our

case A = Sr, B = Ru), which have a common crystalline structure. The BO3 ions

form a framework of corner-sharing octahedra, with a B ion at the center of each

octahedron and six O ions at the corners. The A ion is situated between eight such

octahedra. In many perovskites the octahedra are tilted or rotated in order to ac-
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Figure 1.2: Structure of SrRuO3. (a) Unit cell, containing 4 formula units (picture
from Ref. [18]). (b) Lattice structure (orthorhombic), where a, b, and c correspond
to [100], [010], and [001], respectively. (c) Growth orientation on miscut SrTiO3

substrate.

commodate the large A ions. The result is a variety of symmetries from isometric to

tetragonal to orthorhombic to monoclinic depending on the degree of distortion. The

unit cells of SrRuO3 (containing 4 formula units) are arranged in an orthorhombic lat-

tice, shown in Fig. 1.2(b). Since the distortion of the octahedra positions in SrRuO3

is not large, its structure can be also described as pseudocubic (the pseudocubic unit

cell, with a lattice parameter of 3.93 Å, is also shown in Fig. 1.2(a)).

1.2.3 Electronic properties

SrRuO3 is a metal. However, its electrical resistivity is relatively large (ρ ∼ 200 µΩ

cm at room temperature, even for samples with a residual resistivity of ∼ 1 µΩ cm),

and it continues to grow with increasing temperature almost without saturation, and
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seems to cross the Ioffe-Regel limit [19] (where the mean free path becomes as small

as the lattice constants). The exact reason for this behavior is not clear; possibly it is

related to strong electronic interactions, which may be implied by the strong T 2 term

in the electrical resistivity at low temperatures [20] and the mass enhancement (by a

factor of 3.7 relative to band calculations) observed in measurements of the specific

heat [19].

Additional abnormal properties of SrRuO3 include: non-Drude behavior of the

infrared conductivity [21, 22], violation of the Fisher-Langer relation for the temper-

ature derivative of the resistivity near Tc [20], and deviations from Matthiessen’s rule

[23, 24] (the latter can be expected in a metal with a short mean free path due to the

Pippard ineffectiveness condition [23]).

Despite these irregularities, quantum oscillations in the electrical resistivity of

SrRuO3 at high magnetic fields (the Shubnikov–de Haas effect) show the existence of

conventional fermion quasiparticles (at least at low temperatures, where the effect is

observable) [25].

Band calculations reveal a complicated band structure, and the results of the

calculations are sensitive to the input parameters and depend on the method of cal-

culation [19, 26, 27, 28]. A typical result for the density of states is shown in Fig. 1.3.

The Fermi surface is dominated by the 4d electrons of Ru, which are also primarily

responsible for the magnetic moment.
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Figure 1.3: Density of states in SrRuO3 (from Ref. [26]). Majority (minority) spin is
shown as positive (negative). The partial O (2p) and Ru (4d) contributions are also
shown. The dashed vertical line denotes the Fermi energy.

1.2.4 Magnetic properties

SrRuO3 is a ferromagnet, with a transition temperature Tc of ∼ 165 K in crystals,

and ∼ 150 K in thin films grown on SrTiO3 substrates.4

The zero-temperature magnetic moment is about 1.4µB per formula unit (or

4The films are slightly strained by the substrate due to a small mismatch between the lattice
parameters of the (cubic) unit cell of SrTiO3 (3.905 Å) and the pseudocubic unit cell of SrRuO3

(3.93 Å), which is the reason for the different Tc: Gan et al. [29] have detached such film from the
substrate, and the Tc increased to the bulk-like value.
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M0 = 210 emu/cm3), and originates from the 4d electrons of the Ru atoms (see

Fig. 1.3). These are also the conduction electrons, so that SrRuO3 is an itinerant

ferromagnet. Consequently, significant spin polarization of the conduction electrons

exists in SrRuO3 [30].

The temperature dependence of the ferromagnetism of SrRuO3 should be prob-

ably described in terms of the local-band model [31], since there is evidence from

spectroscopic measurements that the ferromagnetic band splitting in SrRuO3, as in

many other itinerant ferromagnets, does not disappear at Tc [32]. This means that

as the temperature is increased to Tc, the magnetization disappears only on the long

scale, but short-range order remains; the band splitting will disappear only at some

temperature TS À Tc.

In the ferromagnetic state, SrRuO3 films grown on miscut SrTiO3 substrates pos-

sess a single easy axis of magnetization, roughly in the b orthorhombic direction

[33, 34]. At Tc, the easy axis points strictly along the b direction (45◦ out of the film

plane), and it slowly rotates as a function of temperature at a rate of 0.1◦/K toward

the normal to the film (up to 30◦ relative to the normal at T = 0) [34].

The magnetic anisotropy in SrRuO3 films is relatively large: the anisotropy con-

stants are of the order of K ∼ 107 erg/cm3 [35, 36], corresponding to an effective

anisotropy field of about 10 T. The large anisotropy constant (compared to 5 × 105

erg/cm3 in iron [37], 8× 105 erg/cm3 in nickel [38], and 4× 106 erg/cm3 in hcp cobalt

[39]) is probably a result of the reduced symmetry5 (see Fig. 1.2) and the large spin-

5A remarkable example of the dependence of the magnetic anisotropy on the crystal symmetry
is the order-of-magnitude difference in the anisotropy constants between hcp and fcc cobalt [39].
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orbit coupling,6 through which the spin direction is affected by the crystal structure.

Shape anisotropy is negligible, since 2πM2
0 ∼ 3× 105 erg/cm3 ¿ K.

1.2.5 Magnetotransport properties

Throughout most of the temperature range (from T ∼ 10 K up to at least room

temperature) the electrical resistivity of SrRuO3 decreases when a magnetic field H

is applied, i.e., the magnetoresistance (MR) ∆ρ(H) ≡ ρ(H) − ρ(0) is negative. The

strongest MR (∆ρ/ρ ∼ 10% for H ∼ 10 T) is observed near Tc. This indicates

that the MR is related mostly to diminishing of spin-dependent scattering (since the

field-induced enhancement of magnetization is most significant near Tc). A compre-

hensive analysis of the relation of the MR to changes in magnetization is presented

in Appendix A.

The MR in SrRuO3 is anisotropic; it depends on the directions of both the current

and the magnetization relative to the crystalline directions [41].

At low temperatures (below about 10 K) the MR becomes positive [42]. This

is expected due to shortening of the mean free path due to the Lorentz force. The

positive MR is most significant in samples with low residual resistivity, and it becomes

stronger as the temperature is lowered. These observations are in agreement with the

expectation that the Lorentz MR is most significant when the mean free path is long.

6The spin-orbit coupling constant ζ in Ru ion (∼ 900 cm−1) is significantly larger than, for
example, in Fe (∼ 400 cm−1), Ni (∼ 600 cm−1), and Co (∼ 500 cm−1) [40].
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1.3 EHE in SrRuO3

It has been found [43, 44] that the EHE due to the spontaneous magnetization

in the ferromagnetic phase of SrRuO3 exhibits a non-monotonic temperature depen-

dence, including a change of sign at T ' 130 K, as shown in Fig. 1.4. The behavior

-0.8-0.6-0.4-0.200.20.40.60.8

0 50 100 150Temperature (K)
ρxyEHE  (µΩ cm) 0100200 0 150 300Temperature (K)ρ (µΩ cm) T c

Figure 1.4: Extraordinary Hall effect ρEHE
xy (due to the spontaneous magnetization)

as a function of temperature. The inset shows the longitudinal resistivity ρ as a
function of temperature.

of the EHE coefficient Rs as a function of resistivity cannot be fitted with Eq. (1.5),

as is evident from Fig. 1.5. This is one of the reasons for the interest in the EHE in

this compound.
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-3-2-1
012

0 25 50 75 100 125ρ  (µΩ cm)
Rs  (10-8  Ω m / T)

Figure 1.5: EHE coefficient Rs (at the spontaneous magnetization) as a function of
the temperature-dependent resistivity ρ. (The connecting line is a guide to the eye.)

In the current work we perform measurements of the EHE as a function of the

magnetic field. Since the correlation between changes in M and ρ is different in

temperature-dependent measurements and field-dependent measurements, the latter

provide a new degree of freedom for testing the dependence of the EHE on M and

ρ. This method allows us to reach several definite conclusions as to the mechanism

behind the EHE in SrRuO3. These results are described in Chapter 3. We also extend

the EHE measurements to the paramagnetic phase, as described in Chapter 4. And in

Chapter 5 we test the dependence of the EHE on the direction of the magnetization,

and observe a non-trivial behavior.
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Chapter 2

Experimental Details

2.1 Samples of SrRuO3

2.1.1 Thin film growth

Because of its complicated composition, the growth of SrRuO3 as either bulk

crystals or thin films is not trivial. Epitaxial growth of films on various substrates

and under various conditions has been attempted [14, 45, 46].

In general, even when an exact stoicheometry is achieved, a mixture of several

growth orientations of the pseudocubic SrRuO3 on a cubic or pseudocubic substrate

can appear (see, e.g., Ref. [33] about SrRuO3 on SrTiO3 substrates). Mixed-

orientation samples are of limited usefulness for research purposes, since the mea-

sured quantities are averaged over the different orientations. Furthermore, it can be

problematic to magnetize such samples, since the easy axis points at different direc-

tions for grains with different orientations. For the same reason, it is not possible to
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perform measurements in a magnetic field without involving changes in the direction

of the intrinsic magnetization.

It was found [14, 45] that it is possible to grow single-orientation films of SrRuO3

on the (001) face of a (cubic) SrTiO3 crystal, if it is miscut by ∼ 2◦ toward [010].

Such films grow with the orthorhombic [110] direction perpendicular to the surface

(as was shown by x-ray diffraction [14] and by electron diffraction combined with

Lorentz imaging [33]), so that the a and b directions are at 45◦ out of the plane of

the film (see Fig. 1.2(c)).

Single-orientation thin films of SrRuO3 grown on miscut SrTiO3 substrates were

available to us through a collaboration with the Kapitulnik-Geballe-Beasley (KGB)

group at Stanford University. The films were grown by reactive electron beam evap-

oration [47], by James W. Reiner [35] while being a Ph. D. student of M. R. Beasley.

2.1.2 Sample preparation

We patterned the films by photolithography to allow precise measurement of longi-

tudinal and Hall resistance (a typical pattern scheme is shown in Fig. 2.1). Aluminum

wires were attached to the contact pads by a wire bonder.

2.1.3 Sample characterization

We ensured that the measured samples were not composed of grains with different

crystallographic orientations by measuring resistivity below Tc while the samples are

rotated relative to an applied magnetic field H. Jumps in resistivity (due to mag-
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VH
+

VH
- V-

I+ I-

V+

VH
+

Figure 2.1: A typical pattern for measurement of resistivity and Hall effect. The
current wires are connected to pads I+ and I−, the longitudinal voltage is measured
between pads V + and V −, and the Hall voltage is measured between pads V +

H (any
of them) and V −

H . The width of the current path is 50 µm.

netization reversal) occur when H is perpendicular to the easy axis,1,2 as shown in

Fig. 2.2 for a single-orientation sample at T = 40 K. The jumps in Fig. 2.2 occur at

θ ' 120◦ and θ ' −60◦, indicating that the easy axis is at θ ' −30◦, in agreement

with direct measurements of magnetization on similar films, mentioned in Sec. 1.2.4.

In samples which involve a mixture of several orientations, jumps occur at additional

angles, corresponding to configurations with different orientations of the easy axis.

Samples grown on miscut SrTiO3 substrates usually included a single orientation,

while samples grown on strictly (001) SrTiO3 substrates usually included grains with

various orientations.

One measure for a quality of a film is its residual resistivity ρ0 (i.e., the resistivity

1More generally: perpendicular to the projection of easy axis on the rotation plane.
2As the field is rotated away from the easy axis, the magnetization also deviates from the easy

axis, but it does not follow the field because of the large magnetic anisotropy. As a result, when the
field is perpendicular to the easy axis, the magnetization abruptly changes its orientation between
two non-collinear directions. Due to the anisotropic magnetoresistance (see Sec. 1.2.5) the resistivity
is different before and after this magnetization switching.
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2022
2426
28
-180 -135 -90 -45 0 45 90 135 180θ  (deg.)

ρ (µΩ cm)
T = 40 K
H = 4 T

Figure 2.2: Resistivity of a single-orientation film as a function of the magnetic field
direction (θ is measured relative to the normal to the film, in the (001) plane) at
T = 40 K, H = 4 T. (The two curves correspond to sweeps forwards and backwards
in the angle.)

ρ in the limit T → 0), since the residual resistivity in metals is caused by crystal

defects and impurities. Therefore, among the samples available to us, the ones which

had lower residual resistivities (ρ0 ∼ 5 − 10 µΩ cm, while the room temperature

resistivity is about 200 µΩ cm) were used.

We have studied films of various thicknesses (10−200 nm), and obtained essentially

thickness-independent results, except for a decrease in Tc with decreasing thickness

(from Tc ∼ 153 K in the thick film limit down to Tc ∼ 145 K in a 10-nm film) and

the corresponding rescaling of the temperature dependence of the related quantities

close to Tc.



25

2.2 Measurement system

Low-temperature, high-magnetic-field measurements were performed in the Quan-

tum Design Physical Property Measurement System (PPMS). This system includes

a liquid helium cryostat with a superconducting magnet.

The system allows us to make measurements between 1.8 and 400 K, with a tem-

perature stability of about 0.01% after a half-hour stabilization. Effects of short-time

fluctuations in temperature can be avoided by averaging the measured quantity over

time (5-15 minutes) at each measurement point.3 In some of our experiments (par-

ticularly, in the extraction of the OHE described in Sec. 2.3.3) a better temperature

stabilization was required. It was achieved by a longer stabilization time (> 10 hours).

Magnetic fields up to 9 T are available, with a reproducibility of about ±1 mT.

The sample can be mounted on a rotator, which allows it to be positioned at

various angles relative to the magnetic field, with an accuracy of ∼ 2◦ and a repro-

ducibility of ∼ 1◦.

3This method of averaging is limited, however, by the non-linearity in the temperature dependence
of the measured quantity, if measurements with a high resolution in temperature are required.
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2.3 Special considerations

2.3.1 Magnetizing the sample

It is common in ferromagnets that in order to reduce magnetostatic energy the

sample subdivides into domains with different directions of the magnetization. When

a magnetic field is applied, domains with magnetization parallel to the field grow,

while the opposite domains shrink and eventually disappear. However, when the field

is turned off, the domains reappear. As a result, magnetic measurements at low fields

are affected not only by field-induced changes of the intrinsic magnetization, but also

by the rearrangement of the domains. In many cases, this hinders the possibility of

field-dependent measurements of the intrinsic behavior.

In SrRuO3 the situation is different. Due to the large anisotropy (Hanis ∼ 10 T)

and the small self field (4πM ∼ 0.2 T), once the sample is magnetized by applying a

sufficiently high magnetic field (several teslas) it remains uniformly magnetized (does

not subdivide into domains) even at zero field. The domains renucleate only when

a sufficient field in the opposite direction is applied (except a few degrees below Tc

where the domains renucleate at a low positive field) [33]. This property allows us

to perform field-dependent measurements down to zero field. Furthermore, since the

field at which magnetization reversal starts is observed in sweeps of resistivity or

Hall effect versus field, we were able to ensure this property for every sample and at

every temperature. All measurements reported in this work were performed with the

sample uniformly magnetized.
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2.3.2 Cancellation of longitudinal offset in Hall measurements

In measurements of the Hall effect, some misalignment of the Hall voltage contacts

usually exists between the two sides of the current path. As a result, the measured

voltage ṼH includes some contribution of a longitudinal voltage (which is also com-

monly field-dependent and magnetization-dependent). However, since the longitudi-

nal contribution remains the same when the directions of B and M are reversed, the

Hall voltage can be determined as:

VH(B,M) =
ṼH(B,M)− ṼH(−B,−M)

2
. (2.1)

A configuration with reversed directions of B and M is achieved by reversing the

direction of the applied magnetic field Hext (in the measurement itself and in the

preliminary procedures, such as magnetizing the sample in a specific direction).

2.3.3 Identification of the ordinary Hall effect

A crucial issue in an experimental investigation of the EHE is the separation

between the EHE and the OHE, since both of them change as a function of the

magnetic field. In the ferromagnetic phase, the changes in M are usually much

smaller than the applied fields: ∆M ¿ B. However, usually Rs À R0. Therefore,

neither of these effects can be neglected. For the same reason, neither can any of them

be neglected in the paramagnetic phase, even though the induced magnetization is

small (M ¿ B).

This issue becomes particularly important when models such as suggested by Fang

et al. [5] are considered (to be discussed in Chapter 3), since they predict a high

sensitivity of the EHE to the value of M , therefore it is not straightforward how to
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measure the OHE separately. In the conventional models, the possible ρ-dependence

of Rs should be taken into account, since a magnetic field can induce changes in ρ.

We found a way to separate between the OHE and the EHE without making

assumptions about the model behind the EHE, or the reason due to which the EHE

changes as a function of field. We measured the Hall effect at a low magnetic field

(H ∼ 0.4 T) as a function of the direction of the field. In such fields, the change in ρxy

is linear in H, implying that the change in ρEHE
xy is also linear in H.4 In addition, for

such fields M does not rotate away from the easy axis (because the anisotropy field is

of order of 10 T).5 Since the easy axis is at α ' 45◦ (see Fig. 2.3), the EHE and the

OHE contributions have different symmetries, and can be separated. Particularly,

the EHE contribution should not be affected at all when the magnetic field is applied

perpendicularly to the easy axis.

Figure 2.4 shows the additional Hall effect (i.e., after subtracting the EHE mea-

sured at zero field) as a function of the direction of the field. The additional Hall

effect does not vanish when the magnetic field is in-plane (α = 90◦), indicating that

not only the OHE is involved. Neither does it vanish when the magnetic field is

perpendicular to the easy axis (α = 133◦), indicating that not only the EHE plays a

role.

4This implication is correct if the change in ρEHE
xy is not much smaller than the total change in

ρxy, which turns out to be correct in our case.
5For example, when a field of 0.4 T is applied at 60◦ relative to the easy axis, the magnetization

rotates by about 1◦. If the possible dependence of the EHE on the direction of M due to material
anisotropy is neglected (and only the trivial geometric dependence is taken into account), the error
due to incorrect modeling of the field-induced change in the Hall effect is only about 4% of it. The
additional error due to change in the zero-field EHE can be made smaller than that error if the
measurement is performed at a temperature where the zero-field EHE is small, as we did (T = 127
K).
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Figure 2.3: Experiment for separating the EHE and the OHE.

The behavior can be fitted as a sum of the OHE and the EHE contributions

according to the formula

∆ρxy = R0H cos α +
dρEHE

xy

dM
χH cos(α− αea), (2.2)

or

∆ρxy

H
=

(
R0 +

dρEHE
xy

dM
χ cos αea

)
cos α +

(
dρEHE

xy

dM
χ sin αea

)
sin α, (2.3)

where αea is the direction of the easy axis, and χ is the magnetic susceptibility.

The fit is shown in Fig. 2.4. It turns out that the parts of the OHE and the EHE

in the field-induced Hall effect were comparable in magnitude. For a field applied

along the easy axis: (60±3)% of the change in Hall effect was due to the OHE, while

(40± 3)% was due to the EHE.

The OHE coefficient is R0 = (−4 ± 1) × 10−10 Ω m/T, where nearly half of the

error is due to uncertainties in fitting, and the other half is due to uncertainty (of

about 15%) in film thickness.6 This corresponds to an electronic charge density of

6However, the error due to uncertainty in film thickness does not play a role when we use the
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Figure 2.4: Field-induced contribution to the Hall effect as a function of the direction
of the field (the angle α is defined in Fig. 2.3). The solid curves are fits from which
the OHE and the EHE contributions were evaluated.

n = (1.6± 0.4)× 1022 cm−3, which is 1.0 electron per formula unit.

value of R0 to separate between the OHE and the EHE in the same sample (at different temperatures
and fields), since the OHE and the EHE have the same dependence on the thickness.
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Chapter 3

Testing the Berry Phase Model for
EHE

3.1 Introduction

Fang et al. [5] have argued that the strange behavior of the EHE in SrRuO3 (as

presented in Sec. 1.3) can be explained in terms of the Berry phase effect in k-space

(see Eq. (1.6)), which predicts a peculiar non-monotonic dependence of σBP
xy on M .

The authors supported their contention by band calculations, which predicted EHE

of a correct order of magnitude and roughly reproduced its temperature dependence.

However, band calculations for SrRuO3 are very sensitive to the input parameters

[5, 28]. Therefore, while the calculations support the explanation, they leave open

the possibility that in practice the Berry phase effect in SrRuO3 is much smaller, and

the EHE is caused by a different mechanism.
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Another point which raises questions regarding the applicability of the calculations

of Fang et al. is their assumption that the exchange band splitting vanishes at Tc,

which is probably not correct for SrRuO3, as described in Sec. 1.2.4. According to

the calculation of Fang et al., the EHE changes sign when the band splitting is about

1/3 of its zero-temperature value, which probably does not happen below Tc.

The experiment described in this Chapter is designed to test the applicability of

the model suggested by Fang et al. by a different kind of measurement.

3.2 Experiment

While in previous experiments the EHE was varied by changing temperature, the

experiment presented here explores changes in the EHE resulting from changes in M

due to a magnetic field applied at a fixed temperature. This allows us to test the

applicability of the Berry phase model directly, by a comparison between temperature-

dependent and field-dependent behavior, without making assumptions regarding the

details of the band structure. Particularly, we can inquire whether the quantity which

vanishes at T ' 127 K in Fig. 1.4 is the M -dependent σBP
xy of the Berry phase model

[Eq. (1.6)] or the ρ-dependent Rs of the extrinsic models [Eq. (1.4)].

In our experiment, the magnetic field was applied along the easy axis, in order to

create maximal possible changes in M . All measurements were performed with the
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films uniformly magnetized, including at zero magnetic field (see Sec. 2.3.1). The

film whose results are presented here has a thickness of 30 nm, and Tc ' 147 K.

3.3 Results and analysis

Figure 3.1 presents the Hall effect as a function of the magnetic field H at different

temperatures. It includes both OHE and EHE. Figure 3.2 shows the EHE, after the

OHE was subtracted based on the value determined in Sec. 2.3.3. Interestingly, while

the magnetization increases with increasing field, not only does the EHE decrease, it

even changes sign. Furthermore, EHE exists even at T = 127 K, where the zero-field

Rs (as implied from Fig. 1.4) vanishes.

These results seem to qualitatively agree with the predictions of the Berry phase

model for these temperatures, since by applying a magnetic field we reach values of

M which at zero field exist at lower temperatures: Figure 1.4 implies that in the

range of temperatures presented in Fig. 3.2, |σBP
xy (M)| decreases with increasing M ;

therefore, the EHE is expected to decrease when magnetic field is applied.

On the other hand, the increase in M diminishes magnetic scattering, resulting

in a negative magnetoresistance (MR) ∆ρ(H) = ρ(H) − ρ(0) (see Fig. 3.3). Thus

the results can qualitatively agree also with the prediction based on Eq. (1.4), since

by applying a magnetic field we attain lower resistivities ρ, and in our range of
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Figure 3.1: Total Hall effect as a function of the magnetic field H at several temper-
atures (indicated in the legend).

temperatures Rs decreases with decreasing resistivity (see Figs. 1.4 and 1.5).

Quantitative examination of the results supports the second possibility. It turns

out, for example, that the MR (' −7 µΩ cm) which is required at T = 134 K to

make the EHE vanish brings the resistivity to the zero-field resistivity of T = 127

K (where the EHE vanishes at zero field). Figure 3.4 shows this pattern for a range

of temperatures: the EHE always vanishes at the same value of ρ. This behavior is

consistent with the extrinsic models [Eq. (1.4)].
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Figure 3.2: Extraordinary Hall effect as a function of the magnetic field H at several
temperatures (indicated in the legend).

The vanishing of EHE at constant resistivity cannot be consistent with the Berry

phase model [Eq. (1.6)] as well, since the identical resistivities do not correspond

to identical values of M , as can be understood by considering changes in magnetic

scattering involved in our experiment.

From a temperature T > 127 K, vanishing EHE can be achieved either by lowering

the temperature to 127 K or by applying an appropriate magnetic field. In both cases

ρ decreases to the same value. However, in the first case the decrease in ρ is partly
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Figure 3.3: Magnetoresistance ∆ρ(H) = ρ(H) − ρ(0) as a function of the magnetic
field H, corresponding to the measurements presented in Fig. 3.2.

related to a decrease in non-magnetic scattering (phonons, etc.), while in the second

case the whole change in ρ is due to change in magnetic scattering (see Sec. 1.2.5

and Appendix A). Therefore, the magnetic scattering is different in the two cases,

indicating different values of M . Thus, it is not a particular value of M in σBP
xy (M)

which makes EHE vanish.

Quantitatively, we estimate that the non-magnetic part of dρ/dT around 130 K

is about 0.50 µΩ cm/K, which is the value of dρ/dT above Tc where the magnetic
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Figure 3.4: The solid curve shows the temperature dependence of the zero-field re-
sistivity ρ, and the squares denote the resistivity for which EHE vanishes at applied
magnetic field, as a function of the temperature at which the field is applied.

resistivity saturates. Therefore, non-magnetic resistivity which plays a role in our

argument is not negligible. For example, only 3.5 µΩ cm of the 7 µΩ cm difference

in the zero-field resistivity between 134 and 127 K is due to magnetic resistivity. The

magnetic resistivity of 127 K is achieved at 134 K already for H = 3.4 T (this is the

field for which the MR is 3.5 µΩ cm, see Fig. 3.3), while the EHE vanishes only at

H = 8.1 T.
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3.4 Conclusions

The Berry phase model for the EHE in SrRuO3 turns out to be inconsistent

when temperature-dependent and field-dependent measurements are compared. On

the other hand, it seems that Eq. (1.4) describes the EHE correctly, although the

microscopic origin of the ρ-dependence of Rs remains unclear.
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Chapter 4

EHE in the Paramagnetic State.
Anisotropy of the Paramagnetic
Susceptibility

4.1 Introduction

As mentioned in Sec. 1.3, the microscopic origin of the ρ-dependence of Rs in

SrRuO3 is unclear, since it is not fitted by the conventional expression, Eq. (1.5).

Therefore, it may be useful to extend the range of ρ for which Rs is known. Since ρ

grows as a function of temperature, it could be useful to extend the measurements of

the EHE to T > Tc. The magnetization there can be created by applying a magnetic

field.

In measurements above Tc we found that a significant Hall effect develops even

when the magnetic field H is applied parallel to the current which flows along the [110]
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direction. The temperature dependence of this Hall effect (see Fig. 4.1) resembles

the expected behavior of the induced magnetization. These results indicate that the

0
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T (K)

R
H

E
 (

Ω
)

[010][100]

M

J H

a b

Figure 4.1: Hall effect with H = 250 Oe applied parallel to the current (along the
[110] direction) as a function of temperature above Tc (' 147 K). The dashed line is
a guide to the eye.

in-plane field H creates a magnetization M possessing an out-of-plane component,

which creates a measurable EHE. This shows that the paramagnetic susceptibility

is anisotropic, and reveals the EHE as a tool which can be used to investigate the

magnetic properties of SrRuO3 in the paramagnetic state. We took advantage of

this opportunity, so that the experiment described below, in addition to providing

information about the EHE, reveals an interesting behavior of the paramagnetic sus-

ceptibility in SrRuO3.
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4.2 Experiment

We measured the Hall effect of SrRuO3 films from Tc (∼ 150 K) up to 300 K,

as a function of the magnitude and direction of the applied magnetic field. We

studied films with thicknesses from 6 to 150 nm, and obtained almost thickness-

independent results. The Hall effect data presented below are from a 30-nm film.

The OHE was subtracted based on the value determined in Sec. 2.3.3, assuming it

to be temperature-independent.1

4.3 Results

For quantitative characterization of the susceptibility anisotropy, we measured

the Hall effect as a function of field direction at various temperatures. For each

temperature above Tc, a small-field limit exists, where the magnetization depends

linearly on the field and can be fully described in terms of constant susceptibilities

χa, χb, and χc along the a, b, and c crystallographic directions, respectively (µ0Ma =

χaHa, etc). An example of measurements in this limit is shown in Fig. 4.2, where

the EHE resistance (REHE = µ0RsM⊥/t, where t is the thickness of the sample) is

shown for two different fields at T = 153 K as a function of the angle θ (see inset).

The solid curve is a fit obtained by assuming certain values of χa and χb, based on

1The possible errors due to this assumption are analyzed in the discussion.
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Figure 4.2: EHE at T = 153 K divided by the applied field H (circles: 250 Oe, crosses:
500 Oe) as a function of the angle θ between H and the b direction (see illustration).
The dashed curve is the OHE. The solid curve is a fit obtained by assuming certain
constant values for the susceptibility along the a and b directions.

the equation:

REHE (H, θ) =
RsH√

2t
(χb cos θ − χa sin θ) . (4.1)

Figure 4.2 also demonstrates the relatively small magnitude and different angular

dependence of the OHE, which was subtracted from the measured signal.

Figure 4.3 presents the temperature dependence of the susceptibilities χa and χb

(multiplied by Rs). We see that the susceptibility is very anisotropic throughout most
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Figure 4.3: Susceptibility along the crystallographic directions [100] (χa) and [010]
(χb) as a function of temperature, on a semilog plot. The values are multiplied by
Rs, whose temperature dependence is expected to be smooth. The error bars for
Rsχa reflect an uncertainty of up to 2◦ in θ. The dashed lines are guides to the eye.
The inset shows the ratio χb/χa for 165 K < T < 300 K. The solid curve is a fit to(
T − TMF

c,a

)
/

(
T − TMF

c,b

)
with TMF

c,a = 109 K, TMF
c,b = 150.5 K.

of the investigated temperature range. Particularly, χb exhibits striking divergence at

Tc, while χa changes moderately. The actual divergence of χb is even stronger than

shown in Fig. 4.3 since χb was not corrected for the demagnetizing field.2

2When an external field Hext is applied along the easy axis, the total field along the easy axis is
H = Hext − 1

2µ0M due to the demagnetization field (taking into account the 45◦ angle relative
to the plane of the film). The apparent small-field susceptibility is χmeas = µ0M/Hext while
the real susceptibility is χ = µ0M/H. Therefore, the apparent susceptibility in our measurement
configuration is only χb/ (1 + χb/2). A correction was not made because the value of Rs is not
precisely known.
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Since the c direction is in the plane of the film, the EHE measurement could not

be used to determine χc (the insensitivity of EHE to a field component in the c direc-

tion was experimentally confirmed). Therefore, measurements of magnetoresistance

(MR) ∆ρ ≡ ρ (H)− ρ (0) were employed. Based on the result presented in the inset

to Fig. 4.4, as well as the analysis described in Appendix A, ∆ρ ∝ −M2 (for a

constant direction of magnetization). Thus we can infer the susceptibility behavior

along a, b, and c directions by comparing the MR obtained with fields applied along

these directions. The results, shown in Fig. 4.4, clearly indicate that the induced

magnetization along the b direction grows as Tc is approached much more rapidly

than along the a or c directions. The divergence in Fig. 4.4 is less pronounced than

in Fig. 4.3 since for fields applied here the magnetization along b is sub-linear (but

using lower fields would not allow us to obtain accurate MR data for the a and c

directions). The temperature dependence of the MR with H ‖ c is very similar to the

MR with H ‖ a, indicating that the behavior of χc is similar to the behavior of χa.

4.4 Discussion: Anisotropy of the paramagnetic

susceptibility

The data in Figs. 4.3 and 4.4 imply that only the susceptibility along the b

direction (which is also the easy axis of the spontaneous magnetization) diverges at

the phase transition; moreover, the large anisotropy of the susceptibility is noticeable
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Figure 4.4: Magnetoresistance as a function of temperature with a field of 0.5 T ap-
plied along the different crystallographic directions (the values are normalized to the
values at 180 K). The inset shows the magnetization (µ0RsM) and magnetoresistance
(∆ρ) as a function of a field (applied along the b direction, at T = 170 K). The solid
curve is a fit to ∆ρ ∝ −M2.

(> 30%) already at t ≡ (T − Tc) /Tc = 0.5.

The coupling of spin to electronic orbitals yields the ubiquitous phenomenon of

magnetocrystalline anisotropy (MCA) in ferromagnets [49]. While the manifestation

of MCA below Tc in the form of hard and easy axes of magnetization is well studied,

the fact that the strength of the MCA decreases with temperature as a high power

of the spontaneous magnetization [50] could give the impression that MCA effects

above Tc are at most a weak perturbation. Here we have shown that the MCA has a
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significant effect in the paramagnetic state of the itinerant ferromagnet SrRuO3 over

a wide range of temperatures.

We note that this result is consistent with a previous work presented in Appendix

A, where Ising-like critical behavior in SrRuO3 films was detected.

Anisotropy in the behavior of the susceptibility arising from MCA may be de-

scribed microscopically by Heisenberg model with anisotropic exchange:

H = − ∑

<ij>,α

JαSiαSjα (4.2)

or with single-site anisotropy :

H = −J
∑

<ij>

Si·Sj −
∑

i,α

DαS2
iα, (4.3)

where α = a, b, c denotes spin components along the crystalline directions, and i, j

denote lattice sites. SrRuO3 is an itinerant ferromagnet. However, various theoretical

models (e.g., the local-band theory mentioned in Sec. 1.2.4) indicate that magnetic

moments in itinerant ferromagnets can behave as if localized even above Tc, thus

vindicating the description of their magnetic interactions by Heisenberg Hamiltonian.

Since Tc ∝ J , anisotropic exchange results in a different effective Tc for each spin

component. Consequently, the susceptibility along the direction with the largest J

diverges at the actual Tc, while no divergence occurs for the other spin components

at any temperature [51]. Single-site anisotropy yields the same critical behavior [51],

with an effective ∆J = ∆D/z, where z is the number of nearest neighbors.

The anisotropy ∆J (or ∆D) can be estimated from the susceptibilities in the

mean-field region, which are expected to follow the Curie-Weiss 1/
(
T − TMF

c

)
law

(with different mean-field transition temperature TMF
c for each direction), if Pauli
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paramagnetism and diamagnetism can be neglected.3 We cannot fit Rsχa or Rsχb

as a function of temperature because the temperature dependence of Rs is unknown.

However, the ratio χb/χa does not depend on Rs, and fitting the data to the expression
(
T − TMF

c,a

)
/

(
T − TMF

c,b

)
converges to the values TMF

c,a = 109±2 K, TMF
c,b = 150.5±0.5

K for 165 K < T < 300 K (see inset in Fig. 4.3). From these values we find an

anisotropy of Jb − Ja = (0.33 ± 0.05)Javg or Db − Da = (0.33 ± 0.05)Jz, where the

error bars represent a possible variation of ±30% in the OHE between 127 and 300

K.

Direct measurements of magnetization of films in the ferromagnetic phase show

that at low temperatures the rotation of M in the (001) plane can be described by

an anisotropy energy, Eanis = K sin2 θ, with an anisotropy constant K = (1.2 ±

0.1) × 107 erg/cm3 [35, 36]. To relate the ferromagnetic anisotropy with Eqs. (4.2)

and (4.3), we note that at low temperatures the exchange aligns the spins along a

single direction; thus, the energy cost of magnetization rotation from the b direction

toward the a direction by an angle θ in the case of anisotropic exchange is ∆E =

zNS2(Jb − Ja) sin2 θ, where N is the number of spins per unit volume. A similar

result is obtained in the case of single-site anisotropy. Calculating J according to

the relation J = 3kBTMF
c /2zS (S + 1) we obtain Jb − Ja ' 0.1Javg. This result is in

reasonable agreement with Jb−Ja = (0.33± 0.05)Javg extracted from the anisotropic

susceptibility, in view of the uncertainties involved.4

3The Pauli paramagnetism and diamagnetism in SrRuO3 are approximately 10% of the suscep-
tibility at 300 K [52]. It is not clear whether their contribution to the EHE should go with the same
Rs. If same Rs is assumed, taking them into account does not have a significant effect on the result
or the quality of the fit.

4The slow change in the direction of the easy axis as a function of temperature (see Sec. 1.2.4)
indicates an imperfectness of the model; due to the itineracy of the magnetic moments, it is not
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A paramagnetic susceptibility diverging along only one crystallographic direction

has been reported previously for bulk specimens of Cu(NH4)Br4 · 2H2O [53], but the

anisotropy there was found to be only 2% of the exchange integral J (compared to

33% which we find in SrRuO3). Another report refers to two-dimensional cobalt films,

where an anisotropy of 5% was measured [54]. In both cases, the temperature range

for which the susceptibility was measured is by an order of magnitude smaller (in

units of Tc) than in our measurements of the three-dimensional SrRuO3 films.

It should be noted that measuring paramagnetic susceptibility in films often poses

a considerable technical challenge due to the combination of small magnetic moment

of the film with large background signal from the substrate. However, the use of

EHE avoids these difficulties, since the EHE depends on the film internal magneti-

zation and not on the total magnetic moment of the sample. Therefore, the signal

does not diminish with decreasing thickness, neither is it affected by the substrate

magnetization.

really clear which values should be substituted for N and S; the temperature dependence of the
band structure is neglected in our analysis; there might be a mistake in the subtracted value of the
OHE due to EHE anisotropy (see Sec. 5.3).
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4.5 Discussion: EHE in the paramagnetic state

The results of our experiment provide information regarding the temperature de-

pendence of Rs in SrRuO3 above Tc, complementing the data for T < Tc reported

previously. Up to a constant prefactor, Rs can be inferred from the fit in the inset of

Fig. 4.3 (assuming Curie-Weiss behavior for the susceptibilities). We estimated the

prefactor (with an uncertainty of about 15%) by using the relation between MR and

M established in Appendix A. The results are shown in Fig. 4.5.

-505
101520

0 50 100 150 200 250 300Temperature (K)
Rs  (10-8  Ω m / T)

Figure 4.5: EHE coefficient Rs as a function of temperature. The crosses represent
previously known data from the ferromagnetic phase, and the circles represent new
data from the paramagnetic phase.

Above Tc, Rs is positive (unlike throughout most of the temperature range below
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Tc) and it steadily increases as a function of temperature, continuing the trend which

started below Tc. The dependence of Rs on the resistivity ρ in this range of temper-

atures is roughly quadratic, as shown in Fig. 4.6. These results will need to be taken

into account in any new attempt to calculate the EHE in SrRuO3.

00.20.40.60.811.21.4

160 180 200 220 240 260 280 300Temperature (K)
Rs / ρ2   (a.u.)

Figure 4.6: The circles represent Rs/ρ
2 (all values are normalized to the value at 300

K). The solid curves indicate how the results will change if the OHE is not constant,
but changes by ±30% from 127 K (where it was measured) to 300 K.
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Chapter 5

Anisotropy of the EHE

5.1 Experiment

Commonly, it is assumed that the EHE is determined by the component of M

which is perpendicular to the measurement plane (M⊥). We found a deviation from

this behavior in SrRuO3, as described below.

In the following experiment, Hall effect is measured in the ferromagnetic state

(T = 90 K) while the magnetic field is applied in the plane of the film, thus avoid-

ing the OHE contribution (due to purely geometrical reasons).1 The magnetic field

rotates the magnetization from an angle of 39◦ relative to the normal towards the

plane of the film, making M⊥ smaller. Since the spontaneous magnetization at this

1There might be still an OHE contribution due to an uncertainty in the angle setting, and
its possible effect is shown below. This uncertainty also prevents an accurate characterization of
temperature dependence of the effect, since the EHE is smaller at much lower or much higher
temperatures, so that the effect of the unwanted OHE contribution (which is roughly temperature
independent) becomes more significant.
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temperature is nearly 80% of the zero-temperature magnetization, the applied field

practically does not change its magnitude, as confirmed by direct measurements of

the magnetization [35]. As a result, the measured EHE is expected to decrease as a

function of the magnetic field due to the m̂ · n̂ factor in Eq. (1.4).

5.2 Results and discussion

A decrease in the EHE as a function of H is indeed observed. However, when

compared with measurements of magnetization in SQUID with the same direction of

the magnetic field [35], a quantitative disagreement appears. For example, according

to the SQUID data, when H = 5 T is applied, M⊥ decreases by 25% due to the

rotation of the magnetization (while the magnetization rotates by 15◦). However,

according to the Hall effect data, the EHE (which is assumed to be proportional to

RsM⊥) decreases by only (8 ± 2)%. The results of both types of measurements are

shown in Fig. 5.1.

The discrepancy cannot be attributed to a resistivity-dependent change in Rs as a

function of the field due to the magnetoresistance. In order to explain the discrepancy

by this effect, |Rs| at H = 5 T should increase by about 20% relative to its zero-field

value. On the contrary, the MR at H = 5 T is −7%, which should result in a 4%

decrease in |Rs|, based on the temperature-dependent variation of Rs.



53

T = 90 K H in-plane0.70.80.91.0

0 2 4 6 8H (T)
M  EHE SQUID

Figure 5.1: The perpendicular component of the magnetization M⊥ as a function of
the in-plane magnetic field H, as determined from measurements of EHE (circles)
and from measurements of magnetization in SQUID (squares). (The values are nor-
malized to the zero-field value.) The dashed curves demonstrate the error due to a
2◦ uncertainty in the angle setting.

It should be noted that it would be even more difficult to reconcile the results with

the Berry phase model which would predict a 35% decrease in the EHE for H = 5 T

(due to a 25% decrease in m̂ · n̂ and a 14% decrease in ρ2), instead of the observed

8% decrease.

We interpret this result as an evidence for the dependence of the EHE coefficient

Rs in SrRuO3 on the direction of M relative to the crystalline directions. Our results
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correspond to a change in Rs of nearly 20% due to a rotation of 15◦.

To our best knowledge, anisotropic EHE has never been reported for any material.

However, there is no reason to exclude this possibility, particularly in view of the

anisotropy of the magnetoresistance (see Sec. 1.2.5).

On the other hand, there is a very little dependence of the EHE on the direction

of the current (not shown).

5.3 Relevance to other parts of this work

In the interpretation of the susceptibility anisotropy (Fig. 4.3), it was assumed

that Rs has the same value for a magnetization along the a and b crystalline directions.

The observed 3-orders-of-magnitude difference between Rsχa and Rsχb near Tc could

be affected very little by the EHE anisotropy. On the other hand, the value of ∆J

determined from the results may be affected. However, since the measurements there

were performed in the zero-magnetization limit, the EHE anisotropy should be partly

averaged out because the orientations of the moments relative to the crystalline axes

are not fixed in the direction of the magnetization as in the ferromagnetic state, but

they are distributed in space, and only a small deviation from this distribution creates

the magnetization. This results in an effective Rs which is not equal to the Rs which

corresponds to the actual direction of the magnetization, but depends also on the
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zero-field distribution of the directions of the magnetic moments (and the values of

Rs corresponding to those directions). In addition, the observed tendency of Rsχa

and Rsχb to coincide in the high temperature limit indicates that the EHE anisotropy

is not large. Still, the extracted value of ∆J could be affected by the effect of EHE

anisotropy on the OHE measurement, which is discussed below.

The identification of the OHE by the experiment presented in Sec. 2.3.3 might be

inaccurate if the EHE is anisotropic. In that experiment the magnetization deviates

from the easy axis by a small angle

∆αM ' MH

2K
sin(α− αea). (5.1)

In the case of an anisotropic EHE, this would create an additional contribution to

the field-induced EHE of the form

∆ρxy =
∂ρEHE

xy

∂αM

∆αM (5.2)

' ∂ρEHE
xy

∂αM

MH

2K
(cos αea sin α− sin αea cos α) . (5.3)

This contribution has the same dependence on H and α as the expression in Eq.

(2.3), therefore it cannot be detected just by inspection of the data. However, we can

calculate whether ∂ρEHE
xy /∂αM may be large enough to create a significant error in

the OHE, thus questioning some of our results, among them the conclusion regarding

the inapplicability of the Berry phase theory (Chapter 3).

As can be seen from Fig. 3.1, if the OHE were approximately zero (compared to

its assumed value), the EHE would vanish at a correct field to agree with the Berry

phase theory. In order to get R0 = 0 from the fit in Eq. (2.3), it would be needed

to have ∂ρEHE
xy /∂αM ' 9 nΩ cm/◦. This would imply that the EHE is so anisotropic
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that a hypothetical rotation of M by roughly 60◦ would change ρxy at T = 127 K

from 0 to the maximal value it reaches in Fig. 1.4. We consider such drastic change

to be unlikely (although we cannot exclude it altogether).

A smaller error in the OHE could affect the various quantitative results presented

in this thesis. However, the results will not change significantly due to such error,

as they did not change much due to an assumption of a 30% temperature-dependent

change in the OHE.
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Chapter 6

Summary

We investigated thin films of SrRuO3 by measurements of Hall effect combined

with measurements of resistivity and in some cases confronted with measurements of

magnetization, as a function of temperature and magnetic field.

While commonly the behavior of the EHE is characterized by measuring its tem-

perature dependence, we presented measurements of the EHE in SrRuO3 as a function

of the magnetic field. This gives a new degree of freedom for studying the EHE. In

our case, these measurements provided a clear indication that the EHE in SrRuO3

should be described in terms of a ρ-dependent Rs and not an M -dependent σxy.

In addition, we extended the range of resistivities for which Rs has been measured

in SrRuO3 by performing measurements in the paramagnetic phase. These results

will need to be taken into account in any future theoretical explanation for the EHE

in this material.

We also presented an observation showing that the EHE in SrRuO3 has a non-

trivial dependence on the direction of M relative to the crystalline directions. To our

best knowledge, there are no experiments on other materials confirming or excluding

a behavior of this kind.
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While it is common to use the EHE as an indicator of magnetization, it is seldom

used for a quantitative analysis of magnetic behavior. In this work we presented a

striking example of the latter, by performing sensitive measurements of the zero-field

magnetic susceptibility in SrRuO3 films, which allowed us to gain a unique insight

into the effect of the magnetocrystalline anisotropy in the paramagnetic state of an

itinerant ferromagnet.
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Appendix A

Magnetic Resistivity and the
Ferromagnetic Phase Transition

Note:

The results described in this Appendix have been published in:

Y. Kats et al., Phys. Rev. B 63, 054435 (2001).

A.1 Experiment

We measured the electrical resistivity of SrRuO3 as a function of temperature and

magnetic field near the ferromagnetic phase transition (Tc ∼ 153 K).

Assuming that the resistivity can be separated into magnetic (i.e., related to spin

scattering) and non-magnetic parts, the application of a magnetic field in the range

of temperatures 120−180 K is expected to affect the magnetic part while its effect on

the non-magnetic part (through the Lorentz force) is expected to be negligible due to
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the relatively short mean free path in SrRuO3 at these temperatures.1 Consequently,

field-induced changes in resistivity are directly related to the induced changes in

magnetization.

The magnetic field H was applied along the easy axis of magnetization (the [010]

direction) in order to avoid changes in the direction of M which could induce changes

in resistivity due to the anisotropic magnetoresistance (see Sec. 1.2.5), and to avoid

the effect of the magnetocrystalline anisotropy which otherwise would compete with

the applied field and complicate the relation between the magnitudes of M and H.

The current was parallel to the [001] direction.

Measurements below Tc were done with the sample uniformly magnetized (see Sec.

2.3.1). Thus, they do not involve effects of changes in the domain structure or domain-

wall resistivity [55], but reflect solely the changes in the intrinsic magnetization.

The film whose results are presented below has a thickness of 200 nm, and Tc ' 153

K.

1From Ref. [19], the Fermi velocity is ∼ 2× 107 cm/s and the mean free path is of order of 10 Å,
thus the quasiparticle scattering time is τ ∼ 5 × 10−15 s. Calculating the cyclotron frequency ωc

(taking the cyclotron mass to be 0.2me, as found from quantum oscillations measurements [25]), we
find (ωcτ)2 to be 3− 4 orders of magnitude smaller than the measured relative magnetoresistances
∆ρ/ρ.
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A.2 Data analysis

A.2.1 Zero-field resistivity and the critical exponent β

The zero-field resistivity near Tc is shown in Fig. A.1. Since above Tc the mag-

netization vanishes, the magnetic resistivity induced by spin scattering is expected

to become temperature-independent far enough above Tc. Therefore, we may assume

that the temperature dependence of the resistivity there is only due to non-magnetic

components of the resistivity. Assuming that the behavior of the non-magnetic re-

sistivity is not affected by the ferromagnetic phase transition, its behavior below Tc

can be approximated (in some small range of temperatures) by an extrapolation of

the resistivity above Tc, which we denote by ρ+(T ). We then subtract the measured

resistivity below Tc from the extrapolated ρ+(T ) (based on a linear fit of the range

160 − 170 K) and denote the difference by ∆ρsp (see Fig. A.1). This difference is

related to magnetic ordering, and in the following we determine its functional depen-

dence on the magnetization M .

Figure A.2 shows a plot of ln ∆ρsp as a function of ln |t|, where t = (T−Tc)/Tc, and

Tc = 153 K. The temperature range used in this fit is 130 K - 149 K. The linearity

of the plot in Fig. A.2 clearly indicates that ∆ρsp exhibits a power-law behavior as a

function of |t|:

∆ρsp ∝ |t|s (A.1)

where s = 0.68 is the slope of the plot.

If the magnetic resistivity ρm depends only on the magnetic ordering, we can

expand the magnetic resistivity in a power series in M around ρm(0), which is the

magnetic resistivity when no magnetic order exists. Due to symmetry, only even
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Figure A.1: Temperature dependence of zero-field resistivity ρ near Tc (∼ 153 K).
The solid line is the extrapolation of the resistivity from T > Tc. The definition of
∆ρsp is shown. The inset shows the behavior of dρ/dT .

powers of M appear in the expansion:

ρm(M) = ρm(0)− aM2 − bM4 + · · · . (A.2)

On the other hand, we assume that ∆ρsp is simply:

∆ρsp(T ) = ρm(0)− ρm(Msp(T )), (A.3)

where Msp(T ) is the spontaneous magnetization. Thus we obtain

∆ρsp = aM2
sp + bM4

sp + · · · (A.4)
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Figure A.2: Critical behavior of ∆ρsp with respect to the reduced temperature t =
(T − Tc)/Tc from 130 to 149 K with Tc = 153 K. A linear fit is shown. The inset
shows the correspondence between ∆ρsp and the square of the measured spontaneous
magnetization Msp.

In the vicinity of the critical point, Msp is expected to exhibit a power-law behavior

of the form Msp ∝ |t|β. Therefore we suggest, on the basis of the result in Eq. (A.1),

that in our case ∆ρsp is well described by the first term alone of Eq. (A.4) and then

it follows that

∆ρsp ∝ |t|2β (A.5)

where β is the critical exponent of the magnetization.

This implies that β can be found from a plot of ln ∆ρsp as a function of ln |t|,
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as in Fig. A.2. Hence we obtain β = 0.34, which is a reasonable value for this

exponent. (Usually β is found to have values between 0.3 and 0.5. See, e.g., Refs.

[56, 57, 58, 59]).

For a reliable analysis, it is necessary to accurately determine the value of Tc. It

can be found from the location of the peak of dρ/dT (denoted hereafter by T ′
c), and

from the location of the peak of the induced magnetization at a constant magnetic

field (hereafter denoted T ′′
c ). Ideally, Tc = T ′

c = T ′′
c ; however there is always some

smearing of the transition (due to, e.g., defects or small temperature gradients), which

may slightly shift T ′
c and T ′′

c relative to Tc.

We find that T ′
c = 152 K. However, since dρ/dT decreases above Tc much faster

than it grows below Tc (see inset to Fig. A.1), it is clear that rounding of the ideal

dρ/dT vs. T (caused by the smearing) would result in a negative shift of T ′
c, namely,

T ′
c < Tc.

We estimate T ′′
c to be the location of the maximum of the (negative) magnetore-

sistance at a constant field. We find that T ′′
c = 153.5 ± 0.7 K. However, due to the

smearing, we expect to obtain T ′′
c > Tc. This is because the critical susceptibility

above Tc has a larger amplitude than it has below Tc (see values of C+/C− in Table

A.1).

Based on these results and considerations, we conclude that the value of Tc = 153

K which was used above is acceptable.

To determine more accurately the values of Tc and β we plotted ∆ρ1/(2β)
sp as a

function of T for trial values of β until the best linear dependence was obtained.

From the intercept of the line with the T axis we found Tc. Our basic choice is to
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make the extrapolation of ρ+(T ) upon the range of 160 − 170 K (not too far from

the investigated area and not too close to Tc) and to make the fit of ∆ρsp between

140 − 149 K (not too far from Tc, so that only the leading asymptotic terms are

significant, and not too close to Tc, so that the results are not affected by the smearing

and by the short-range spin correlations). This results in Tc = 153.2 K and β = 0.347.

To check how a change of the fit range may affect the results we did the same

calculation for the ranges 135 − 145 K and 145 − 151 K and obtained the results

Tc = 152.5 K, β = 0.325 and Tc = 153.4 K, β = 0.353 for those ranges, respectively.

Another check was to change the range upon which the extrapolation of ρ+(T ) is

done. For a range of 160− 180 K we obtained Tc = 153.4 K, β = 0.348.

Therefore we conclude that reliable values are Tc = 153.0± 0.5 K and β = 0.34±

0.02.

Comparing these measurements with measurements of spontaneous magnetization

on the same film we find that ∆ρsp = aM2
sp (see inset to Fig. A.2) with a = (9.5±1.0)×

10−4 µΩ cm
(emu/cm3)2

. After checking resistivities of other films, with different thicknesses

(100− 2000 Å) and different residual resistivities (5 − 150 µΩ cm), we find that the

value of a is quite insensitive to these parameters (the observed changes were less

than 20%).

A.2.2 Magnetoresistance and the critical exponent γ

The previous subsection implies that

ρm(M) = ρm(0)− aM2. (A.6)
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This relation enables us to find the magnetic susceptibility from the measurements

of magnetoresistance (i.e., the change in the resistivity upon application of field).

The initial susceptibility χ0 (defined as ∂M/∂H at H = 0) is expected to exhibit

a power-law behavior near Tc:

χ0 = C± |t|−γ (A.7)

where C+ and C− are the amplitudes above and below Tc, respectively, and γ is the

critical exponent. In the following we determine γ separately from measurements

above and below Tc, and calculate the value of the amplitude ratio C+/C−.

Determination of γ above Tc:

We can expand the magnetic field H (at a constant temperature) as a power series

in M :

H = a1M + a2M
3 + · · · , (A.8)

where a1 and a2 are temperature-dependent constants. For small fields, when the

first two terms of the expansion are sufficient, we obtain

H

M
= a1 + a2M

2. (A.9)

For M → 0, Eq. (A.9) reduces to: a1 = H/M . Therefore from the definition of

the initial susceptibility χ0 it follows that χ0(T ) = 1/a1(T ). We determine M from

measurements of magnetoresistance according to Eq. (A.6). When plotting M2 vs.

H/M , the values of a1(T ) can be found from the intercept with the H/M axis. Then

the critical exponent γ is found from the slope of a log-log plot of χ0 vs. |t|, according

to the definition of γ in Eq. (A.7); see Fig. A.3. The plot includes the temperatures

155− 166 K. The value of γ found by this method is γ = 1.17± 0.14.
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Figure A.3: Critical behavior of the initial susceptibility χ0 below and above Tc. The
critical exponent γ is found from the slopes of the linear fits.

Determination of γ below Tc:

Below Tc a linear response of the resistivity to a low magnetic field is observed.

Thus ∂M/∂H at low fields is the initial susceptibility χ0. The quantity ∂M/∂H can

be found from the measured ∂ρ/∂H, since using Eq. (A.6) we can write

∂ρ

∂H
= −2aMsp

∂M

∂H
(A.10)

where the value of Msp at each temperature can be obtained from the measurements of

∆ρsp (based on the relation ∆ρsp = aM2
sp). We calculated ∂ρ/∂H from measurements

between 130− 148 K. At each temperature we used the range of magnetoresistances
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from 0.08 to 0.16 µΩ cm, where the fields were small enough so that ∂M/∂H is

approximately χ0, and high enough so that even at temperatures close to Tc they are

higher than the fields where magnetization reversal starts. The value of γ found from

the slope of a log-log plot of χ0 vs. |t| (see Fig. A.3) is γ = 1.14± 0.07.

By comparing the susceptibilities above and below Tc we find that the amplitude

ratio C+/C− is ∼ 4.

The effect of the demagnetizing field was included in the analyses;2 however the

correction was usually small.

A.2.3 Magnetoresistance data collapse

According to the scaling law hypothesis, the relation between the magnetic field

H, the magnetization M , and the reduced temperature t in the critical region has

the form

M

|t|β = f±

(
H

|t|β+γ

)
(A.11)

where f± is a function that is different below and above Tc. Using Eq. (A.6) we

obtain for the magnetoresistance

∆ρ(T,H) = ρ(T, H)− ρ(T, 0)

= −a(M2(T, H)−M2(T, 0))

2In our experiment, the magnetization has an angle of θ = 45◦ relative to the plane of the film.
The in-plane component of M is perpendicular to the long dimension of the sample. Since the
width-to-thickness ratio is large (∼ 500), the demagnetization field due to the in-plane component
is negligibly small, and the demagnetizing factor for the normal component is 4π. Therefore the
demagnetizing field is 4πM sin θ. It has a component in the direction of the easy axis and another
component perpendicular to it. Magnetic field which is applied perpendicularly to the easy axis,
has a very small effect on the magnetization because of the large magnetic anisotropy. Therefore
we take only the component parallel to the easy axis as the effective demagnetizing field. Hence the
correction should be H = Hext − 4πM sin2 θ, where Hext is the applied field.
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= −at2β

[
f±

(
H

|t|β+γ

)
− f±(0)

]

The expression within the square brackets is a function of H/ |t|β+γ alone, therefore

there exists a scaling law for the magnetoresistance of the form:

∆ρ

|t|2β = F±

(
H

|t|β+γ

)
(A.12)

or

r = F±(h) (A.13)

where r = |∆ρ|/ |t|2β and h = H/ |t|β+γ. When the correct values of β and γ are

substituted, plotting the values of r as a function of h should give a smooth curve

(with two branches, described by F+ and F−, for T > Tc and T < Tc, respectively).

The correction of the applied field for the demagnetization was not taken into account

here.

Figure A.4 shows the data collapse obtained with the values of the critical ex-

ponents and Tc found above (Tc = 153 K, β = 0.34 and γ = 1.15). This plot in-

cludes data for temperatures between 130 K and 170 K (excluding the temperatures

|T −Tc| < 3 K) and fields between 2 and 10 kOe. It is clearly seen that measurements

at different temperatures fall on the same curve.
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Figure A.4: Scaling of the magnetoresistance-temperature-field data. The quantities
r and h are defined in the text. Data for fields between 2 and 10 kOe and temperatures
between 130 and 170 K, see legend, is included.

A.3 Summary and conclusions

From the behavior of the zero-field resistivity near the ferromagnetic phase tran-

sition we concluded that the dependence of the magnetic resistivity on the magneti-

zation is: ρm(M) = ρm(0)− aM2, except very close to Tc.
3

3This relation cannot hold very close to Tc because of the influence of the spin-spin correlation
on the resistivity, due to which there is a temperature-dependent change in the zero-field magnetic
resistivity even above Tc (see inset to Fig. A.1 and Refs. [60, 20]). We estimated the contribution of
this effect to the resistivity by integration of the diverging part of dρ/dT . This contribution is found



71

Based on this result and using measurements of resistivity and magnetoresistance

we determined the values of the parameters β, γ, and C+/C− which describe the

magnetic critical behavior in SrRuO3. From the zero-field resistivity data we deter-

mined that β = 0.34 ± 0.02. From the magnetoresistance data below Tc we found

that γ = 1.14±0.07, and using the data above Tc we found that γ = 1.17±0.14. The

consistency of values of γ obtained below and above Tc supports the validity of our

analysis. Comparing the susceptibilities above and below Tc we obtained C+/C− ∼ 4.

Studying the magnetic phase transition in thin films via transport measurements

has special advantages relative to bulk measurements of magnetization that suffer

from weak signals on top of large contribution of the substrate (which is temperature

and field dependent).

The current results are somewhat different from the ones presented in a previous

report on the critical indices which relied on direct measurements of magnetization

[34]. While the zero-field resistivity below Tc gives a similar result for β, we obtain

a different value for γ above Tc (which is determined from field-dependent measure-

ments). We attribute the difference mainly to the fact that previously the field was

not applied along the easy axis and therefore unwanted changes in the direction of

the magnetic moment were involved.

In Table A.1 we compare the extracted critical exponents with the exponents of

the different models (mean-field, Ising, Heisenberg). The comparison suggests that

SrRuO3 belongs to Ising universality class. This result can be understood in view of

to be small relative to the resistivity changes considered in our analysis, and its changes become
less and less significant when departing from Tc. As mentioned previously, we excluded from our
analyzes temperatures which are too close to Tc.
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β γ (T < Tc) γ (T > Tc) C+/C−

Mean field theory 0.5 1 1 2

3d Ising model (Ref. [57]) 0.326 1.24 1.24 4.8

3d Heisenberg model (Ref. [58]) 0.36 1.39 1.39

SrRuO3 (this work) 0.34± 0.02 1.14± 0.07 1.17± 0.14 ∼ 4

Table A.1: Comparison of critical parameters of SrRuO3 with different models.

the high uniaxial anisotropy of SrRuO3. Later this result has been confirmed by the

fact that the susceptibility diverges at Tc only along one crystallographic direction,

as described in Chapter 4.

In conclusion, the consistent picture of the ferromagnetic phase transition not

only supports the obtained values of the critical exponents, but it also reinforces the

simple relation between the magnetic resistivity and the magnetization: ρm(M) =

ρm(0)− aM2, which holds for a surprisingly wide range of M .
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A.4 Discussion of criticism

After these results on Ising critical behavior in SrRuO3 films were published (in

Ref. [61]), Kim et al. investigated the critical behavior in SrRuO3 crystals [62], and

reached different conclusions. Ising exponent for the specific heat was obtained, but

mean-field exponents were found for the magnetization. To resolve the inconsistency,

the authors re-analyzed the specific heat data, and fitted them to mean-field behavior

with Gaussian fluctuations of XY-type spins, thus obtaining a self-consistent picture

of the phase transition, in which the transition is dominated by mean-field behavior

down to a very close vicinity of Tc. Kim et al. suggested that our results from films

did not represent the true critical behavior because our data were taken farther from

Tc, and because the films were less homogeneous (based on a greater smearing of the

phase transition).

However, our work presented here in Chapter 4 implies, based on the behavior of

the paramagnetic susceptibility, that:

1. The real critical behavior (at least in the films) is Ising (because the suscepti-

bility diverges only along one direction). Crossover through XY fluctuations is

not an option, since χa ' χc ¿ χb.

2. The critical range in SrRuO3 is not very small (as suggested by Kim et al.),

but relatively large: χb is 5 times greater than χa and χc already at t = 0.1.

Therefore, our critical behavior data (which are centered around t ' 0.05) are

well inside the critical range. Furthermore, the difference between the results

of Kim et al. and our results is unlikely to be due to measurements out of
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the critical range, since it is unlikely to obtain mean-field-like behavior (their

results) in a crossover between Ising-like exponents (obtained by us) and true

Ising behavior (implied by Chapter 4).

Therefore, a different reason should be sought to explain the difference between

the results in films and in crystals.

There is a reason to suspect that the crystals studied in Ref. [62] are twinned

(include several orientations): Kim et al. report a low-temperature magnetic moment

of 1.1µB per Ru, compared to 1.4µB per Ru found in single-oriented films. If the

crystals were indeed twinned, the macroscopic behavior of the magnetization would

not be the intrinsic one, but averaged upon regions with the different orientations; H

would not be collinear with the easy axis (at least not for all the orientations) and the

resulting angle between H and M would change as a function of magnetization and

magnetic field values, and would be, in general, different for the different orientations.

This could significantly bias the critical behavior fits.

Another possibility is that the difference in the behavior of films and crystals

is real, and it is related to small differences in the lattice structure between them

(since the films are slightly strained by the substrate), which is also creating the 8%

difference in Tc [29].
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Appendix B

List of Publications

Domain wall resistivity in SrRuO3

L. Klein, Y. Kats, A. F. Marshall, J. W. Reiner, T. H. Geballe, M. R. Beasley, and

A. Kapitulnik, Phys. Rev. Lett. 84, 6090 (2000).

Domain wall resistivity in SrRuO3: the influence of domain walls spacing

L. Klein, Y. Kats, A. F. Marshall, J. W. Reiner, T. H. Geballe, M. R. Beasley, and

A. Kapitulnik, in Proceedings of ICM2000, J. Magn. Magn. Mater. 226, 780 (2001).

Magnetic resistivity in SrRuO3 and the ferromagnetic phase transition

Y. Kats, L. Klein, J. W. Reiner, T. H. Geballe, M. R. Beasley, and A. Kapitulnik,

Phys. Rev. B 63, 054435 (2001).

Negative deviations from Matthiessen’s rule in SrRuO3 and CaRuO3

L. Klein, Y. Kats, N. Wiser, M. Konczykowski, J. W. Reiner, T. H. Geballe, M. R.

Beasley, and A. Kapitulnik, Europhys. Lett. 55, 532 (2001).

Can fractional power-law conductivity explain the deviations from Matthiessen’s

rule in SrRuO3?

Y. Kats and L. Klein, in Proceedings of SCES2001, Physica B 312-313, 793 (2002).

Magnetoresistance scaling in BaRuO3

S. Levy, Y. Kats, M. K. Lee, C. B. Eom, and L. Klein, in Proceedings of SCES2001,

Physica B 312-313, 795 (2002).
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Frenet algorithm for simulations of fluctuating continuous elastic filaments

Y. Kats, D. A. Kessler, and Y. Rabin, Phys. Rev. E 65, 020801 (2002).

Paramagnetic anisotropic magnetoresistance in thin films of SrRuO3

I. Genish, Y. Kats, L. Klein, J. W. Reiner, and M. R. Beasley, in Proceedings of 9th

Joint MMM-Intermag Conference, J. Appl. Phys. 95, 6681 (2004).

Large anisotropy in the paramagnetic susceptibility of SrRuO3 films

Y. Kats, I. Genish, L. Klein, J. W. Reiner, and M. R. Beasley (submitted); e-print:

cond-mat/0311341.

Testing the Berry phase model for extraordinary Hall effect in SrRuO3

Y. Kats, I. Genish, L. Klein, J. W. Reiner, and M. R. Beasley (submitted); e-print:

cond-mat/0405645.

Comment on “Scaling of the anomalous Hall effect in Sr1−xCaxRuO3”

Y. Kats and L. Klein (submitted).

Local measurements of magnetization reversal in thin films of SrRuO3

I. Genish, Y. Kats, L. Klein, J. W. Reiner, and M. R. Beasley (submitted).
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