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IV iat are Prinerddal Block Holls ( PBI )2

% Black holes formed in the early Universe (in particular: non-stellar).

% First proposed by Novikov and Zel'dovi¢ in the late 1960th,
but their conclusion was negative for the existence of PBHs.

5.5. 3ENbAOBUY ‘
1914 1987
L YA

| 20
s

rioc-vsny BMO20d

% Conclusion disproved by Carr & Hawking (1974),
reinvigorated PBH research (nearly 2000 papers to date).
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PBAH Formation M w@zﬂm

% Large density perturbations (inflation)

W Pressure reduction

[Byrnes et al. 2018]
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% Bubble collisions

% Quark confinement a
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PBH Formation — S%é
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PBH Lormation — Rare Events

Fraction of collapsed P(9)
horizon patches:

variance O

primordial
black holes

} typically ~10 0}




PBH — Seme Nombers

% If primordial black holes constituted all of the dark matter:

% Assume that all PBH have mass:  10%g
% Size: 10~% cm
% Number in our Galaxy: 10%°

% Distance: 10 AU
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PBH Constaints al Formation
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% OGLE detected a particular population of microlensing events:

% 0.1 - 0.3 days light-curve timescale - origin unknown!
Could be free-floating planets... or PBHSs!
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% A supernova population of so-called calcium-rich gap transients

has been shown to clearly not to follow the stellar distribution
but rather a would-be compact dark matter one.
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[Smirnov et al. 2023]



Probability density
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[Wyrzykowski & Mandel 2020]

% OGLE has detected
58 long-duration
microlensing events
in the Galactic bulge.

% 18 of these cannot be
main-sequence stars
and are very likely
black holes.

% Their mass function
overlaps the low mass
gap from 2to 5 M.

% These are not expected
to form as the endpoint
of stellar evolution.
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% Ultra-faint dwarf
galaxies are
dynamically unstable
below some critical

radius in the presence
\'\:\251\4:,1’31{ Of PBH CDM!
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% This works with a few
percent of PBH DM of
25—100 M.,
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[Boldrini et al. 2020]



[Capelluti et al. 2013]

% PBHs generate early structure and respective backgrounds
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GRAVITATIONAL WAVE MERGER DETECTIONS

> SINCE 2015
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% Black hole progenitors in the lower mass gap
(i.e. between 2 and 5 M)
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GRAVITATIONAL WAVE MERGER DETECTIONS
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% Asymmetric black hole progenitors (mass ratio q < 0.25)
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GRAVITATIONAL WAVE MERGER DETECTIONS

> SINCE 2015

THE ASTROPHYSICAL JOURNAL LETTERS, 896:1.44 (20pp), 2020 June 20 https: //doi.org/10.3847/2041-8213 /ab960f
© 2020. The American Astronomical Society.
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GW190814: Gravitational Waves from the Coalescence of a 23 Solar Mass
Black Hole with a 2.6 Solar Mass Compact Object

R. Abbottl, [..]

Abstract

We report the observation of a compact binary coalescence
involving a 22.2-24.3 M) black hole and a compact object with a
mass of 2.50-2.67 Mx [..] the combination of mass ratio,
component masses, and the inferred merger rate for this event
challenges all current models of the formation and mass distribution
of compact-object binaries.

W Asymmetric black hole progenitors (mass ratio q < 0. 25) yi '&9)))

KAGRA//



Sulsalor Block Holos - (Tle Sm@ Gun!

% Recent reanalysis of LIGO data by Phukon et al. '21 with
updated merger rates and low mass ratios:

FAR [yr™'] In( UTC time mass 1 [Mp] mass 2 [Mg]

0.1674 8.457 2017-03-15 15:51:30 3.062
0.2193 8.2 2017-07-10 17:52:43 2.106
0.4134 7.585 2017-04-01 01:43:34 4.897
1.2148 6.5989 2017-03-08 07:07:18 2.257

0.9281
0.2759
i 0.7795 3}
P 0.6997 §

w Four subsolar candidates with SNR > 8 and a FAR < 2 yr'1

% Note that an order-one dark matter fraction of subsolar PBHs
IS still possible!
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%M/ /Z{Mfdy ey Z%é Cluiverse

% Changes in the relativistic degrees of freedom:
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%M/ /Z{zdfdy ey Z%é Cliiverse

% Changes in the equation-of-state parameter w = p/p:
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Thernal” Histos / te Uiverse

% An essentially featureless power spectrum leads to:
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/Wmf Lisues

% The standard approach of PBH formation has two main issues:

% In order to have a given percentage of PBH dark matter
requires exponential fine-tuning.

% PBH formation happens in the strong-coupling regime.



% We propose a novel PBH formation mechanism which is
W assumption-minimal,
% free of exponential fine-tuning,

% avoids strong coupling,
w works with standard QCD*,

% compatible with observations.



w 1. Ingredient: de Sitter fluctuations produce quarks during inflation.

D
d>H!

% 2. Ingredient: Confinement at energy scale A, M /A > 1

Inflation
dilution

String

‘ > o . ] N _ - gl ' ~ _ ) gl i iRA DL S g < 0 DO =" i ~ 0 )} Sl

< >
Horizon size ry < d

% 3. Ingredient: Black hole formation after horizon entry

Horizon size = ct = d
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w Present-day dark matter distribution vs monochromatic constraints:
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Black Hole

Virtices

work with Dvali & Zantedeschi



Formation of Virtices

[Dvali, FK, Zantedeschi 2022]



Formation of Virtices

% Black Holes can be understood as saturons.
[Dvali 2021]

* We showed that these admit vortex structure, in the case of
near-extremal spin.

% PBHSs from confinement could provide
ideal prerequisites for vortex formation
due to highly spinning light PBHSs.

% If these PBHSs provide the dark matter,
their vorticity might explain primordial
magnetic fields. [Dvali, FK, Zantedeschi 2022]

% Besides, vorticity provides a topological meaning to
the stability of extremal black holes.



Conclysion



Cm%m

W Primordial black holes influence physics on many different scales,
and manifest themselves via a plethora of different signatures.

% At present, they are not tightly constraint in general and can easily
constitute 100% of the dark matter, even in several mass ranges.

W There are many hints for their existence from OGLE and other
microlensing surveys, LIGO/Virgo gravitational-wave events etc.

W The thermal history of the Universe naturally provides peaks
in the PBH mass function at several relevant scales.

W There are many formation mechanisms for PBHs with distinct
characteristics, partly offering a potential to be probed in the
near future, including the quantum nature of black holes.
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Primordial Black Holes

Albert Escriva, 2 * Florian Kiihnel,>* T and Yuichiro Tada™ %%

1Service de Physique Théorique, Université Libre de Bruxelles,
Boulevard du Triomphe CP225, B-1050 Brussels, Belgium (previous affiliation)

2Department of Physics, Nagoya University, Nagoya 464-8602, Japan

S Arnold Sommerfeld Center, Ludwig-Maximilians-Universitiit,
Theresienstrafse 37, 80333 Miinchen, Germany,

*Max-Planck-Institut fiir Physik, Fohringer Ring 6, 80805 Miinchen, Germany

> Institute for Advanced Research, Nagoya University, Nagoya 464-8601, Japan
6Theory Center, IPNS, KEK, 1-1 Oho, Tsukuba, Ibaraki 305-0801, Japan

(Dated: Friday 11*" November, 2022, 1:26am)

We review aspect of primordial black holes, i.e., black holes which have been formed in
the early Universe. Special emphasis is put on their formation, their réle as dark matter
candidates and their manifold signatures, particularly through gravitational waves.
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/Wmf Lisues

% The standard approach of PBH formation has two main issues:

% In order to have a given percentage of PBH dark matter
requires exponential fine-tuning.

% PBH formation happens in the strong-coupling regime.



% We propose a novel PBH formation mechanism which is
W assumption-minimal,
% free of exponential fine-tuning,

% avoids strong coupling,
w works with standard QCD*,

% compatible with observations.



CW Formation Mé@%
% 1. Ingredient: de Sitter fluctuations produce quarks during inflation.

Inflation
— dilution

q < > q

% Focus on a simple pair case.

% Distance grows as d « e’e.

W Quarks quickly move out of causal contact.



CW [ ormation /l/[éo@ad/m
% 2. Ingredient: Confinement at energy scale A, M /A, > 1

String

< >
Horizon size ry; < d

% Flux tubes form connecting quark/anti-quark pairs.

% The system cannot collapse as long as d > ry.

2
— (My/A, )

W String breaking into quarks pair, P, .| e ,

unne

suppressed as long as Mq//\C > 1.

Ny



CW Lormation /V1 @oéwf/m

% 3. Ingredient: Black hole formation upon horizon entry

Horizon size = ct = d

% Acceleration of the quarks a = AZ/m, quickly leads to their
ultra-relativistic motion.

% The energy stored in the string is E ~ AZr~ M,, R,> A"

% PBHs from inflationary overdensities are heavier by a factor ~ AZ.
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w Present-day dark matter distribution vs monochromatic constraints:
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/ﬁf% Subsolor PBH,

% During inflation, the string undergoes a Brownian motion, induced by
de Sitter quantum fluctuations, leading to deviation from straightness:

5x] . e

q

- I1.><10—34
| . % This leads to potentially
significant spin:
4.x107
: Ox
I 25x107M “PBH = R,
-‘ 12
| 16x107 ~ 1 log H Mppy
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Formation of Virtices

[Dvali, FK, Zantedeschi 2021]



Formation of Virtices

% Black Holes can be understood as saturons (see talk by Dvali)

w We showed that these admit vortex structure (see talk by
Zantedeschi), in the case of near-extremal spin.

% PBHSs from confinement could provide
ideal prerequisites for vortex formation

due to highly spinning light PBHSs. 03

% If these PBHs provide the dark matter, r
their vorticity might explain primordial 0
magnetic fields. [Dvali, FK, Zantedeschi 2021]

% Besides, vorticity provides a topological meaning to
the stability of extremal black holes.
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% These constraints are not just nails in a coffin!
(Carr)

% All constraints have caveats and might change.

% Each constraint is a potential signature.

W PBHs are important even if fogy < 1.



Constaints — Clicertainties

% May constraints rely on rather on uncertain, restrictive, simplistic or
even incorrect assumptions!

-3 We have to understand better:

% Galactic dark-matter profile

% Clustering

% Accretion

% Characteristics of the lensed sources (size, variability, ...)
% Composition of "probes" in general

% Velocity distribution

% Hawking radiation
x ...



Constraints — Clicertainties on }{M@ Radration

% Uncertainties induced by:  10° ‘

% instrument

. 10—2
characteristics
% computation of the 10—4 -
(extra)galactic .
photon fluxes D 10-6 4.
S

W statistical treatment

W computation of the
Hawking radiation 1010

10—12
1014 1016 1018 1020

M (g)
[Auffinger 2022]



Constraints — Clicertainties on }{M@ Radration

7

* Uncertainties induced by: ~ 10°

% instrument

. 10~2
characteristics
% computation of the 107% -
(extra)galactic .
photon fluxes @ 1076
S
W statistical treatment
10—8 -
W computation of the
Hawking radiation 1010
These constraints 10-12 I - .
might even entirely 1014 1016 1018 1020

disappear, due to | M (g)
guantum back-reaction!

(see work by Dvali et al.)

[Auffinger 2022]
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% Always when fpgg < 1 there must be another DM component!
% Study a combined scenario: DM = PBHs + Particles
* The latter will be accreted by the former; formation of halos.
% Study WIMP annihilations in PBH halos:

% The annihilation rate T « n?.



PBH (@ Lurticle Dark Matfer

% Always when fpgg < 1 there must be another DM component!
% Study a combined scenario: DM = PBHs + Particles
* The latter will be accreted by the former; formation of halos.

% Study WIMP annihilations in PBH halos:

% The annihilation rate T « n?.

% Halo profile does matter; enhancement of I'in density spikes.
1) Derive the density profile of the captured WIMPs;
2) calculate the annihilation rate;

3) and compare to data.
[Eroshenko 2016,
Boucenna et al. 2017,
Adamek et al. 2019,
Carr, FK, Visinelli 2020 & 2021]
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PBH: @ WP,
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[Carr, FK, Visinelli 2021]

% Annihilations lead to plateaux in the present-day halos.
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/Wmf Lisues

% The standard approach of PBH formation has two main issues:

% In order to have a given percentage of PBH dark matter
requires exponential fine-tuning.

% PBH formation happens in the strong-coupling regime.



% We propose a novel PBH formation mechanism which is
W assumption-minimal,
% free of exponential fine-tuning,

% avoids strong coupling,
w works with standard QCD*,

% compatible with observations.



CW Formation Mé@%
% 1. Ingredient: de Sitter fluctuations produce quarks during inflation.

Inflation
— dilution

q < > q

% Focus on a simple pair case.

% Distance grows as d « e’e.

W Quarks quickly move out of causal contact.
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% 2. Ingredient: Confinement at energy scale A, M /A, > 1

String

< >
Horizon size ry; < d

% Flux tubes form connecting quark/anti-quark pairs.

% The system cannot collapse as long as d > ry.

2
— (My/A, )

W String breaking into quarks pair, P, .| e ,

unne

suppressed as long as Mq//\C > 1.

Ny



CW Lormation /V1 @oéwf/m

% 3. Ingredient: Black hole formation upon horizon entry

Horizon size = ct = d

% Acceleration of the quarks a = AZ/m, quickly leads to their
ultra-relativistic motion.

% The energy stored in the string is E ~ AZr~ M,, R,> A"

% PBHs from inflationary overdensities are heavier by a factor ~ AZ.
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w Present-day dark matter distribution vs monochromatic constraints:
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M
ira ; dfper(MprH) 1 !
% Require: / dln M <1
. M, PP A In Mpgy Jmax(Mppr) —

[Carr et al. 2017]

-16.0F

% Full compatibility
with observations
below the black line,

here, exemplary for
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% Results: Possible to
accommodate 100%
of PBH dark matter...

=TT 5

—18.0:
i W ... atthe same time
provide seeds for

log (M,) [grams] log (fosr) supermassive black

holes in galactic centres.
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/ﬁf% Subsolor PBH,

% During inflation, the string undergoes a Brownian motion, induced by
de Sitter quantum fluctuations, leading to deviation from straightness:

5x] . e

q

- I1.><10—34
| . % This leads to potentially
significant spin:
4.x107
: Ox
I 25x107M “PBH = R,
-‘ 12
| 16x107 ~ 1 log H Mppy
| I H Mpgy A
. 1.

AapBH



E%A@ within Standard QCD*

% Remember, our required assumption, for the string not to break:

N, <M,

% However, standard QCD values indicate the opposite: A, > Mq.

% It looks like, our mechanism cannot work with QCD...



E%A@ within Standard QCD*

% It is natural for the confinement scale and mass to change
In the early Universe!

_ 1 "
g yl//Ll//R¢ ngF ﬂUF

% Couplings are expectation values of fields and can be very
different in the early Universe.

w Requirement: Low-temperature expectation value should
set the right coupling values.

ThIS should happen before BBN
Ieavmg large room for PBH productlon
V|a the Conflnement mechanlsm :



Gravitational Wives

% After horizon entry, the quarks quickly move towards each other,
emitting gravitational waves.

% This is similar to dual to systems of dual monopole/anti-monopole

pairs connected by a string. o |
[cf. Martin & Vilenkin 1997; Leblond, Shlaer, Siemens 2009]

w NANOGrav data from pulsar-timing observations indicate the
presence of a stochastic gravitational-wave background.

8.6 —8.4 _g8.0 80  -78




/\4?1/VQC?§;&n7)

% There might be a lack of Hellings-Downs correlation. - still unclear

5.0

223

Azrab ( C)

*  Monopole

0 45 90 135 180
¢ (deg)

[Arzoumanian et al. 2021]

W We can easily generate a monopolar signal upon adding e.g.
~ ¢ gq with coupling strength relatively weaker by ~ 107>,



yﬂé PBIH Dark Matser?

% The exclusion of light (Mpgy < 10%° g) PBHSs is based on the validity of
semiclassical Hawking radiation throughout most of the evaporation.

% This is unjustified (and likely to be entirely false), as suggested by

recent studies of black holes on the full guantum level.
[Dvali et al. 2020]

-60F 1.x10°
| : _ % Results suggest that due to
~6.s[| 77T M =10 | 1 “1xw0t the holes' enormous memory
| Mesn =107 | : capacity, their lifetime 7 might
& -0 Men = 1078 , /1 1xie pe significantly prolonged.
S femn S |
2 osf SN0 1, Y Aconservative estimate is:
T T>1S5?
1 x10-2 Entropy of the
black hole

1x10¢ W This opens up a large window
Form/A for light PBH dark matter.




szé PBH Dark Matfer?
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[Carr et al. 2021]
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Critical’ C&%F/
% Usually: Assume

MBH 0.¢ MH

horizon mass
% Critical scaling: <
[Choptuik ’93] E:
¥
Mpy = kMHSAS — d,)
density contrast

% Radiation domination and for ~

spherical Mexician-hat profile:
k~33, 0.~045, ~v=0.36

1 faﬂ &
A

&

—2 Df _

ol
_3 - —
| | | | | | | | | | | |

—12 —10 -8 -6 —4 -2 0
log(6—-6,)

[Musco, Miller, Polnarev 2008]



Critical’ C&L@%a

% How would this look for monochromatic mass function?
1 i ]
0.500

dark-matter fraction

0.100 :
0.050
| Horizon-mass approximation

0.010 ?
0.005

0.001 — w * —
10 20 50 100

M/M [Carr, FK, Sandstad 2016]



Critical’ C&L@%a

% How would this look for monochromatic mass function?

0.500

0.100 |
0.050

0.010 |
0.005

0.001

1

dark-matter fraction

Horizon mass approximation .

10

20

M/Mca

100

[Carr, FK, Sandstad 2016]



Critical’ c@&

% How would this look for monochromatic mass function?

1
0.500

— dark-matter fraction

It is impossible to obtain

monochromatic mass spectra!

0.010 ¢ -
A \ \
0.005 | critical collapse \\
’ \
\
\
0001 ‘ | ‘ LS | , w ‘ ‘ |
10 20 50 100

MIM 5 [Carr, FK, Sandstad 2016]
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0.06

0.04

df /dM

0.02

1 1 1 1 I 1 1 I 1 1 1 1 I 1 1 1 1
i d log M — log M¢)? T
df = N exp ( O_g ;)g f)
i dM .." 2 O-f i
I axion-curvaton ]
i running-mass i
-1 3

[Green 2016]



Mare Sustonatic 5@%

lognormal
' ' ' ' |

l0g40(M:/Mg) [Carr et al. 2017]
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% Lepton flavour asymmetries are defined as

Uo = " , o € e, u, 7}

Nas Na, Nw, N, Number densities of (anti)leptons and
corresponding (anti)neutrinos

S entropy densities

w CMB constraints are quite weak:

[l + 0, + 0] <1.2x 1077

(unlike baryon asymmetry: b = 8.7 x 10~ 1)
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Ma /Mgy

QE

e — —

8 x 10™% and b, =4 =4 X 102

[BKOS 2021]
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