

New duality frames for the swampland distance conjecture

Saskia Demulder

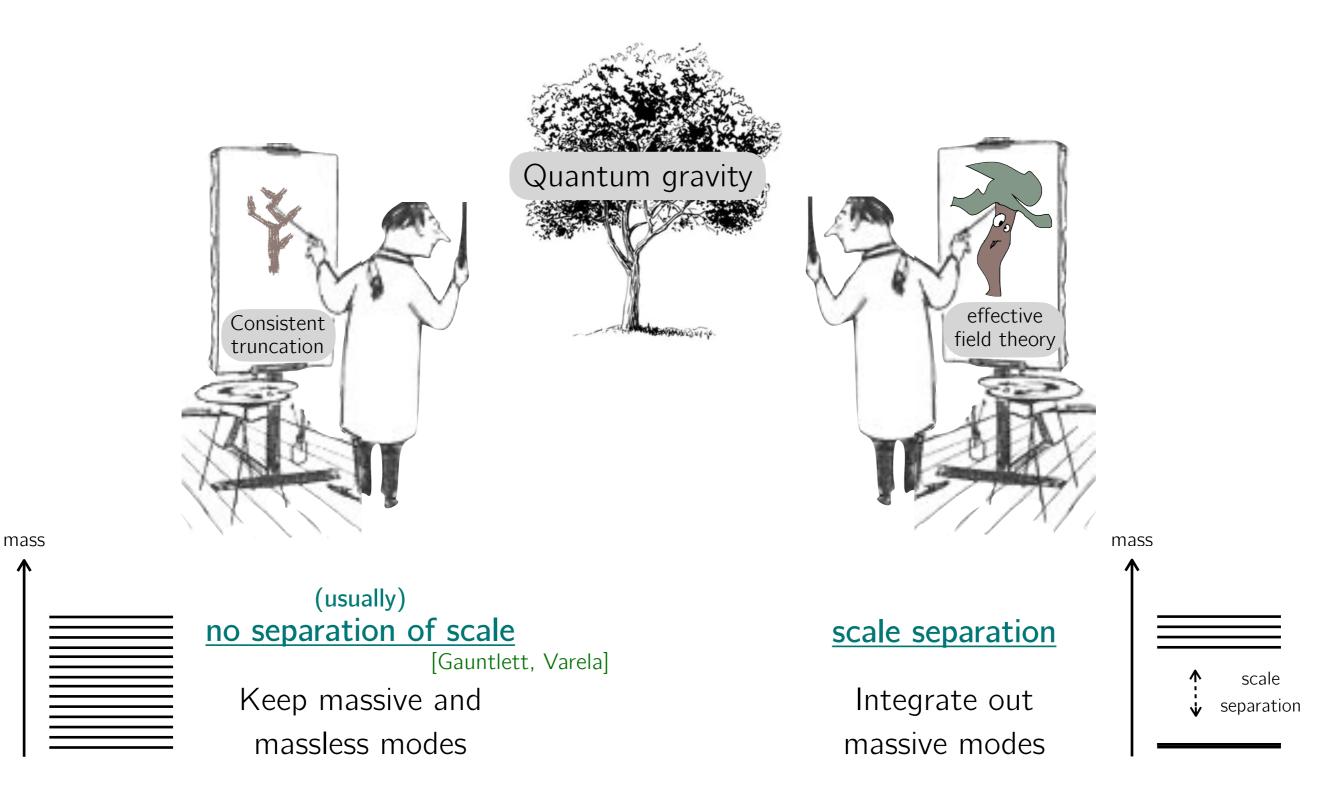
Work in progress in collaboration with Dieter Lüst and Thomas Raml

> DIP collaboration meeting 21st March 2023

- ▷ Consistent truncations and generalised T-dualities
- ▷ The swampland distance conjecture
- ▷ T-duality and winding-momentum exchange
- ▷ A basic example

Consistent truncations in the Swampland program

Consistent truncations in the Swampland program

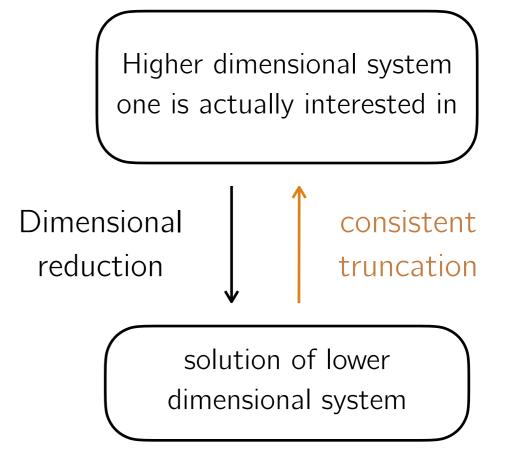


Consistent truncations

Solutions of a low dimensional truncation that can be automatically lifted to the higher dimensional system

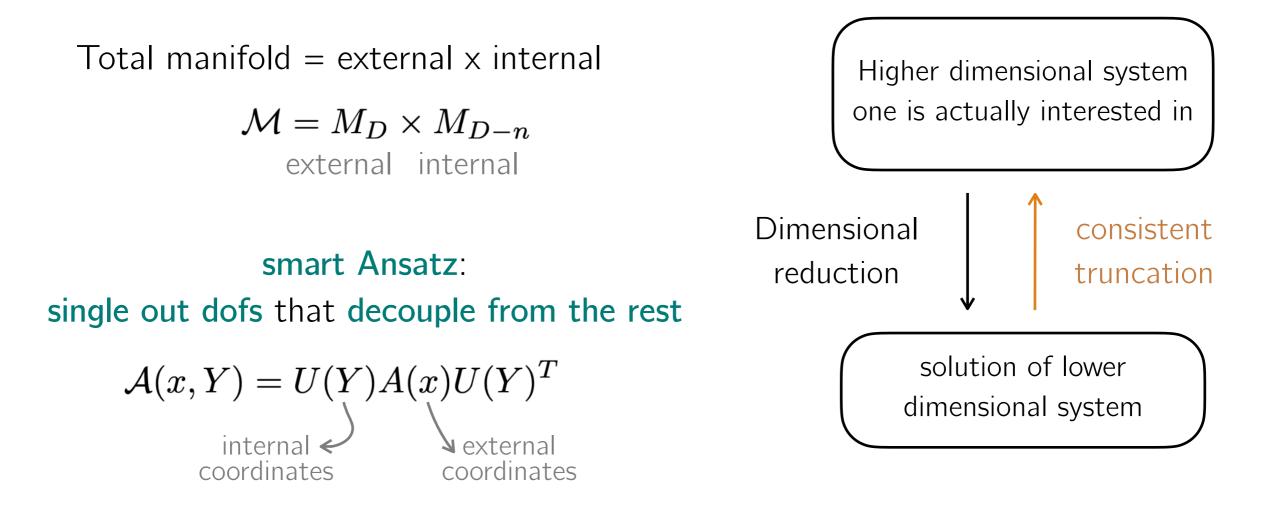
Total manifold = external x internal

 $\mathcal{M} = M_D \times M_{D-n}$ external internal



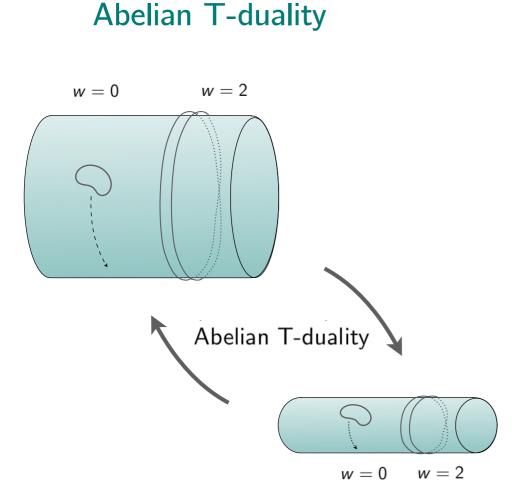
Consistent truncations

Solutions of a low dimensional truncation that can be automatically lifted to the higher dimensional system



In general highly non-trivial! Guiding tool: exceptional and generalised geometry ... and generalised T-duality ? 3/11

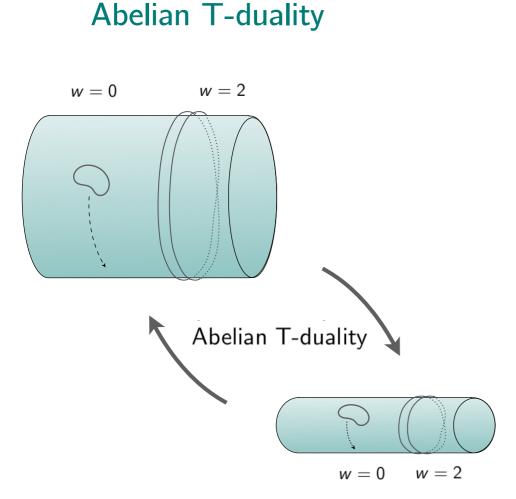
Generalised T-duality in under 2 mins

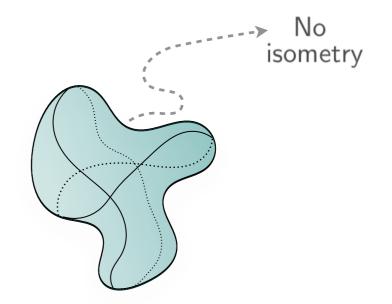


- \triangleright Compactification on a circle
- ▷ Apply T-duality

 $1/R \ \leftrightarrow \ R$ momentum modes $\ \leftrightarrow \ {\rm winding \ modes}$

Generalised T-duality in under 2 mins



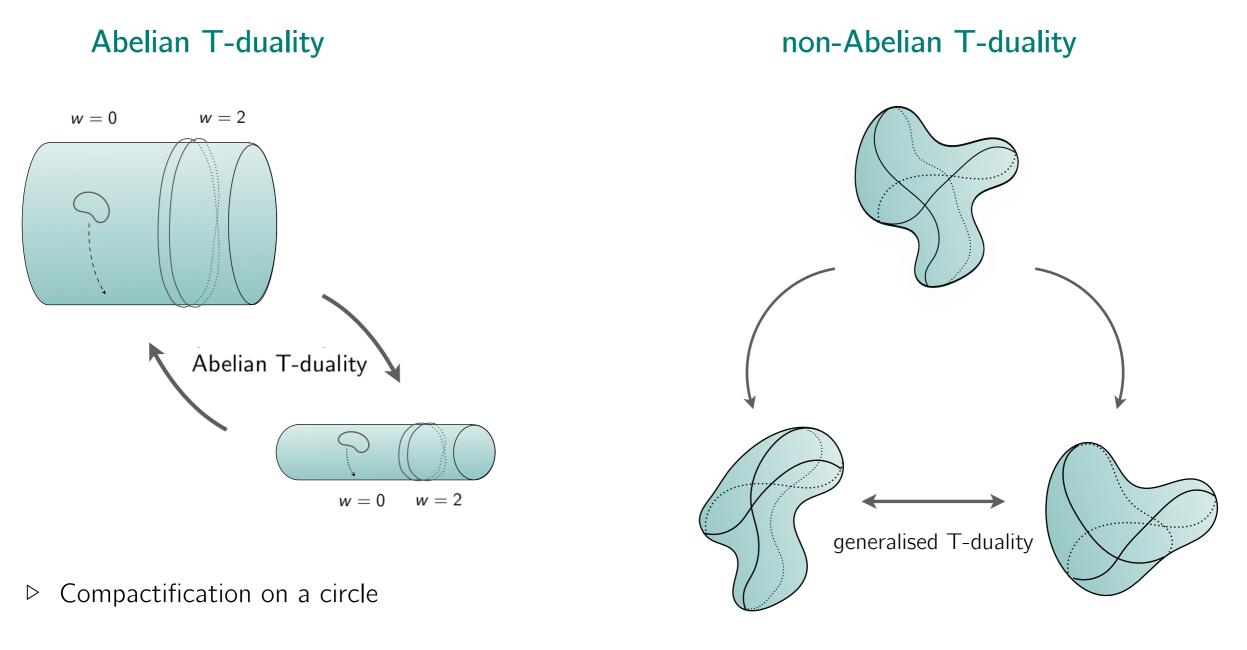


- ▷ Compactification on a circle
- ▷ Apply T-duality

 $1/R \ \leftrightarrow \ R$ momentum modes $\ \leftrightarrow \ {\rm winding \ modes}$

Can we do something similar for a manifold with a non-Abelian structure ?

Generalised T-duality in under 2 mins



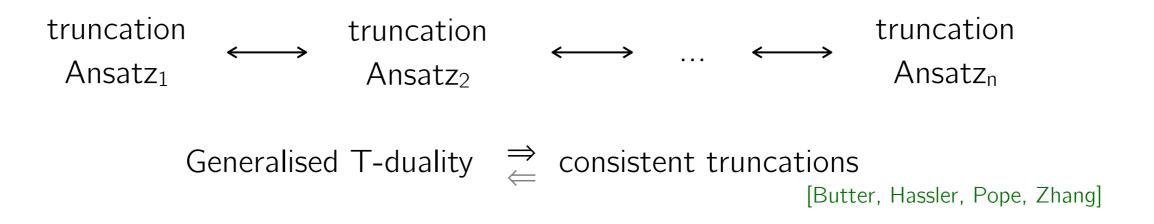
▷ Apply T-duality

 $1/R \leftrightarrow R$ momentum modes \leftrightarrow winding modes

Consistent truncations \leftarrow ? \rightarrow generalised T-duality

[Lee, Strickland-Constable, Waldram], [Cassani, Josse, de Felice, Malek, Petrini, Waldram], [Butter, Hassler, Pope, Zhang], ...

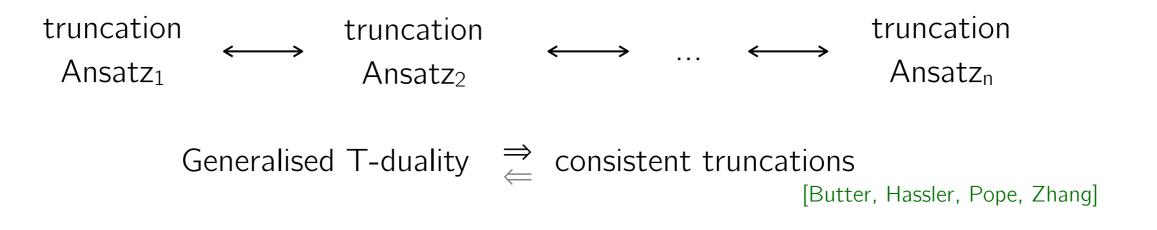
In many examples the truncation Ansätze are related by generalised T-dualities



Consistent truncations \leftarrow ? \rightarrow generalised T-duality

[Lee, Strickland-Constable, Waldram], [Cassani, Josse, de Felice, Malek, Petrini, Waldram], [Butter, Hassler, Pope, Zhang], ...

In many examples the truncation Ansätze are related by generalised T-dualities



Prompts the question:

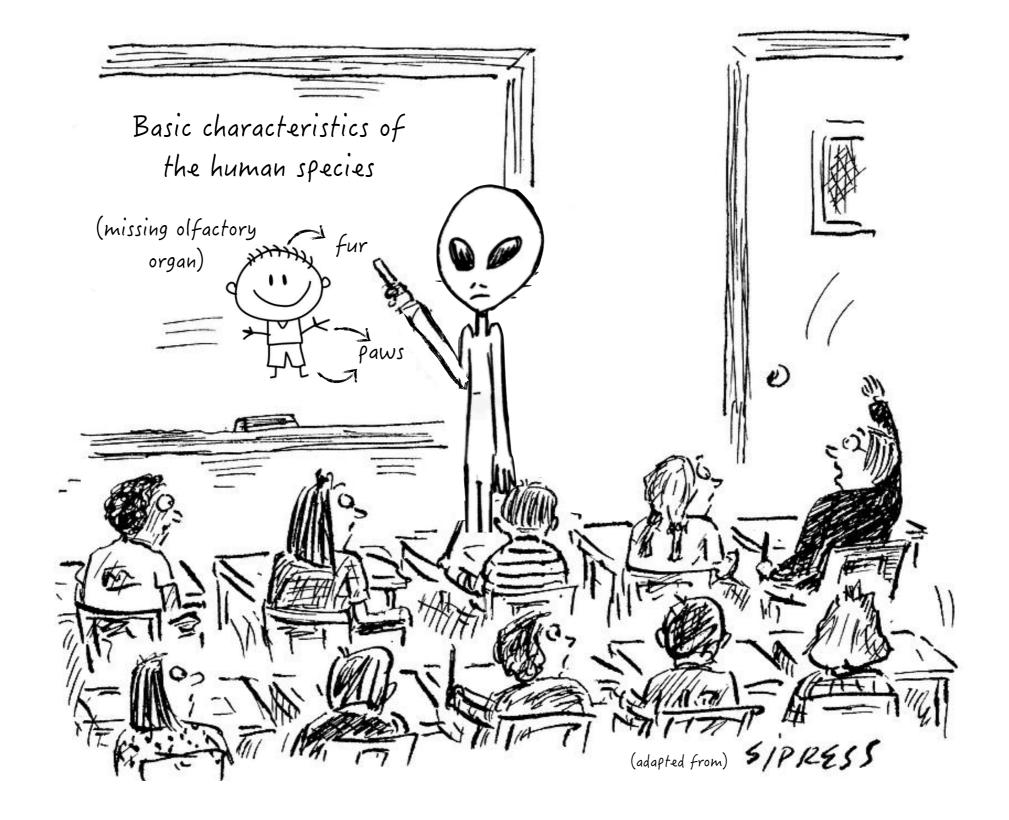
What can we learn by applying generalised T-duality in Swampland scenario examples ?

<u>Here</u>: apply in the context of the **distance conjecture**

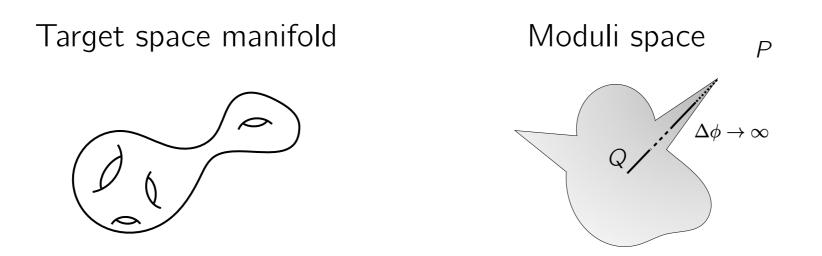
The next slides are a basic intro swampland Distance Conjecture

The next slides are a basic intro swampland Distance Conjecture

— the experts may want to consider the opportunity of taking a nap



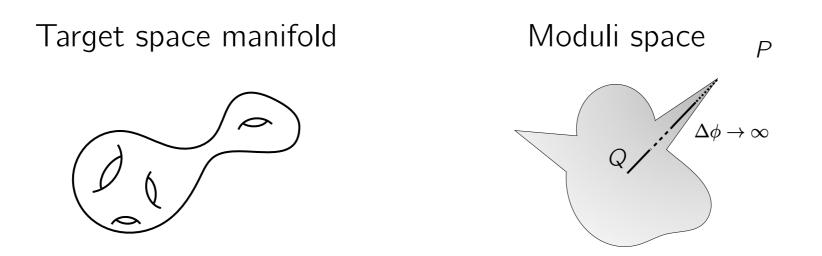
Distance conjecture



In any consistent theory of quantum gravity: When going to large distances in its moduli space, encounter an infinite tower of particles which become light exponentially [Ooguri, Vafa]

$$M(Q) \sim M(P)e^{-\lambda\Delta\phi}$$
 when $\Delta\phi \to \infty$ and $\Delta\phi \equiv d(P,Q)$

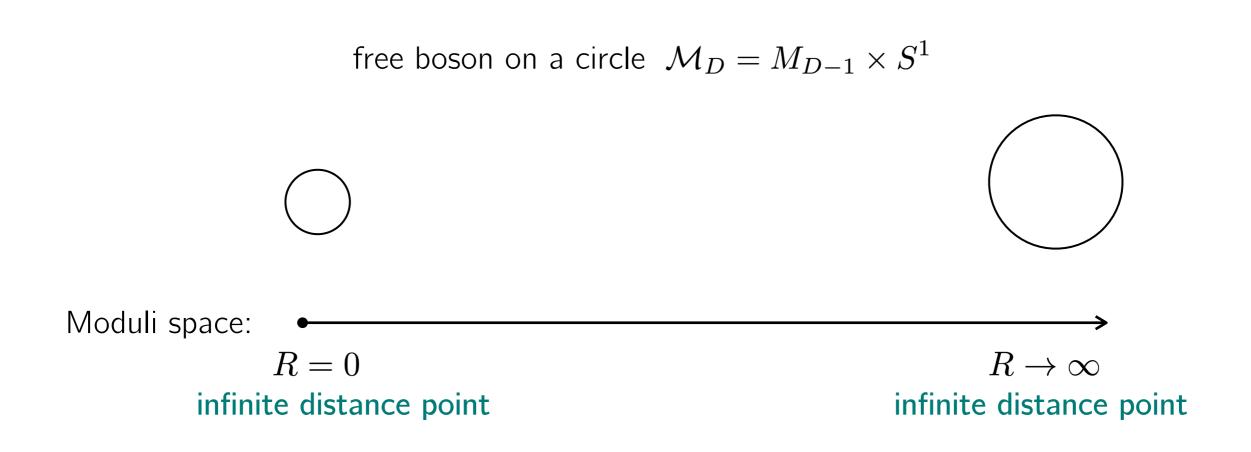
Distance conjecture

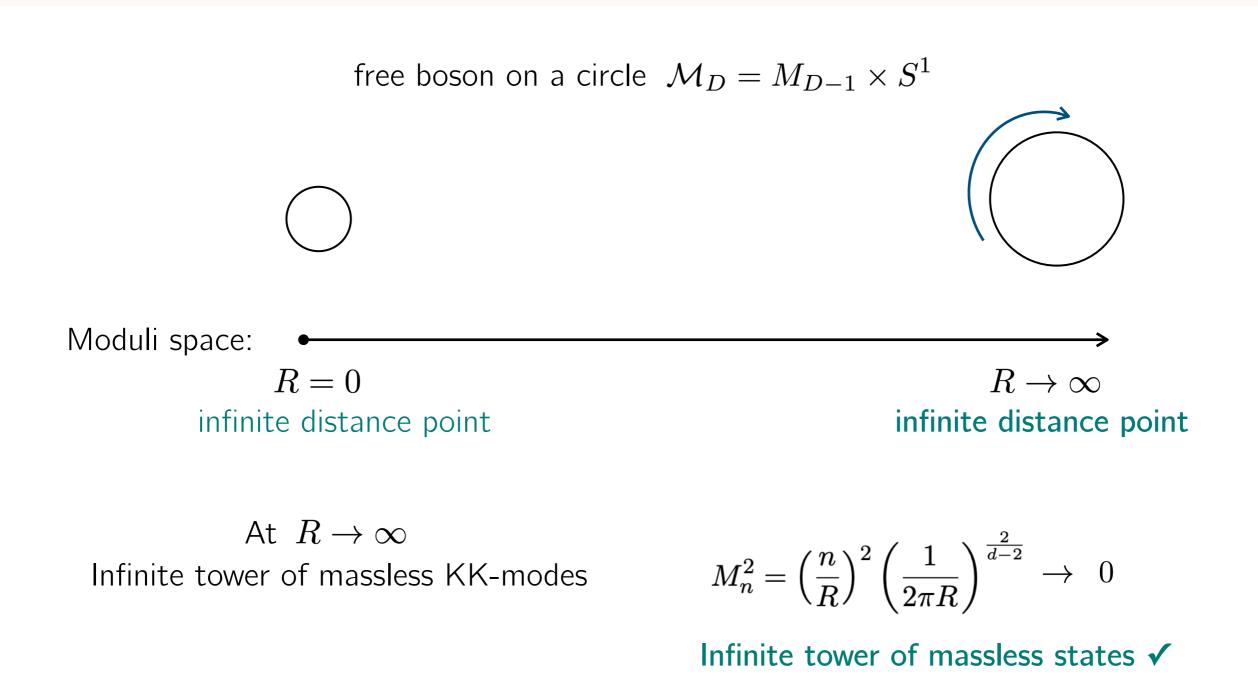


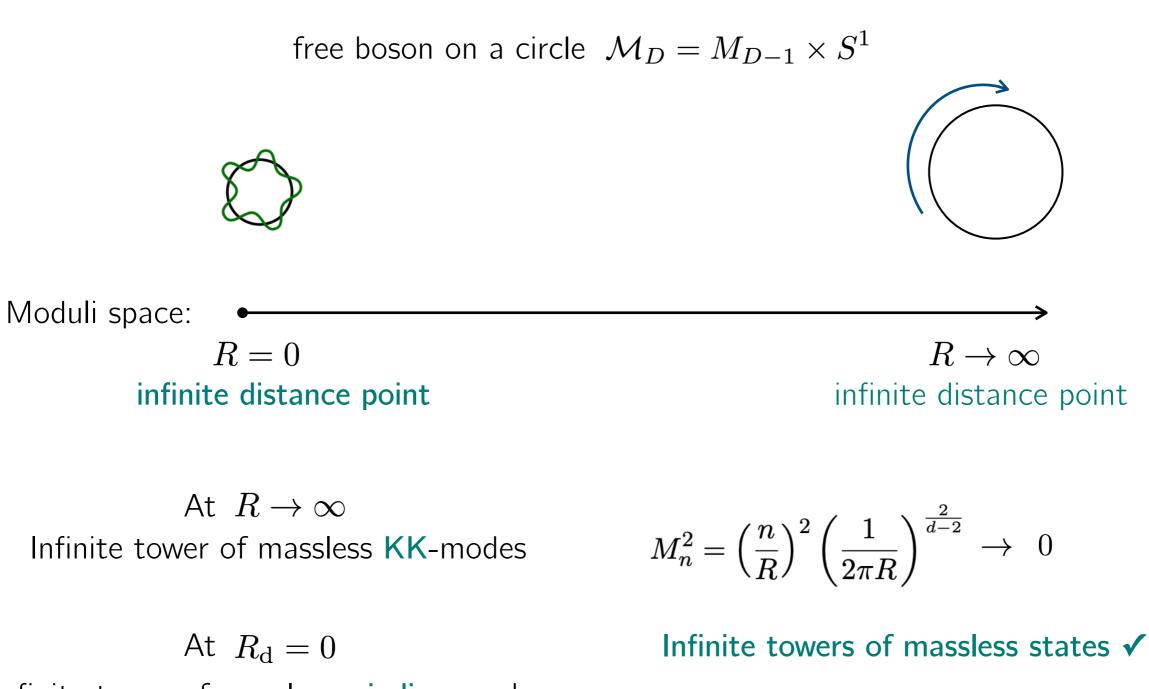
In any consistent theory of quantum gravity: When going to large distances in its moduli space, encounter an infinite tower of particles which become light exponentially [Ooguri, Vafa]

$$M(Q) \sim M(P) e^{-\lambda \Delta \phi}$$
 when $\Delta \phi \to \infty$ and $\Delta \phi \equiv d(P,Q)$

 \rightarrow T-duality is closely related to the distance conjecture

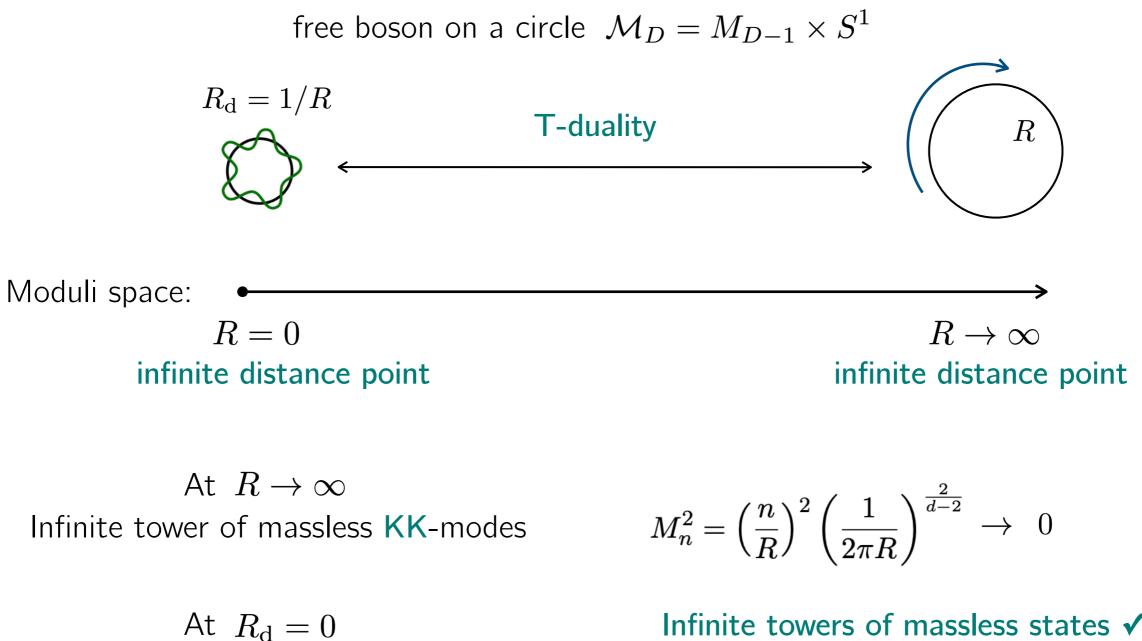






Infinite tower of massless winding-modes

$$(M_{n,w})^2 = \left(\frac{1}{2\pi R}\right)^{\frac{2}{d-2}} \left(\frac{n}{R}\right)^2 + (2\pi R)^{\frac{2}{d-2}} \left(\frac{wR}{\alpha_0'}\right)^2_{8/11}$$



Infinite tower of massless **winding**-modes

Infinite towers of massless states \checkmark

$$(M_{n,w})^2 = \left(\frac{1}{2\pi R}\right)^{\frac{2}{d-2}} \left(\frac{n}{R}\right)^2 + (2\pi R)^{\frac{2}{d-2}} \left(\frac{wR}{\alpha_0'}\right)^2_{8/11}$$

Crucially, works because $\mathbb{Z}
ightarrow w \leftrightarrow m \in \mathbb{Z}$

"perfect" winding-momentum exchange

Crucially, works because $\mathbb{Z}
ightarrow w \leftrightarrow m \in \mathbb{Z}$

"perfect" winding-momentum exchange

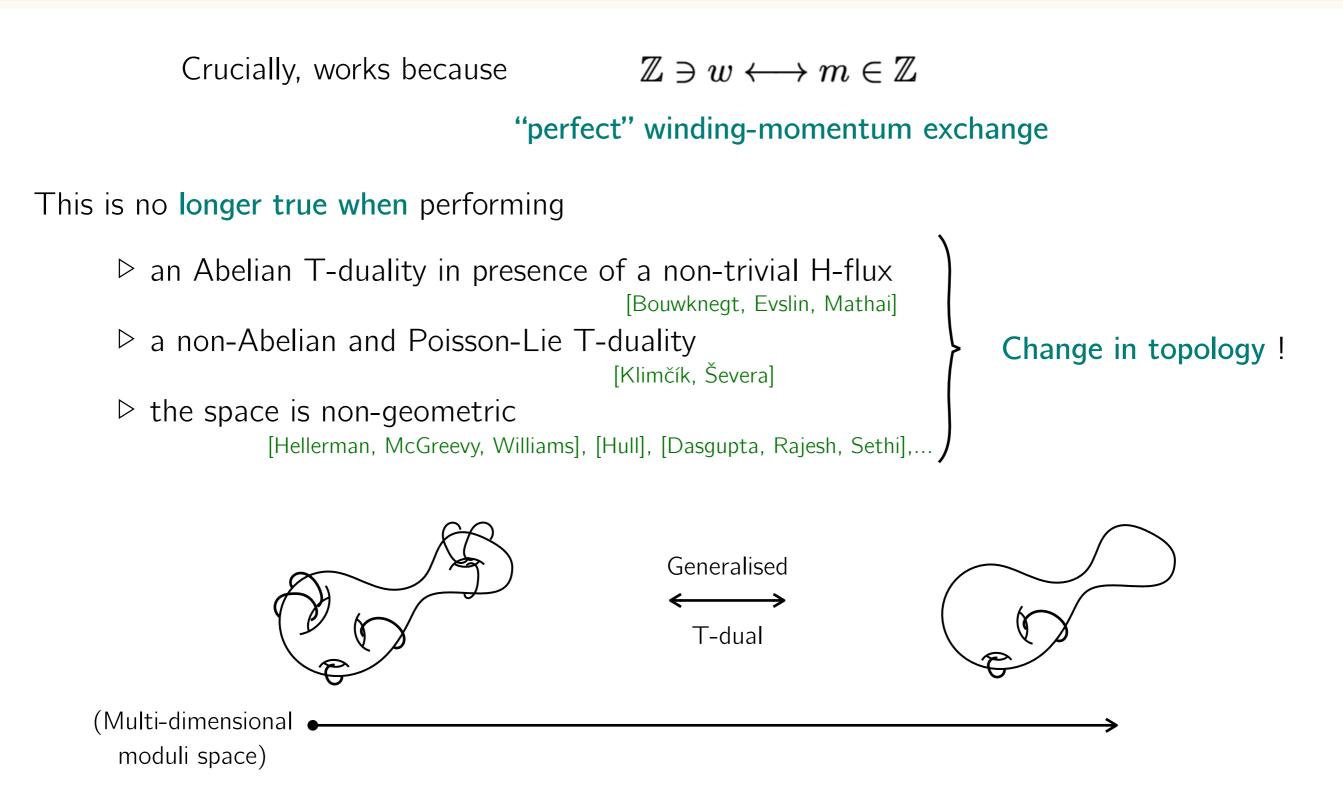
This is no longer true when performing

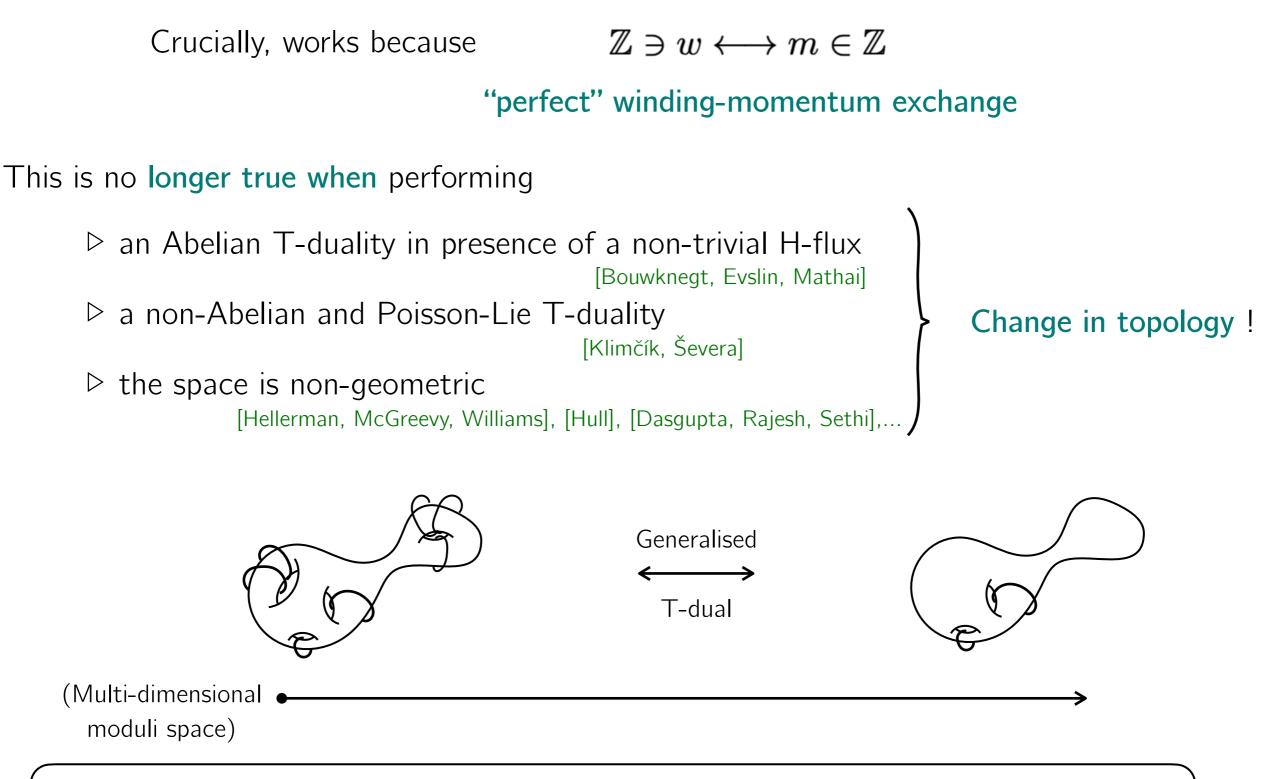
- ▷ an Abelian T-duality in presence of a non-trivial H-flux [Bouwknegt, Evslin, Mathai]
- ▷ a non-Abelian and Poisson-Lie T-duality

[Klimčík, Ševera]

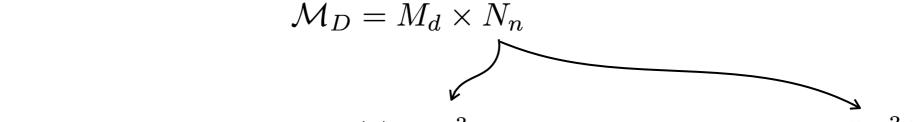
 \triangleright the space is non-geometric

[Hellerman, McGreevy, Williams], [Hull], [Dasgupta, Rajesh, Sethi],...

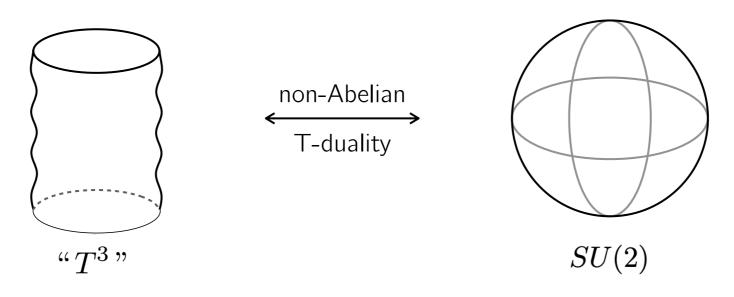




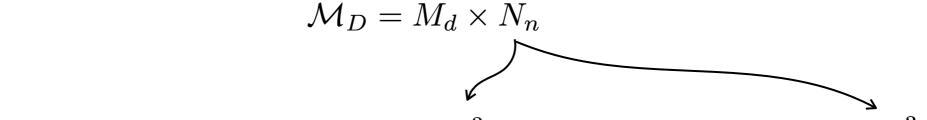
What happens to the tower of states in these new *generalised* T-duality frames ?



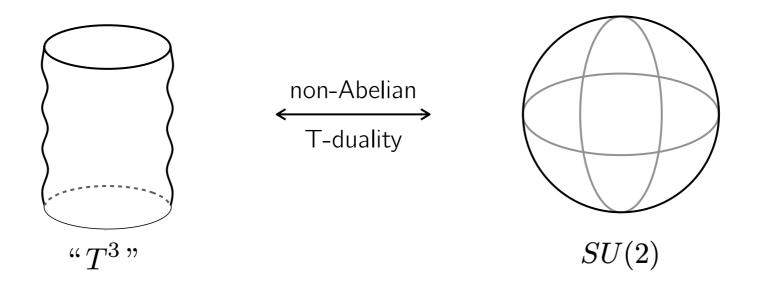
We take to be a three-sphere $SU(2) \cong S^3$ and its non-abelian T-dual " T^3 "



a very "deformed" three-torus no Abelian isometries left, still cycles though



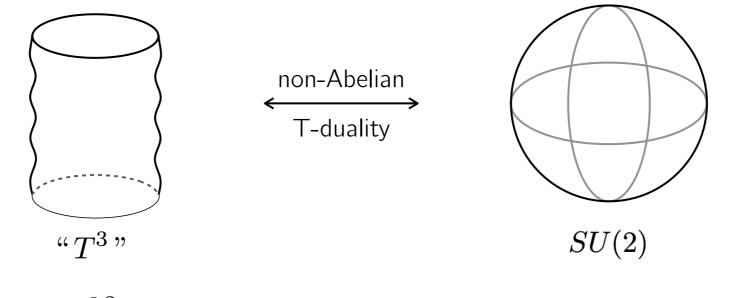
We take to be a three-sphere $SU(2) \cong S^3$ and its non-abelian T-dual " T^3 "



 $U(1)^3: w = \mathbb{Z}^{\oplus 3} \text{ and } m = 0 \quad \longleftrightarrow \quad SU(2): w = 0 \text{ and } m = \mathbb{Z}^{\oplus 3}$ [Klimčík, Ševera]

 $\mathcal{M}_D = M_d \times N_n$

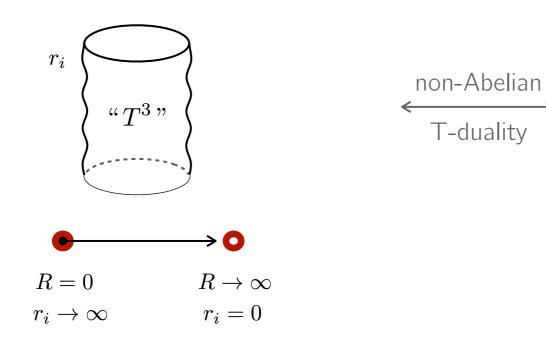
We take to be a three-sphere $SU(2)\cong S^3$ and its non-abelian T-dual " T^3 "



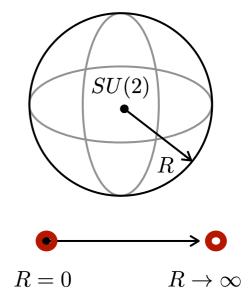
 $U(1)^3: w = \mathbb{Z}^{\oplus 3} \text{ and } m = 0 \quad \longleftrightarrow \quad SU(2): w = 0 \text{ and } m = \mathbb{Z}^{\oplus 3}$ [Klimčík, Ševera]

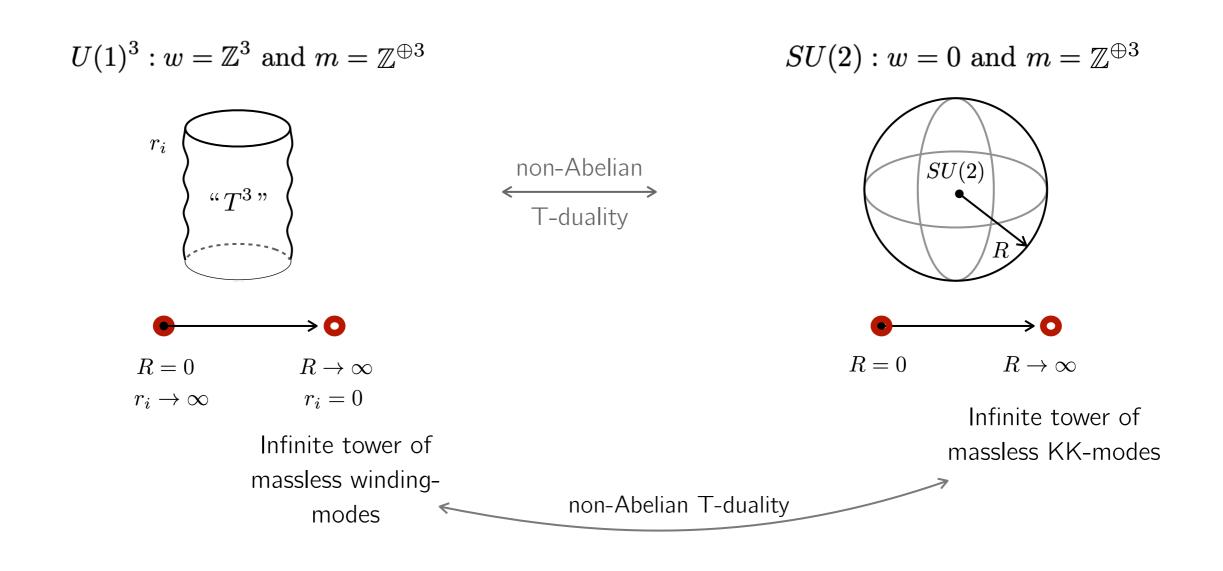
- ▷ **New phenomenon**: winding/(certain) momentum modes are forbidden !
- \triangleright What does that imply for the validity of these theories within the SDC ?

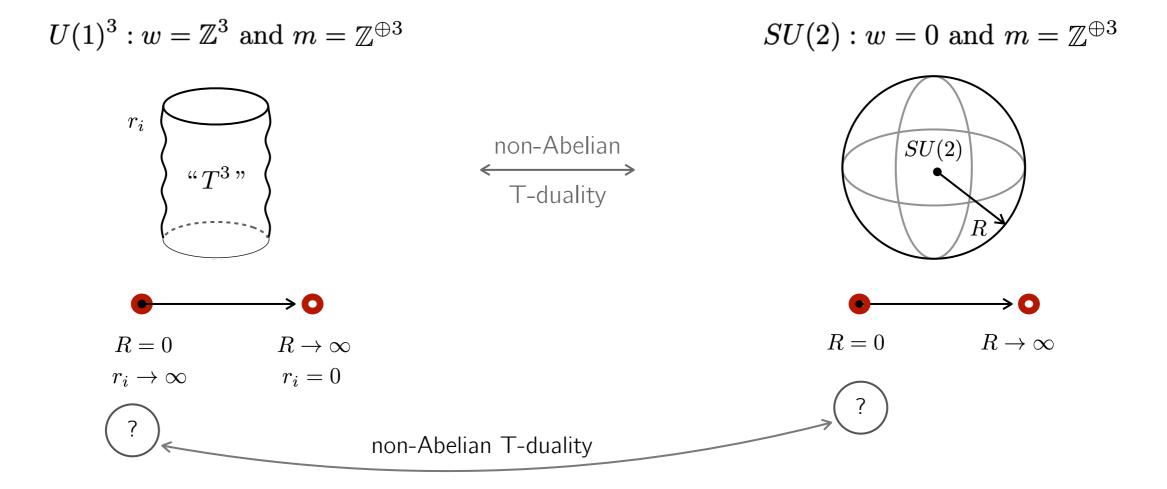
$$U(1)^3: w = \mathbb{Z}^3 \text{ and } m = \mathbb{Z}^{\oplus 3}$$

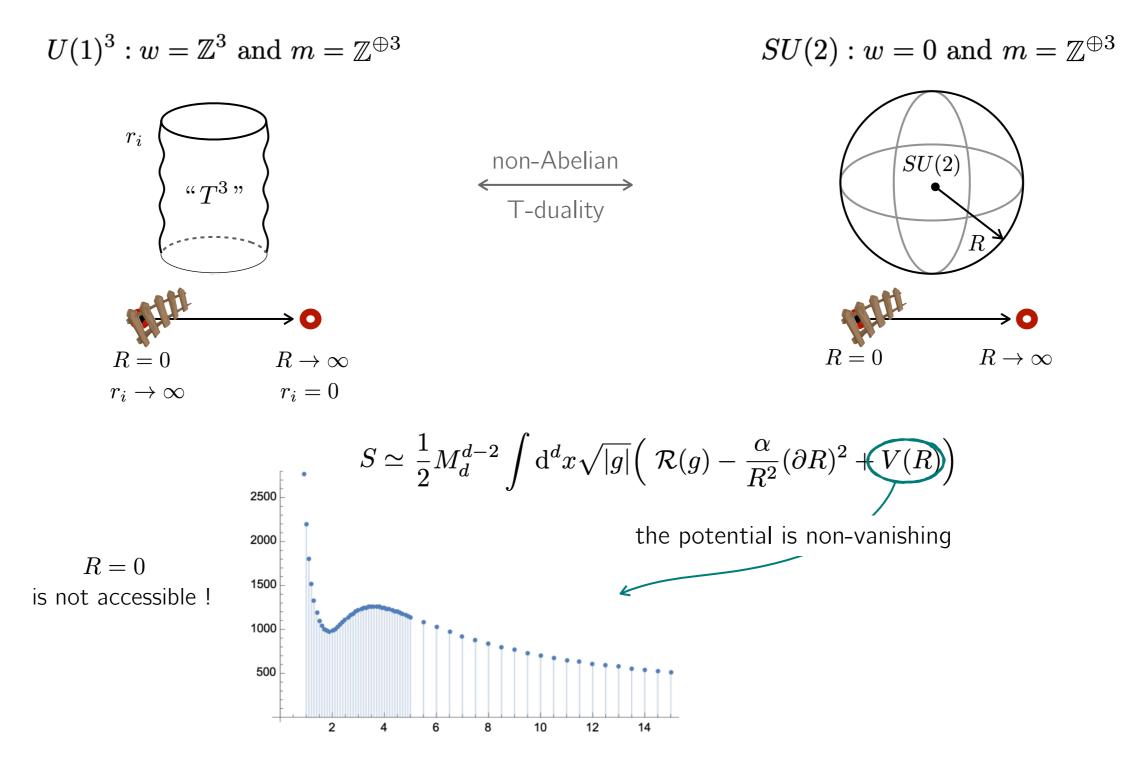


 $SU(2): w = 0 \text{ and } m = \mathbb{Z}^{\oplus 3}$









 \rightarrow No need for a tower of light states !

Summary

- ▷ Compactifications beyond the simple circle
- Strange things happen when looking at more general manifolds and their properties under generalised T-duality
- ▷ New types of winding-momentum exchange
- Vhat does that imply or tell us about (generalised) T-duality and the Distance Conjecture ?

Appendix

Distance conjecture and potentials

Distance conjecture and potentials

$$\begin{split} S &= \frac{1}{2} M_D^{D-2} \int \mathrm{d}^d x \mathrm{d}^3 y \sqrt{|G|} \mathcal{R}(G) \\ & \downarrow \\ S &= \frac{1}{2} M_d^{d-2} \int \mathrm{d}^d x \sqrt{|g|} \Big(\ \mathcal{R}(g) - \frac{\alpha}{R^2} (\partial R)^2 + V(R) \Big) \end{split}$$

No longer a true moduli space: preferred flat directions

Distance conjecture appears to also apply to fields with non-vanishing potentials [Baume, Palti] [Klaewer, Palti] [Lüst, Palti, Vafa]

"Reversed reasoning" \rightarrow puts constraints on allowed potentials

For the SDC to hold, should be impossible to generate a potential with trajectories is sufficiently non-geodesic so that the exponential behaviour of the tower is violated

[Calderón-Infante, Uranga, Valenzuela]

Consistent truncations in the Swampland program

Conjecture:

all supersymmetric AdS supergravity vacua feature no scale separation but however admit a consistent truncation

[Lüst, Patti, Vafa], [Buratti, Calderon, Mininno, Uranga], [Cribiori, Dall'Agata], ...

Conjecture:

gauged supergravities with AdS vacua which is not constructed from a consistent truncations → must live in the "swampland" _[Josse, Malek, Petrini, Waldram]

Consistent truncations in the Swampland program

Conjecture:

all supersymmetric AdS supergravity vacua feature no scale separation but however admit a consistent truncation

[Lüst, Patti, Vafa], [Buratti, Calderon, Mininno, Uranga], [Cribiori, Dall'Agata], ...

Conjecture:

gauged supergravities with AdS vacua which is not constructed from a consistent truncations → must live in the "swampland" [Josse, Malek, Petrini, Waldram]

 \rightarrow explore all possible consistent truncations and their relations to the swampland conjectures

Details HE-action to E-frame

$$\mathrm{d}s^2 = g_{\mu\nu}(x)\mathrm{d}x^{\mu}\mathrm{d}x^{\nu} + h(x,y)_{ij}\mathrm{d}y^i\mathrm{d}y^j$$

$$h(x,y) = \frac{1}{R^2(R^4 + \phi^2 + \psi^2 + \theta^2)} \begin{pmatrix} R^4 + \phi^2 & \phi\psi & \theta\phi \\ \phi\psi & R^4 + \psi^2 & \theta\psi \\ \theta\phi & \theta\psi & R^4 + \theta^2 \end{pmatrix}$$

$$S = \frac{1}{2} M_D^{D-2} \int \mathrm{d}^d x \mathrm{d}^3 y \sqrt{|G|} \mathcal{R}(G)$$

= $\frac{1}{2} M_D^{D-2} \int \mathrm{d}^d x \mathrm{d}^3 y \sqrt{|g|} \left(\mathcal{R}(g) - \hat{A}(\partial R)^2 + \delta^{-2/(d-2)} \mathcal{R}(h) \right)$

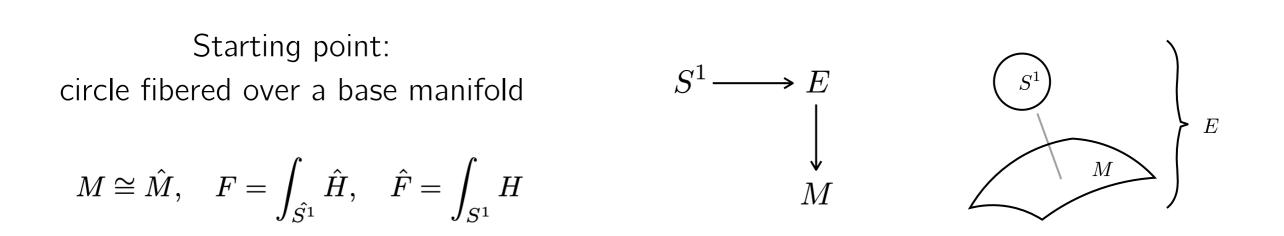
at
$$R = 0$$
 : $\hat{A} \simeq \frac{1}{R^2} \frac{9d - 17}{d - 2} + R^2 \dots$
at $R = \infty$: $\hat{A} \simeq \frac{1}{R^2} \frac{9(d - 1)}{d - 2} + \frac{1}{R^6} \dots$

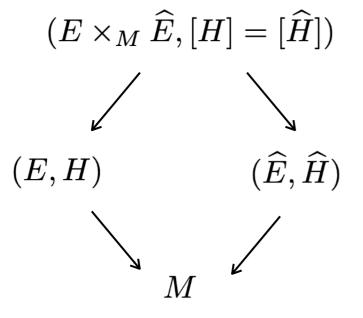
$$\begin{split} S &= \frac{1}{2} M_d^{d-2} \int \mathrm{d}^d x \sqrt{|g|} \Big(\ \mathcal{R}(g) - \frac{\alpha}{R^2} (\partial R)^2 + V(R) \Big) \\ S &\simeq \frac{1}{2} M_d^{d-2} \int \mathrm{d}^d x \sqrt{|g|} \Big(\mathcal{R}(g) - \frac{1}{2} (\partial \Psi)^2 + V(\Psi) \Big) \end{split}$$

Topological T-duality

Topological T-duality

 \rightarrow version of T-duality that only keeps track of the topological properties





[[]Bouwknegt, Evslin, Mathai]

In general, total space admits non-trivial H-flux

Under T-duality, the topology is changed

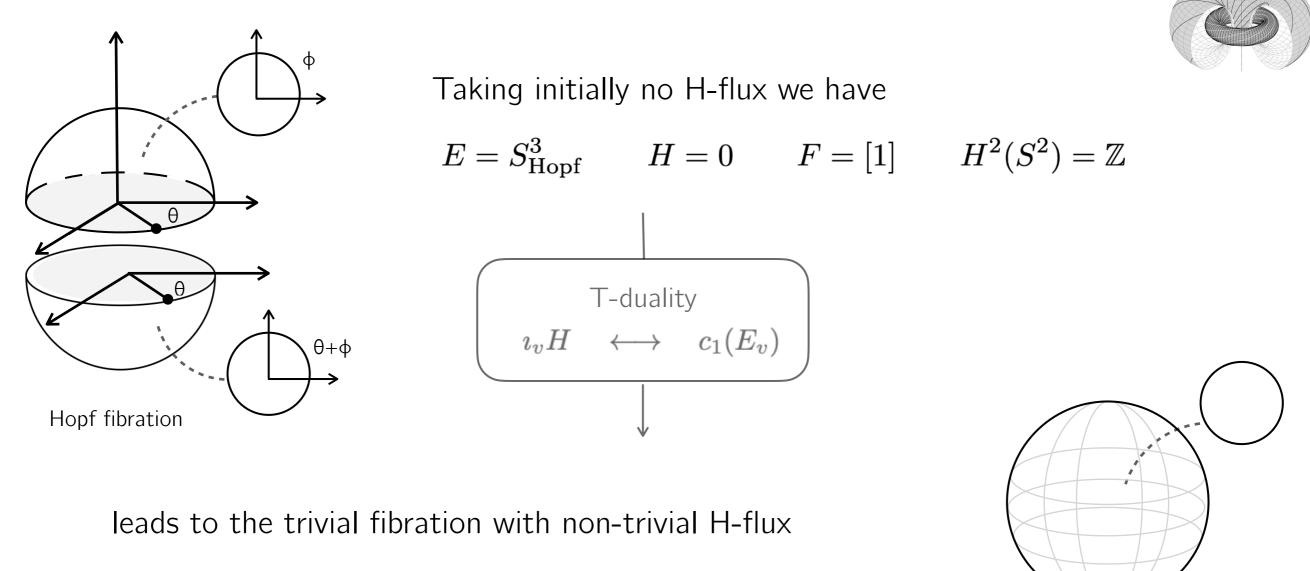
$$\imath_v H \leftrightarrow c_1(E_v)$$

background H-flux Chern-class
(type of fibration)

 \rightarrow change in topology !

An example: Hopf fibration and H-flux

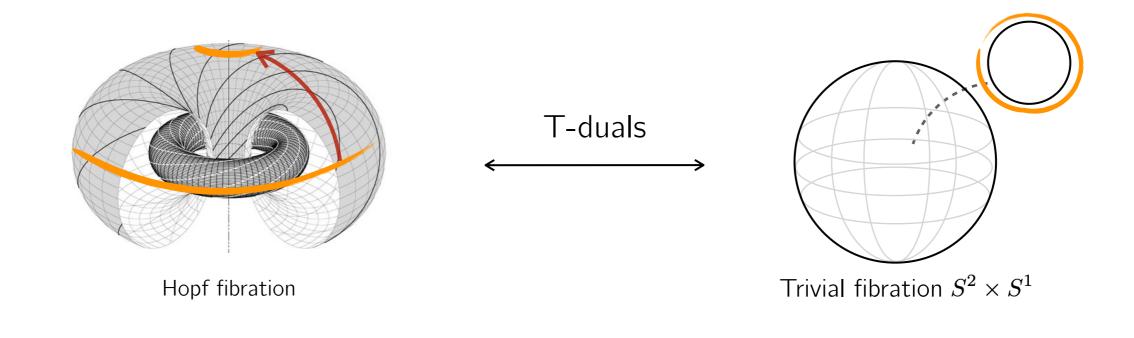
Take Type II compactified on a 3-sphere crossed with an (irrelevant) 7-manifold Instead of trivially fibbing the circle S^1 over S^2 , choose the Hopf fibration



 $\widehat{E} = S^2 \times S^1 \qquad H = [1] \qquad F = [0] \qquad H^3(S^2 \times S^1) = \mathbb{Z}$

Trivial fibration $S^2 \times S^1$

Winding and momentum exchange ?



No winding (all closed loops are contractible)

A whole $\mathbb Z\text{-worth}$ of winding

- Option 1: even in the Abelian case, when there is funky fibration or non-trivial H-flux, the winding-momentum exchange is flawed
- Option 2: these cases are not valid string theory backgrounds

Option 3: there are no momentum modes to be exchanged with

Poisson-Lie T-duality details

T-duality and its generalisations

The sigma-model characterisation of T-duality

$$S = \int \mathrm{d}^2 \sigma (G_{ij} + B_{ij}) \partial_\mu X^i \partial^\mu X^j = \int \mathrm{d}^2 \sigma E_{ij} \partial_\mu X^i \partial^\mu X^j, \qquad J_{a,\pm} = k_a{}^i E_{ij} \partial_\pm X^j$$

Abelian T-dualityAbelian isometryexact symmetry of string theory
$$[k_a, k_b] = 0$$
 $L_{k_a}E_{ij} = 0$ $d \star J_a = 0$ non-Abelian T-dualitynon-Abelian isometrysolution generating technique $[k_a, k_b] = f_{ab}{}^c k_c$ $L_{k_a}E_{ij} = 0$ $d \star J_a = 0$ Poisson-Lie T-dualitynon-Abelian isometry? (and rest of the talk) $[k_a, k_b] = f_{ab}{}^c k_c$ $L_{k_a}E_{ij} = \tilde{f}^{bc}{}_a k_b{}^m E_{mi}E_{jn}k_c{}^n$ $d \star J_a = \tilde{f}^{bc}{}_a J_b \wedge J_c$ Has a natural algebraic interpretation \rightarrow G fits into a Drinfel'd double $D = \widehat{G} \cdot \widetilde{G}$ Jargon: G and \widetilde{G} are called Poisson-Lie groups

Poisson-Lie group lingo

Drinfel'd double

 $\operatorname{alg}(D) = \mathfrak{b} = \tilde{\mathfrak{g}} \oplus \mathfrak{g} \qquad [T_A, T_B] = F_{AB}{}^C T_C \qquad \text{where} \qquad T_A = (\widetilde{T}^a, T_a)$ • with an ad-invariant inner-product $\langle \bullet, \bullet \rangle$, with respect to which G and \widetilde{G} are isotropics

$$\langle T_A, T_B \rangle = \eta_{AB} \qquad \langle T_a, T_b \rangle = 0 \quad \text{and} \quad \langle \widetilde{T}^a, \widetilde{T}^b \rangle = 0$$

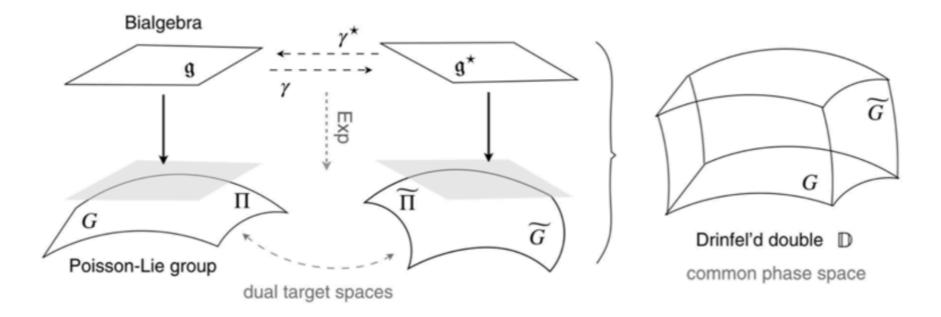
• defined by the commutation relations

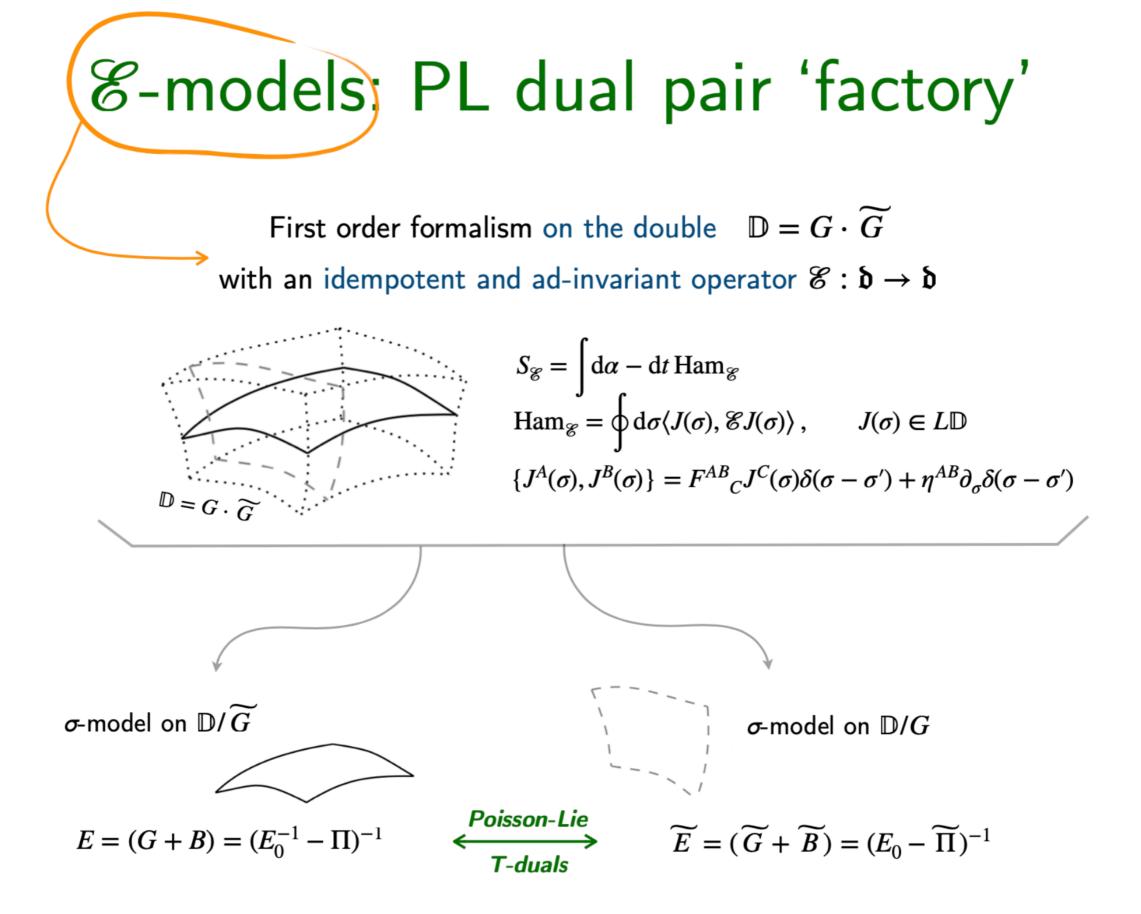
$$\begin{split} \tilde{\mathfrak{g}} : \ [\widetilde{T}^a, \widetilde{T}^b] &= \widetilde{f}^{ab}{}_c \widetilde{T}^c \qquad \mathfrak{g} : \ [T_a, T_b] = f_{ab}{}^c T_c \\ \text{mixed relations:} \ [\widetilde{T}^a, T^b] &= \widetilde{f}^{ac}{}_b T^c + f_{bc}{}^a \widetilde{T}^c \end{split}$$

Poisson-Lie groups

• at the level of the groups: G and \widetilde{G} admit natural Poisson bi-vectors

$$d_e \Pi = [\,,\,]_{\tilde{\mathfrak{g}}}^T, \qquad d_e \widetilde{\Pi} = [\,,\,]_{\mathfrak{g}}^T$$





 \rightarrow The dual sigma models are related by a *canonical transformation* [Sfetsos, Klimcik,Severa] \rightarrow Backgrounds are often quite (unsurprisingly) unwieldy and complicated

Examples of Poisson-Lie T-duals

Different choices of Drinfel'd doubles $D = G \cdot \widetilde{G}$

✓ Abelian T-duality	✓ non-Abelian T-duality	j η -deformation!
$D = U(1)^N \times U(1)^N$	$D = G \times U(1)^N$	$D \equiv G^{\mathbb{C}} = G \times AN$
$\Pi = \widetilde{\Pi} = 0$	$\Pi = 0, \widetilde{\Pi}_{ab} = f_{ab}{}^c \tilde{x}_c$	$\Pi = R - R_g$
$G_0 \longleftrightarrow G_0^{-1}$	$E_0 \longleftrightarrow [(E_0)_{ab} - f_{ab}{}^c \tilde{x}_c]^{-1}$	$S_\eta \iff S_{\lambda^\star}$
		1
	All known <i>integrable deformations</i> are	< ′

examples of Poisson-Lie T-dualisable models

Winding-momentum exchange

Winding-momentum exchange in generalised T-duality

Generalised T-duality Narain-lattice

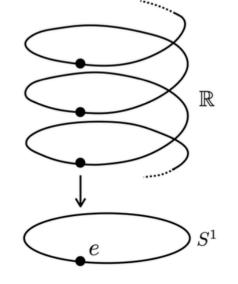
=

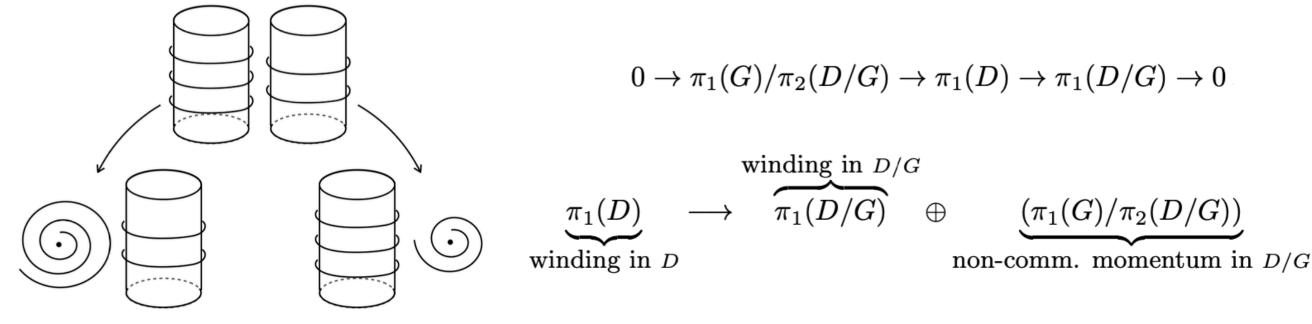
fundamental group of the Drinfel'd double

[Klimčík, Ševera]

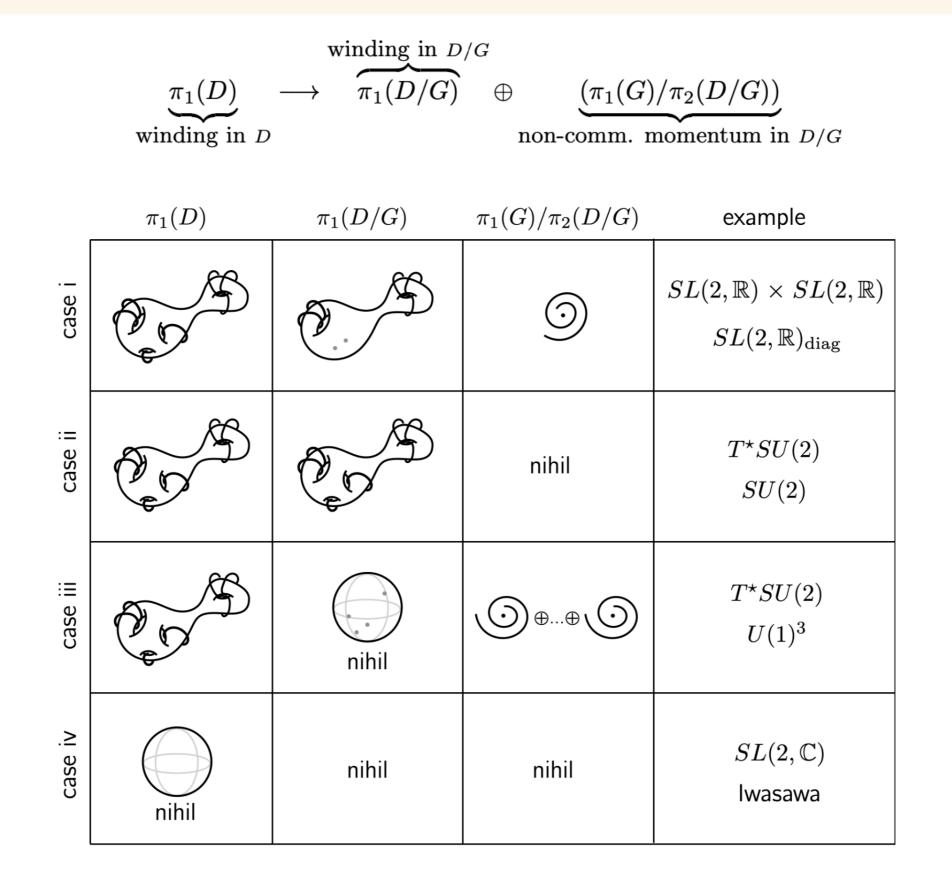
Keeps track of non-Abelian momentum and winding exchange modulo unit-monodromy constraint

$$P\exp\oint \mathcal{J}=\tilde{e}\in\tilde{G}$$





Duality frames for generalised T-duality

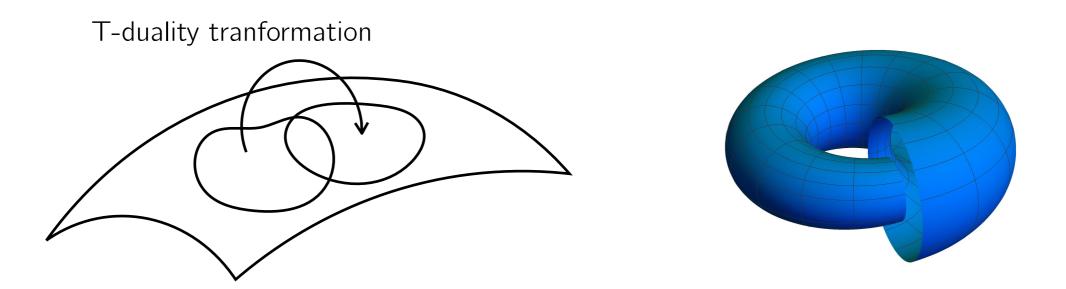


Non-geometry

Non-geometric spaces

Space is not only sewn together my diffeomorphisms One has to include T-duality transformations !

[Hellerman, McGreevy, Williams], [Hull], [Dasgupta, Rajesh, Sethi],...



Constructed by applying consecutive T-duality transformations: valid string backgrounds (?)

Challenge

Unclear how to even define winding modes

Winding-momentum exchange by invoking exotic differential forms? [Fan, Mathai]