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Where are we heading to?

> Consistent truncations and generalised T-dualities
> The swampland distance conjecture
> T-duality and winding-momentum exchange

> A basic example
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Consistent truncations in the Swampland program

. effective
field theory
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Mass

Consistent truncations in the Swampland program

-' : - ! x
| 7 ? \j VAR
i‘ Consistent : ' .effectwe
{‘ truncation Ljdd theory
| I
| mass
N
(usually)
no separation of scale scale separation
[Gauntlett, Varela]
_ A scale
Keep massive and Integrate out ¢ separation
massive modes

massless modes
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Consistent truncations

Solutions of a low dimensional truncation that
can be automatically lifted to the higher dimensional system

-

Total manifold = external x internal

~

Higher dimensional system

M=Mp x Mp one Is actually interested In
- —Nn
external Internal \ J
Dimensional consistent
reduction truncation
v

solution of lower
dimensional system
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Consistent truncations

Solutions of a low dimensional truncation that
can be automatically lifted to the higher dimensional system

4 )

Total manifold = external x internal Higher dimensional system

M=Mp x Mp one Is actually interested in
- —MN
external Internal \ J
N\
Dimensional consistent
smart Ansatz: reduction truncation
single out dofs that decouple from the rest M
A(CB, Y) _ U(Y)A(CC)U(Y)T §O|ut|9n of lower
dimensional system
Internal external
coordinates coordinates

In general highly non-triviall Guiding tool: exceptional and generalised geometry
... and generalised T-duality 7 5,



Generalised T-duality in under 2 mins

Abelian T-duality

xbelian T-duh

—RALC

> Compactification on a circle

> Apply T-duality

1/R < R

momentum modes <> winding modes
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Generalised T-duality in under 2 mins

Abelian T-duality

xbelian T-duh

RLC

w=2

> Compactification on a circle

> Apply T-duality

1/R < R

momentum modes <> winding modes

No
Isometry

> Can we do something similar for a
manifold with a non-Abelian structure ?
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Generalised T-duality in under 2 mins

Abelian T-duality

xbellan T- dum

e

> Compactification on a circle

> Apply T-duality

1/R < R

momentum modes <> winding modes

non-Abelian T-duality

generalised T-duality .

<
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Consistent truncations <—?— generalised T-duality

[Lee, Strickland-Constable, Waldram] , [Cassani, Josse, de Felice, Malek,
Petrini, Waldram], [Butter, Hassler, Pope, Zhang], ...

In many examples the truncation Ansatze are related by generalised T-dualities

truncation truncation truncation
Ansatz; Ansatzs Ansatz,
Generalised T-duality <::> consistent truncations

[Butter, Hassler, Pope, Zhang]

5/11


https://inspirehep.net/authors/1056613

Consistent truncations <—?— generalised T-duality

[Lee, Strickland-Constable, Waldram] , [Cassani, Josse, de Felice, Malek,
Petrini, Waldram], [Butter, Hassler, Pope, Zhang], ...

In many examples the truncation Ansatze are related by generalised T-dualities

truncation truncation truncation
Ansatz; Ansatzs Ansatz,
Generalised T-duality <::> consistent truncations

[Butter, Hassler, Pope, Zhang]

Prompts the question:

What can we learn by applying generalised T-duality
iIn Swampland scenario examples ?

Here: apply In the context of the distance conjecture
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https://inspirehep.net/authors/1056613

The next slides are a basic intro swampland Distance Conjecture
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The next slides are a basic intro swampland Distance Conjecture

— the experts may want to consider the opportunity of taking a nap

—y

P st Vi N

———— e —— —= — 7 ——
Basic characteristics of \
the human specres

(missing olfactory — — Fur
organ)
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Distance conjecture

Target space manifold Moduli space

~ A¢p — o0

J

=

In any consistent theory of quantum gravity:
When going to large distances in its moduli space,
encounter an Infinite tower of particles which become light exponentially

[Ooguri, Vafa] ...

M(Q) ~ M(P)e 2% when A¢ =00 and A¢=d(P,Q)
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Distance conjecture

Target space manifold Moduli space

~ A¢p — o0

J

=

In any consistent theory of quantum gravity:
When going to large distances in its moduli space,
encounter an Infinite tower of particles which become light exponentially

[Ooguri, Vafa] ...

M(Q) ~ M(P)e 2% when A¢ =00 and A¢=d(P,Q)

— T-duality I1s closely related to the distance conjecture
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Distance conjecture & non-Abelian T-duality

free boson on a circle Mp = Mp_1 x S*!

O

Moduli space: e >
R=0 R — o0
Infinite distance point Infinite distance point
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Distance conjecture & non-Abelian T-duality

free boson on a circle Mp = Mp_1 x S*!

O

Moduli space: e >
R=0 R — o0
infinite distance point Infinite distance point
At R — oo 2
o o n\ 2 1 d—2
Infinite tower of massless KK-modes M? = (—) S — 0
R 2TR

Infinite tower of massless states v
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Distance conjecture & non-Abelian T-duality

free boson on a circle Mp = Mp_1 x S*!

>

Moduli space: e >
R=0 R — o0
Infinite distance point iInfinite distance point
At R — o0 2
. 2 n 2 ]. d—2
Infinite tower of massless KK-modes M; = (—) —— — 0
R 2T R
At Ry =0 Infinite towers of massless states v’

Infinite tower of massless winding-modes

2
1 d-2 /mn\ 2 2 whR 2
o = (S12)7 (2 rmye (20)
2R (R) o o1



Distance conjecture & non-Abelian T-duality

free boson on a circle Mp = Mp_1 x S*!

Rqy=1/R _
z T-duality
Moduli space: e >
R=0 R — o0
Infinite distance point Infinite distance point
At R — o0 2
. 2 n 2 ]. d—2
Infinite tower of massless KK-modes M; = (—) —— — 0
R 2T R
At Ry =0 Infinite towers of massless states v’

Infinite tower of massless winding-modes

2
1 d-2 /mn\ 2 2 whR 2
o = (S12)7 (2 rmye (20)
2R (R) o o1



Distance conjecture and (extensions of) T-duality

Crucially, works because Z>w<+—meL

“perfect” winding-momentum exchange
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Distance conjecture and (extensions of) T-duality

Crucially, works because Z>w<+—meL

“perfect” winding-momentum exchange

This i1s no longer true when performing

> an Abelian T-duality in presence of a non-trivial H-flux
[Bouwknegt, Evslin, Mathai]

> a non-Abelian and Poisson-Lie T-duality
[Klime&ik, Severa]

> the space 1s non-geometric
[Hellerman, McGreevy, Williams|, [Hull], [Dasgupta, Rajesh, Sethi],...

9/11



Distance conjecture and (extensions of) T-duality

Crucially, works because ZS>w+—meZ

“perfect” winding-momentum exchange

This i1s no longer true when performing

)

> an Abelian T-duality in presence of a non-trivial H-flux
[Bouwknegt, Evslin, Mathai]

> a non-Abelian and Poisson-Lie T-duality } Change in topology

[Klime&ik, Severa]

> the space 1s non-geometric
[Hellerman, McGreevy, Williams]|, [Hull], [Dasgupta, Rajesh, Sethi],...}

Generalised
<€ >

T-dual

(Multi-dimensional e >
moduli space)
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Distance conjecture and (extensions of) T-duality

Crucially, works because ZS>w+—meZ

“perfect” winding-momentum exchange

This i1s no longer true when performing

)

> an Abelian T-duality in presence of a non-trivial H-flux
[Bouwknegt, Evslin, Mathai]

> a non-Abelian and Poisson-Lie T-duality } Change in topology

[Klime&ik, Severa]

> the space 1s non-geometric
[Hellerman, McGreevy, Williams]|, [Hull], [Dasgupta, Rajesh, Sethi],...}

Generalised
<€ >

T-dual

(Multi-dimensional e >
moduli space)

[ What happens to the tower of states in these new generalised T-duality frames ?) 9/11




Distance conjecture & non-Abelian T-duality

MD:MdXN

ST

We take to be a three-sphere SU(2) = S® and its non-abelian T-dual “T”

non-Abelian

& N
~ 7

T-duality

« T3 ” SU(2)

a very “deformed” three-torus
no Abelian isometries left, still cycles though
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Distance conjecture & non-Abelian T-duality

MD:MdXN

ST

We take to be a three-sphere SU(2) = S® and its non-abelian T-dual “T”

non-Abelian

& N
~ 7

T-duality

« TS ” SU(2)

U1 :w=2Z%andm=0 +— SU2):w=0and m=793

|Klimeik, Severa]
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Distance conjecture & non-Abelian T-duality

MD:MdXN

T

We take to be a three-sphere SU(2) = S® and its non-abelian T-dual “T”

non-Abelian

& N
~ 7

T-duality

% T3 9 SU(2)

U1 :w=2Z%andm=0 +— SU2):w=0and m=793

|Klimeik, Severa]

> New phenomenon: winding/(certain) momentum modes are forbidden !

> What does that imply for the validity of these theories within the SDC 7
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Distance conjecture & non-Abelian T-duality

U(1)?: w=Z* and m = 793 SU(2): w =0 and m = 7Z%°
non-Abelian
T-duality
@ > . >
R=0 R — o0 R=0 R — o0
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Distance conjecture & non-Abelian T-duality

U(1)? :w=Z> and m = 793 SU(2):w =0 and m = 73

non-Abelian

& N
~ 7

T-duality

@ >0 ® >0
R=0 R — o R=0 R — o

Ty — OO ri =0 A
Infinite tower of

Infinite tower of massless KK-modes

massless winding-
modes \nOn—Abelian TM
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Distance conjecture & non-Abelian T-duality

U(1)?: w=Z* and m = 793 SU(2): w =0 and m = 7Z%°

non-Abelian

& N
~ 7

T-duality

R=0 R — o0
r;, — 00 r; =

@\ non-Abelian T—dUM
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Distance conjecture & non-Abelian T-duality

U(1)° :w=Z° and m = 7,93

2500 -

2000;
R — O ;
. . 1500 - °
IS not accessible ! ‘

500 |-

10001 ,\/\ ..

— No need for a tower of light states !

SU(2) : w=0and m = 7%3

non-Abelian

& N
~ 7

T-duality

R=0 R —

s L2 [ atey/li( RGg) ~ (@R )

the potential is non-vanishing

AAAAAAAAAAAAAAAAAAAA
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Summary

> Compactifications beyond the simple circle

> Strange things happen when looking at more general manifolds
and their properties under generalised T-duality

> New types of winding-momentum exchange

> What does that imply or tell us about (generalised) T-duality and
the Distance Conjecture 7
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Thank you for 1

your aftention !







Distance conjecture
and potentials



Distance conjecture and potentials

1
5= S MB / d?zd3y/[GIR(G)
1

5= Mi7? [ atogl( Rig) - 5 0R? +V(R))

No longer a true moduli space: preferred flat directions

Distance conjecture appears to also apply to fields with non-vanishing potentials

[Baume, Palti] [Klaewer, Palti] [List, Palti, Vafa

"Reversed reasoning” — puts constraints on allowed potentials

For the SDC to hold, should be impossible to generate a potential with trajectories is
sufficiently non-geodesic so that the exponential behaviour of the tower is violated

[Calderon-Infante, Uranga, Valenzuela]



Consistent truncations in the Swampland program

all supersymmetric AdS supergravity vacua feature no scale

Conjecture: _ _ . .
separation but however admit a consistent truncation
[List, Patti, Vafa],[Buratti, Calderon, Mininno, Uranga], [Cribiori, Dall'Agata], ...
gauged supergravities with AdS vacua which is not
Conjecture: constructed from a consistent truncations

— must live in the "swampland [Josse, Malek, Petrini, Waldram|
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Consistent truncations in the Swampland program

all supersymmetric AdS supergravity vacua feature no scale

Conjecture: _ _ . .
separation but however admit a consistent truncation
[List, Patti, Vafa],[Buratti, Calderon, Mininno, Uranga], [Cribiori, Dall'Agata], ...
gauged supergravities with AdS vacua which is not
Conjecture: constructed from a consistent truncations

— must live in the "swampland [Josse, Malek, Petrini, Waldram]

— explore all possible consistent truncations
and their relations to the swampland conjectures
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Detalls HE-action to E-frame

ds® = gy (z)datdz” + h(z,y)i;dy'dy’

. R . L
Az, y) = oy Rty 0y

T pR2( R4
R(RI+ 249240\ gy a0 piig

1
5= MB / dzdPy+/[GIR(G)

" A
= oMp~ / d’zd’y+/|gl (R(g) — A(OR)* + 67 (d_2)R(h))

gy TR
1 9d-1) 1
R?2 d—2 RS

at R=0:A~

at R =00 :A ~

1

5= M2 [t /gl R(o)

~ =5 (OR)’ + V(R))

52 g3 [ atev/gl(Rig) - 5002 + V(W)



Topological T-duality



Topological T-duality

— version of T-duality that only keeps track of the topological properties

Starting point:
. . . 1
circle fibered over a base manifold ST —

\
2 ()
M = NI, F:/H F=| H Y @/
S1 S1

In general, total space admits non-trivial H-flux

o )

o

nder T-duality, the topology Is change
wH +—  c1(Ey)

background H-flux Chern-class
/ K (type of fibration) /

[Bouwknegt, Evslin, Mathai]

— change In topology !



An example: Hopf fibration and H-flux

Take Type Il compactified on a 3-sphere crossed with an (irrelevant) 7-manifold

Instead of trivially fibbing the circle S* over S2, choose the Hopf fibration

E=Shp H=0 F=[] H)S*)=%Z

¢
@ Taking initially no H-flux we have

T-duality

: ; O+d 'Z,-H — C1 (b()

Hopf fibration

leads to the trivial fibration with non-trivial H-flux

E=8>xS8" H=[1] F=[0] HS?xS8Y)=2Z
Trivial fibration S? x St



Winding and momentum exchange ?

O

T-duals

v

N

Hopf fibration Trivial fibration S? x S*

No winding

| A whole Z-worth of winding
(all closed loops are contractible)

Option 1:  even in the Abelian case, when there is funky fibration or
non-trivial H-flux, the winding-momentum exchange is flawed

Option 2:  these cases are not valid string theory backgrounds

Option 3:  there are no momentum modes to be exchanged with



Poisson-Lie T-duality detalls



T-duality and its generalisations

The sigma-model characterisation of T-duality

S = / d*0(Gi; + Bi;)9, X 0" X7 = / d’0E;;0,X'0* X7, Jui =k, E;;0+ X’

Abelian T-duality Abelian isometry exact symmetry of string theory
ko, kp) =0 Ly, Ei; =0 dxJ, =0
non-Abelian T-duality non-Abelian isometry solution generating technique
(ka, k] = fap“ke Ly, Eij =0 dxJ, =0
Poisson-Lie T-duality non-Abelian isemetry ? (and rest of the talk)
ko, ko] = fap®ke Lk Eij = fk ™ EmiEjnk.”  dxJy = fP% 0 A Je

Has a natural algebraic interpretation — G fits into a Drinfel’d double D :@

)

Jargon: G and G are called Poisson-Lie groups <



Poisson-Lie group lingo

Drinfel’d double
algD)=d=8®g [Ty, Tgl = Fz T where T, =(T%T,)
e with an ad-invariant inner-product (¢, ), with respect to which G and G are isotropics
(T, Tg) =mag  (TT;)=0 and (T%T") =0
e defined by the commutation relations
§: [T T\ =f®T¢  g: [T,T,) =f,T,
mixed relations: [T%, T?] = f%,T¢ + f, °T¢
Poisson-Lie groups

e at the level of the groups: G and G admit natural Poisson bi-vectors

din=1[,1f, dI=[1

Bialgebra o

iVl

Drinfel'd double D

Poisson-Lie group common phase space

dual target spaces



&-models; PL dual pair ‘factory

P~

First order formalism on the double D=G:- G

with an idempotent and ad-invariant operator & : D > D

Se = Jda — dr Hamg
Hamg = %da(](a), &J(0)), J(o) € LD

{(JA(0), JB(0)} = FABJC(6)8(c — o) + nBd,8(c — o)

/ .
T )
v v
~—— r T - -
o-model on D/ G | ]| o-model on D/G
) Poisson-Lie — —~ — —~
E=G+B=E'-)" < > E=(G+ B)=(E-II)"
T-duals

— The dual sigma models are related by a canonical transformation [Sfetsos, Klimcik,Severa

— Backgrounds are often quite (unsurprisingly) unwieldy and complicated



Examples of Poisson-Lie T-duals

~—

Different choices of Drinfel'd doubles D = G- G

v Abelian T-duality ¥ non-Abelian T-duality
D=U0" x U)Y D=Gx U1V D=G*=GxAN

=TI =0 =0, T, ,=f,°% 1=R-R,

Gy < Gy Ey «— [(Eyy—fp %] Sy <> Sp
\
1
/

All known integrable deformations are <— -7

examples of Poisson-Lie T-dualisable models



Winding-momentum exchange



Winding-momentum exchange in generalised T-duality

Generalised T-duality Narain-lattice

fundamental group of the Drinfel'd double

[Klim&ik, Severa]

.
.....
0

Keeps track of non-Abelian momentum and winding
exchange modulo unit-monodromy constraint

PeXp%jZGEG @Sl

0 — m(G)/m2(D/G) = (D) - m(D/G) — 0

winding in D/G

m(D) — m(D/G) & (m1(G)/m2(D/G))
v - -~ 7
winding in D non-comm. momentum in D/G




case il case | case |

case Iv

Duality frames for generalised T-duality

winding in D/G

m1(D)
——
winding in D

—

7T1(D) 7T1(D/G)

™ (D/G)

®  (m(GQ)/m(D/G))

non-comm. momentum in D/G

™1 (G)/m2(D/G)

example

9

SL(2,R) x SL(2,R)

SL(2,R)giag

28
o
®

nihil

@@ nihil msU ()
SU(2)
T*SU(2)
@QE e e O U(1)?
nihil
O nihil nihil SL(2,C)
lwasawa




Non-geometry



Non-geometric spaces

Space is not only sewn together my diffeomorphisms
One has to include T-duality transformations |

[Hellerman, McGreevy, Williams|, [Hull], [Dasgupta, Rajesh, Sethi],...

DR

T-duality tranformation

Constructed by applying consecutive T-duality transformations: valid string backgrounds (7)

s Challenge A Winding-momentum exchange by

Unclear how to even define winding modes invoking exotic differential forms?
- Y, [Fan, Mathai]




