Massive spin-2 particles and the swampland

Joan Quirant

Work in progress with S. Kundu and E. Palti

DIP meeting, 22nd March 2023

• Massive spin-2 particles appear in (string) compactifications

• Massive spin-2 particles appear in (string) compactifications

٠

• Massive spin-2 particles appear in (string) compactifications

٠

Massive spin-2 particles appear in (string) compactifications

Contents

o) Motivation

1) QuickStart guide

2) Recap of previous constraints

3) Our approach: the Classical Regge Growth (CRG) Conjecture.

4) Results (and pending work)

6) Conclusions and outlook

• Massive spin-2 particles $w_{\mu\nu}$

- > 5 different polarisations (2 tensorial, 2 vectorial, 1 scalar)
- Free (linearised) theory described by the Fierz-Pauli action Fierz, Pauli 1939

> Non-linear interactions: ghosts may appear Boulware, Deser, 1972 A. Two ghost-free theories

Rham, Gabadadze, Tolley '10,'11

Arrow de Rham, Gabadadze, and Tolley (dRGT) theory
$$L \sim \sqrt{-g} \left(R - \frac{m^2}{4} V(w, \alpha_1, \alpha_2) \right), \{\alpha_1, \alpha_2\} \in R$$

Folkerts, Pritzel, Wintergerst '11, Hinterbichler '13

◆ Pseudolinear theory: $L \sim L_{FP} + \lambda_1 L_{2,3} + \lambda_2 L_{0,3} + \lambda_3 L_{0,4}$, with $L_{n,m} = \partial^n w^m$, $\lambda_i \in R$

- Massive spin-2 particles $w_{\mu\nu}$
 - > 5 different polarisations (2 tensorial, 2 vectorial, 1 scalar)
 - Free (linearised) theory described by the Fierz-Pauli action Fierz, Pauli 1939

> Non-linear interactions: ghosts may appear Boulware, Deser, 1972 A. Two ghost-free theories

Rham, Gabadadze, Tolley '10,'11

• de Rham, Gabadadze, and Tolley (dRGT) theory
$$L \sim \sqrt{-g} \left(R - \frac{m^2}{4} V(w, \alpha_1, \alpha_2) \right), \{\alpha_1, \alpha_2\} \in R$$

Folkerts, Pritzel, Wintergerst '11, Hinterbichler '13

◆ Pseudolinear theory: $L \sim L_{FP} + \lambda_1 L_{2,3} + \lambda_2 L_{0,3} + \lambda_3 L_{0,4}$, with $L_{n,m} = \partial^n w^m$, $\lambda_i \in R$

- Massive spin-2 particles $w_{\mu\nu}$
 - > 5 different polarisations (2 tensorial, 2 vectorial, 1 scalar)
 - Free (linearised) theory described by the Fierz-Pauli action Fierz, Pauli 1939

> Non-linear interactions: ghosts may appear Boulware, Deser, 1972 A. Two ghost-free theories

Rham, Gabadadze, Tolley '10,'11

Arram, Gabadadze, and Tolley (dRGT) theory
$$L \sim \sqrt{-g} \left(R - \frac{m^2}{4} V(w, \alpha_1, \alpha_2) \right), \{\alpha_1, \alpha_2\} \in R$$

Folkerts, Pritzel, Wintergerst '11, Hinterbichler '13

◆ Pseudolinear theory: $L \sim L_{FP} + \lambda_1 L_{2,3} + \lambda_2 L_{0,3} + \lambda_3 L_{0,4}$, with $L_{n,m} = \partial^n w^m$, $\lambda_i \in R$

- Massive spin-2 particles $w_{\mu\nu}$
 - > 5 different polarisations (2 tensorial, 2 vectorial, 1 scalar)
 - Free (linearised) theory described by the Fierz-Pauli action Fierz, Pauli 1939

Non-linear interactions: ghosts may appear Boulware, Deser, 1972 A. Two ghost-free theories

Rham, Gabadadze, Tolley '10,'11

• de Rham, Gabadadze, and Tolley (dRGT) theory
$$L \sim \sqrt{-g} \left(R - \frac{m^2}{4} V(w, \alpha_1, \alpha_2) \right), \{\alpha_1, \alpha_2\} \in R$$

Folkerts, Pritzel, Wintergerst '11, Hinterbichler '13

♦ Pseudolinear theory: $L \sim L_{FP} + \lambda_1 L_{2,3} + \lambda_2 L_{0,3} + \lambda_3 L_{0,4}$, with $L_{n,m} = \partial^n w^m$, $\lambda_i \in R$

- Massive spin-2 particles $w_{\mu\nu}$
 - > 5 different polarisations (2 tensorial, 2 vectorial, 1 scalar)
 - Free (linearised) theory described by the Fierz-Pauli action Fierz, Pauli 1939

$$L_{FP} \sim -\frac{1}{2} \partial_{\alpha} w_{\mu\nu} \partial^{\alpha} w^{\mu\nu} + \partial_{\alpha} w_{\mu\nu} \partial^{\nu} w^{\mu\alpha} - \partial_{\mu} w \partial_{\nu} w^{\mu\nu} + \frac{1}{2} \partial_{\mu} w \partial^{\mu} w - \frac{1}{2} m^{2} (w_{\mu\nu} - w^{2})$$
Massless spin-2, $\sqrt{-g} R |_{\text{Linearised}}$
Mass term

> Non-linear interactions: ghosts may appear Boulware, Deser, 1972 A. Two ghost-free theories

Rham, Gabadadze, Tolley '10,'11

• de Rham, Gabadadze, and Tolley (dRGT) theory
$$L \sim \sqrt{-g} \left(R - \frac{m^2}{4} V(w, \alpha_1, \alpha_2) \right), \{\alpha_1, \alpha_2\} \in R$$

Folkerts, Pritzel, Wintergerst '11, Hinterbichler '13

♦ Pseudolinear theory: $L \sim L_{FP} + \lambda_1 L_{2,3} + \lambda_2 L_{0,3} + \lambda_3 L_{0,4}$, with $L_{n,m} = \partial^n w^m$, $\lambda_i \in R$

• The four-point amplitude of massive spin-2 particles

- > Momentum conservation: $p_1 + p_2 = p_3 + p_4$
- ➤ Mandelstam variables: $s = -(p_1 + p_2)^2$, $t = -(p_1 + p_3)^2$, $u = -(p_1 p_4)^2$, $s + t + u = 4m^2$

 $\succ \mathcal{A} = \mathcal{A}(s, t) \rightarrow \text{Large } s \text{ limit (Regge limit), expansion around } s \rightarrow \infty$. Large $\{s, t\}$ limit (High energy limit), expansion around $\{s, t\} \rightarrow \infty$

Recap of previous constraints

• Massive spin-2 particles have been (and are) extensively studied

Fierz, Pauli, Dam, Veltman, Zakharov, Vainsthein, Boulware, Deser, Dvali, Gabadadze, Gregory, Arkani-Hamed, Georgi, Schwartz, de Rham, Gabadadze, Tolley, Folkerts, Pritzel, Wintergerst, Hinterbichler, Bonifacio, Klaewer, Lüst, Palti, Heisenberg ...

- Not a general review (very biased) . Highlight some works relevant for us:
 - Klaewer, Lust, Palti, 18: swampland conjecture involving massive spin-2 particles
 - > Bonifacio, Hinterbichler, Hinterbichler, Joyce, Rosen '17, '18: constraints from superluminality
 - Bonifacio, Hinterbichler '20 : constraints from dimensional reduction
 - \succ Bonifacio, Hinterbichler '18 & Rosen '19: constraints on $\Lambda_{\rm EFT}$

Recap of previous constraints

• Massive spin-2 particles have been (and are) extensively studied

Fierz, Pauli, Dam, Veltman, Zakharov, Vainsthein, Boulware, Deser, Dvali, Gabadadze, Gregory, Arkani-Hamed, Georgi, Schwartz, de Rham, Gabadadze, Tolley, Folkerts, Pritzel, Wintergerst, Hinterbichler, Bonifacio, Klaewer, Lüst, Palti, Heisenberg ...

- Not a general review (very biased) . Highlight some works relevant for us:
 - Klaewer, Lust, Palti, 18: swampland conjecture involving massive spin-2 particles
 - > Bonifacio, Hinterbichler, Hinterbichler, Joyce, Rosen '17, '18: constraints from superluminality
 - Bonifacio, Hinterbichler '20 : constraints from dimensional reduction
 - > Bonifacio, Hinterbichler '18 & Rosen '19: constraints on Λ_{EFT}

Klaewer, Lust, Palti, 18

Klaewer, Lust, Palti, 18

• An EFT with gravity $g_{\mu\nu}$ + massive spin-2 particle $w_{\mu\nu}$ with mass m and interaction scale of the helicity-1 mode M_w , has a cut-off scale Λ_m

Klaewer, Lust, Palti, 18

- An EFT with gravity $g_{\mu\nu}$ + massive spin-2 particle $w_{\mu\nu}$ with mass m and interaction scale of the helicity-1 mode M_w , has a cut-off scale Λ_m
- Strong form: if the graviton itself is massive

 $\Lambda_m \sim m$

Experimental bounds: $m_{grav} < 10^{-22} eV$; Ligo, Virgo '16

Klaewer, Lust, Palti, 18

- An EFT with gravity $g_{\mu\nu}$ + massive spin-2 particle $w_{\mu\nu}$ with mass m and interaction scale of the helicity-1 mode M_w , has a cut-off scale Λ_m
 - $\Lambda_{m} \sim \frac{m M_{p}}{M_{w}}$ MGC $\Lambda_{wGC} \sim g_{U(1)}M_{p},$ $g_{U(1)} = \frac{m}{\sqrt{2}M_{w}}$ $Follows from an application of the WGC conjecture to the helicity-1 mode of the massive spin-2 field:
 <math display="block">w_{\mu\nu} = h_{\mu\nu} + 2\partial_{(\mu}\chi_{\nu)} + \prod_{\mu\nu}\pi$ Plugging into the Fierz-Pauli action $L_{FP} \ni -\frac{1}{8}m^{2}F_{\mu\nu}F^{\mu\nu}$ Couples to matter current through $L_{int} = \frac{m^{2}}{M_{w}}\chi_{\mu}J^{\mu}$ $F_{\mu\nu} = \partial_{\mu}\chi_{\nu} \partial_{\nu}\chi_{\mu}$
 - Strong form: if the graviton itself is massive

 $\Lambda_m \sim m$

Experimental bounds: $m_{grav} < 10^{-22} eV$; Ligo, Virgo '16

• Some objections in de Rham, Heisenberg, Tolley '18

By Λ_{EFT} we mean the scale at which perturbative unitarity breaks down (strong coupling scale): news degrees of freedom or strong coupling effects must be taken into account at this scale.

Klaewer, Lust, Palti, 18

- The spin-2 conjecture: bound on Λ_{EFT} using WGC. Vast literature on the topic.
 - Arkani-Hamed, Georgi, Schwartz '02: linearised theory of massive spin-2: $\Lambda \equiv \Lambda_5 = (M_p m^4)^{1/5}$. Particular Non-linear terms, raised up to $\Lambda \equiv \Lambda_3 = (M_p m^2)^{1/3}$
 - > This happens for dRGT (de Rham, Gabadadze Tolley, '11) and the pseudolinear theory (Hinterbichler '13)

Klaewer, Lust, Palti, 18

- The spin-2 conjecture: bound on Λ_{EFT} using WGC. Vast literature on the topic.
 - Arkani-Hamed, Georgi, Schwartz '02: linearised theory of massive spin-2: $\Lambda \equiv \Lambda_5 = (M_p m^4)^{1/5}$. Particular Non-linear terms, raised up to $\Lambda \equiv \Lambda_3 = (M_p m^2)^{1/3}$
 - This happens for dRGT (de Rham, Gabadadze Tolley, '11) and the pseudolinear theory (Hinterbichler '13)
- Λ_3 not showed to be the highest possible scale . Model independent approach to this problem Bonifacio, Hinterbichler '18 & Rosen '19
 - ► How? Studying when perturbative unitarity breaks down: $\mathcal{A} \sim \frac{E^n}{\Lambda^n} \rightarrow E \sim \Lambda \rightarrow \mathcal{A} \sim 1$
 - Study tree-level four-particle scattering amplitudes of massive spin-2 particles: can be done in general, without reference to any Lagrangian
 - Series of three papers including massless spin-2, spin-1 and scalar particles and any but finite number of derivatives.

$$\mathcal{A} = \alpha_{w_{\mu\nu}}^{\lambda} \beta_{w_{\mu\nu}}^{\mu\nu} + \beta_{\mu\nu}^{\lambda} \beta_{\mu\nu}^{\mu\nu} + \gamma_{\mu\nu}^{\lambda} + \gamma_{\mu\nu}^{\lambda} + \gamma_{\mu\nu}^{\lambda} + \gamma_{\mu\nu}^{\lambda} + \gamma_{\mu\nu}^{\lambda} + \gamma_{\mu\nu}^{\lambda} + \gamma$$

Scattering of $2 \rightarrow 2$ massive spin-2 particles, amplitudes go like: $\mathcal{A} \sim \frac{E^{2(k+2)}}{(M_p m^{k+1})^2} \rightarrow \mathcal{A} \sim 1$ when $E \equiv \Lambda_k \sim (M_p m^{k+1})^{1/(k+2)}$

Maximize $\Lambda_k \sim (M_p m^{k+1})^{1/(k+2)}$ Construct the theory with the lowest possible k: cancellations among the different contributions

Klaewer, Lust, Palti, 18

- The spin-2 conjecture: bound on Λ_{EFT} using WGC. Vast literature on the topic.
 - $\qquad \text{Arkani-Hamed, Georgi, Schwartz '02: linearised theory of massive spin-2: } \Lambda \equiv \Lambda_5 = \left(M_p m^4\right)^{1/5}. \text{Particular Non-linear terms, raised up to } \Lambda \equiv \Lambda_3 = \left(M_p m^2\right)^{1/3}.$
 - This happens for dRGT (de Rham, Gabadadze Tolley, '11) and the pseudolinear theory (Hinterbichler '13)
- Λ_3 not showed to be the highest possible scale . Model independent approach to this problem Bonifacio, Hinterbichler '18 & Rosen '19
 - ► How? Studying when perturbative unitarity breaks down: $\mathcal{A} \sim \frac{E^n}{\Lambda^n} \rightarrow E \sim \Lambda \rightarrow \mathcal{A} \sim 1$
 - > Study tree-level four-particle scattering amplitudes of massive spin-2 particles: can be done in general, without reference to any Lagrangian

Series of three papers including massless spin-2, spin-1 and scalar particles and any but finite number of derivatives. $\mathcal{A} = \alpha \left(\begin{array}{c} w_{\mu\nu} \\ \alpha \\ w_{\mu\nu} \end{array} \right) \left(\begin{array}{c} w_{\mu\nu} \\ \beta \\ \psi_{\mu\nu} \end{array} \right) \left(\begin{array}{c} w_{\mu\nu} \\ \beta \\ \psi_{\mu\nu} \end{array} \right) \left(\begin{array}{c} w_{\mu\nu} \\ \beta \\ \psi_{\mu\nu} \end{array} \right) \left(\begin{array}{c} w_{\mu\nu} \\ \beta \\ \psi_{\mu\nu} \end{array} \right) \left(\begin{array}{c} w_{\mu\nu} \\ \beta \\ \psi_{\mu\nu} \end{array} \right) \left(\begin{array}{c} w_{\mu\nu} \\ \beta \\ \psi_{\mu\nu} \end{array} \right) \left(\begin{array}{c} w_{\mu\nu} \\ \beta \\ \psi_{\mu\nu} \end{array} \right) \left(\begin{array}{c} w_{\mu\nu} \\ \beta \\ \psi_{\mu\nu} \end{array} \right) \left(\begin{array}{c} w_{\mu\nu} \\ \beta \\ \psi_{\mu\nu} \end{array} \right) \left(\begin{array}{c} w_{\mu\nu} \\ \beta \\ \psi_{\mu\nu} \end{array} \right) \left(\begin{array}{c} w_{\mu\nu} \\ \beta \\ \psi_{\mu\nu} \end{array} \right) \left(\begin{array}{c} w_{\mu\nu} \\ \beta \\ \psi_{\mu\nu} \end{array} \right) \left(\begin{array}{c} w_{\mu\nu} \\ \phi \\ \psi_{\mu\nu} \end{array} \right) \left(\begin{array}{c} w_{\mu\nu} \\ \phi \\ \psi_{\mu\nu} \end{array} \right) \left(\begin{array}{c} w_{\mu\nu} \\ \phi \\ \psi_{\mu\nu} \end{array} \right) \left(\begin{array}{c} w_{\mu\nu} \\ \phi \\ \psi_{\mu\nu} \end{array} \right) \left(\begin{array}{c} w_{\mu\nu} \\ \phi \\ \psi_{\mu\nu} \end{array} \right) \left(\begin{array}{c} w_{\mu\nu} \\ \psi_{\mu\nu} \end{array} \right) \left(\begin{array}{c} w_{\mu\nu} \\ \psi_{\mu\nu} \\ \psi_{\mu\nu} \end{array} \right) \left(\begin{array}{c} w_{\mu\nu} \\ \psi_{\mu\nu} \\ \psi_{\mu\nu} \end{array} \right) \left(\begin{array}{c} w_{\mu\nu} \\ \psi_{\mu\nu} \\ \psi_{\mu\nu} \end{array} \right) \left(\begin{array}{c} w_{\mu\nu} \\ \psi_{\mu\nu} \\ \psi_{\mu\nu} \end{array} \right) \left(\begin{array}{c} w_{\mu\nu} \\ \psi_{\mu\nu} \\ \psi_{\mu\nu} \end{array} \right) \left(\begin{array}{c} w_{\mu\nu} \\ \psi_{\mu\nu} \\ \psi_{\mu\nu} \end{array} \right) \left(\begin{array}{c} w_{\mu\nu} \\ \psi_{\mu\nu} \\ \psi_{\mu\nu} \end{array} \right) \left(\begin{array}{c} w_{\mu\nu} \\ \psi_{\mu\nu} \\ \psi_{\mu\nu} \end{array} \right) \left(\begin{array}{c} w_{\mu\nu} \\ \psi_{\mu\nu} \\ \psi_{\mu\nu} \end{array} \right) \left(\begin{array}{c} w_{\mu\nu} \\ \psi_{\mu\nu} \\ \psi_{\mu\nu} \end{array} \right) \left(\begin{array}{c} w_{\mu\nu} \\ \psi_{\mu\nu} \\ \psi_{\mu\nu} \end{array} \right) \left(\begin{array}{c} w_{\mu\nu} \\ \psi_{\mu\nu} \\ \psi_{\mu\nu} \end{array} \right) \left(\begin{array}{c} w_{\mu\nu} \\ \psi_{\mu\nu} \\ \psi_{\mu\nu} \\ \psi_{\mu\nu} \end{array} \right) \left(\begin{array}{c} w_{\mu\nu} \\ \psi_{\mu\nu} \\ \psi_{\mu\nu} \end{array} \right) \left(\begin{array}{c} w_{\mu\nu} \\ \psi_{\mu\nu} \\ \psi_{\mu\nu} \\ \psi_{\mu\nu} \end{array} \right) \left(\begin{array}{c} w_{\mu\nu} \\ \psi_{\mu\nu} \\ \psi_{\mu\nu} \\ \psi_{\mu\nu} \\ \psi_{\mu\nu} \end{array} \right) \left(\begin{array}{c} w_{\mu\nu} \\ \psi_{\mu\nu} \\$

Scattering of $2 \to 2$ massive spin-2 particles, amplitudes go like: $\mathcal{A} \sim \frac{E^{2(k+2)}}{(M_p m^{k+1})^2} \to \mathcal{A} \sim 1$ when $E \equiv \Lambda_k \sim (M_p m^{k+1})^{1/(k+2)}$

Maximize $\Lambda_k \sim (M_p m^{k+1})^{1/(k+2)}$ Construct the theory with the lowest possible k: cancellations among the different contributions

Klaewer, Lust, Palti, 18

- The spin-2 conjecture: bound on Λ_{EFT} using WGC. Vast literature on the topic.
 - $\qquad \text{Arkani-Hamed, Georgi, Schwartz '02: linearised theory of massive spin-2: } \Lambda \equiv \Lambda_5 = \left(M_p m^4\right)^{1/5}. \text{Particular Non-linear terms, raised up to } \Lambda \equiv \Lambda_3 = \left(M_p m^2\right)^{1/3}.$
 - This happens for dRGT (de Rham, Gabadadze Tolley, '11) and the pseudolinear theory (Hinterbichler '13)
- Λ_3 not showed to be the highest possible scale . Model independent approach to this problem Bonifacio, Hinterbichler '18 & Rosen '19
 - ► How? Studying when perturbative unitarity breaks down: $\mathcal{A} \sim \frac{E^n}{\Lambda^n} \rightarrow E \sim \Lambda \rightarrow \mathcal{A} \sim 1$
 - > Study tree-level four-particle scattering amplitudes of massive spin-2 particles: can be done in general, without reference to any Lagrangian

Scattering of $2 \rightarrow 2$ massive spin-2 particles, amplitudes go like: $\mathcal{A} \sim \frac{E^{2(k+2)}}{(M_p m^{k+1})^2} \rightarrow \mathcal{A} \sim 1$ when $E \equiv \Lambda_k \sim (M_p m^{k+1})^{1/(k+2)}$

> Maximize $\Lambda_k \sim (M_p m^{k+1})^{1/(k+2)}$ Construct the theory with the lowest possible k: cancellations among the different contributions

Klaewer, Lust, Palti, 18

- The spin-2 conjecture: bound on Λ_{EFT} using WGC. Vast literature on the topic.
 - $\qquad \text{Arkani-Hamed, Georgi, Schwartz '02: linearised theory of massive spin-2: } \Lambda \equiv \Lambda_5 = \left(M_p m^4\right)^{1/5}. \text{Particular Non-linear terms, raised up to } \Lambda \equiv \Lambda_3 = \left(M_p m^2\right)^{1/3}.$
 - This happens for dRGT (de Rham, Gabadadze Tolley, '11) and the pseudolinear theory (Hinterbichler '13)
- Λ_3 not showed to be the highest possible scale . Model independent approach to this problem Bonifacio, Hinterbichler '18 & Rosen '19
 - ► How? Studying when perturbative unitarity breaks down: $\mathcal{A} \sim \frac{E^n}{\Lambda^n} \rightarrow E \sim \Lambda \rightarrow \mathcal{A} \sim 1$
 - > Study tree-level four-particle scattering amplitudes of massive spin-2 particles: can be done in general, without reference to any Lagrangian
 - Series of three papers including massless spin-2, spin-1 and scalar particles and any but finite number of derivatives. $\mathcal{A} = \alpha_{w_{\mu\nu}} + \beta_{y} + \beta_{y} + \gamma_{y} +$
 - Scattering of 2 \rightarrow 2 massive spin-2 particles, amplitudes go like: $\mathcal{A} \sim \frac{E^{2(k+2)}}{(M_p m^{k+1})^2} \rightarrow \mathcal{A} \sim 1$ when $E \equiv \Lambda_k \sim (M_p m^{k+1})^{1/(k+2)}$

Maximize $\Lambda_k \sim (M_p m^{k+1})^{1/(k+2)}$ Construct the theory with the lowest possible k: cancellations among the different contributions

• $\Lambda \equiv \Lambda_3 = (M_p m^2)^{1/3}$ highest possible scale for a theory containing one massive spin-2 particle (and no higher spin particles)

→
$$\mathcal{A} \sim \frac{E^6}{(M_p m^2)^2}$$
. Contributions with $\mathcal{A} \sim E^m$, with $m > 6$ chosen to cancel each other

- > Can only be improved including additional massive particles with spin 2 or higher spin
- > If one insists on cancelling the terms producing $E^6 \rightarrow$ only trivial solution, all cubic couplings (the theory) must vanish

• $\Lambda \equiv \Lambda_3 = (M_p m^2)^{1/3}$ highest possible scale for a theory containing one massive spin-2 particle (and no higher spin particles)

→
$$\mathcal{A} \sim \frac{E^6}{(M_p m^2)^2}$$
. Contributions with $\mathcal{A} \sim E^m$, with $m > 6$ chosen to cancel each other

- > Can only be improved including additional massive particles with spin 2 or higher spin
- > If one insists on cancelling the terms producing $E^6 \rightarrow$ only trivial solution, all cubic couplings (the theory) must vanish

• Our work will be along the same lines. Instead of the behaviour E^m , $m \ge 6$, we will only be interested in the amplitudes going like s^m , $m \ge 3$.

• Formulated in Chowdhury, Gadde, Gopalka, Halder, Janagal, Minwalla '19

- Formulated in Chowdhury, Gadde, Gopalka, Halder, Janagal, Minwalla '19
- Same spirit as swampland conjectures. It states

The S-matrix of a consistent classical theory cannot grow faster than s² at fixed t

Classical: non analyticities can only be simple poles. Tree-level scattering

- Formulated in Chowdhury, Gadde, Gopalka, Halder, Janagal, Minwalla '19
- Same spirit as swampland conjectures. It states

The S-matrix of a consistent classical theory cannot grow faster than s² at fixed t

Classical: non analyticities can only be simple poles. Tree-level scattering

- Evidence for the conjecture: three arguments in support of it
 - True in any two-derivative theory involving particles with spin< 2. Obeyed by all classical string scattering amplitudes. Classical Einstein S-matrix saturates it.</p>

Chandorkar, Chowdhury, Kundu, Minwalla '21

- > It can be argued that in the 'impact parameter (δ) space': $S(\delta, s) \sim s^m$, m ≤ 2 . Subtleties changing to the usual S(t, s).
- Strongest: Connection to the chaos bound :

Chandorkar, Chowdhury, Kundu, Minwalla '21.

Take AdS/CFT \rightarrow Theory on the bulk having a CFT dual \rightarrow Flat limit \rightarrow If $S \sim s^n$, $n \geq 3 \rightarrow$ The CFT violates the chaos bound proposed in Maldacena, Shenker, Stanford '15.

- Formulated in Chowdhury, Gadde, Gopalka, Halder, Janagal, Minwalla '19
- Same spirit as swampland conjectures. It states

The S-matrix of a consistent classical theory cannot grow faster than s² at fixed t

Classical: non analyticities can only be simple poles. Tree-level scattering

- Evidence for the conjecture: three arguments in support of it
 - True in any two-derivative theory involving particles with spin< 2. Obeyed by all classical string scattering amplitudes. Classical Einstein S-matrix saturates it.</p>

Chandorkar, Chowdhury, Kundu, Minwalla '21

- > It can be argued that in the 'impact parameter (δ) space': $S(\delta, s) \sim s^m$, m ≤ 2 . Subtleties changing to the usual S(t, s).
- Strongest: Connection to the chaos bound :

Chandorkar, Chowdhury, Kundu, Minwalla '21.

Take AdS/CFT \rightarrow Theory on the bulk having a CFT dual \rightarrow Flat limit \rightarrow If $S \sim s^n$, $n \geq 3 \rightarrow$ The CFT violates the chaos bound proposed in Maldacena, Shenker, Stanford '15.

- Formulated in Chowdhury, Gadde, Gopalka, Halder, Janagal, Minwalla '19
- Same spirit as swampland conjectures. It states

The S-matrix of a consistent classical theory cannot grow faster than s² at fixed t

Classical: non analyticities can only be simple poles. Tree-level scattering

- Evidence for the conjecture: three arguments in support of it
 - True in any two-derivative theory involving particles with spin< 2. Obeyed by all classical string scattering amplitudes. Classical Einstein S-matrix saturates it.</p>

Chandorkar, Chowdhury, Kundu, Minwalla '21

- ▶ It can be argued that in the 'impact parameter (δ) space': $S(\delta, s) \sim s^m$, $m \leq 2$. Subtleties changing to the usual S(t, s).
- Strongest: Connection to the chaos bound :

Chandorkar, Chowdhury, Kundu, Minwalla '21.

Take AdS/CFT \rightarrow Theory on the bulk having a CFT dual \rightarrow Flat limit \rightarrow If $S \sim s^n$, $n \geq 3 \rightarrow$ The CFT violates the chaos bound proposed in Maldacena, Shenker, Stanford '15.

- Formulated in Chowdhury, Gadde, Gopalka, Halder, Janagal, Minwalla '19
- Same spirit as swampland conjectures. It states

The S-matrix of a consistent classical theory cannot grow faster than s² at fixed t

Classical: non analyticities can only be simple poles. Tree-level scattering

- Evidence for the conjecture: three arguments in support of it
 - True in any two-derivative theory involving particles with spin< 2. Obeyed by all classical string scattering amplitudes. Classical Einstein S-matrix saturates it.</p>

Chandorkar, Chowdhury, Kundu, Minwalla '21

- ▶ It can be argued that in the 'impact parameter (δ) space': $S(\delta, s) \sim s^m$, $m \leq 2$. Subtleties changing to the usual S(t, s).
- Strongest: Connection to the chaos bound :

Chandorkar, Chowdhury, Kundu, Minwalla '21.

★Take AdS/CFT → Theory on the bulk having a CFT dual → Flat limit → If S ~ sⁿ, n ≥ 3 → The CFT violates the chaos bound proposed in Maldacena, Shenker, Stanford '15.

• Apply CRG to a massive spin-2 particle 🔁

- Apply CRG to a massive spin-2 particle
 - \succ Can we construct a theory in which the scattering of $2 \rightarrow 2$ (identical) massive spin-2 particles goes like $\mathcal{A} \sim s^n$, $n \leq 2$?

 $\mathcal{A} = \alpha_{a}^{a} + \beta_{a}^{b} + \alpha_{b}^{a} + exchange of other particles} \sim s^{n}, n \leq 2$

> Include all possibilities: exchange of a massive and massless spin-2 particle, a spin-1 particle and a scalar particle

- Apply CRG to a massive spin-2 particle
 - > Can we construct a theory in which the scattering of $2 \rightarrow 2$ (identical) massive spin-2 particles goes like $\mathcal{A} \sim s^n$, $n \leq 2$?

 $\mathcal{A} = \alpha_{a}^{a} + \beta_{b}^{a} + \alpha_{b}^{a} + exchange of other particles} \sim s^{n}, n \leq 2$

- > Include all possibilities: exchange of a massive and massless spin-2 particle, a spin-1 particle and a scalar particle
- Previously on... Bonifacio, Hinterbichler '18 & Rosen '19
 - > Shown that at least $A \sim E^6$ for any theory containing one massive spin-2 particle and no higher spin particles.
 - > If one insists cancelling the terms producing $E^6 \rightarrow$ only trivial solution, all cubic couplings (the theory) must vanish
Classical Regge Growth (CRG) Conjecture

- Apply CRG to a massive spin-2 particle
 - > Can we construct a theory in which the scattering of $2 \rightarrow 2$ (identical) massive spin-2 particles goes like $\mathcal{A} \sim s^n$, $n \leq 2$?

 $\mathcal{A} = \alpha_{a}^{\gamma} + \beta_{a}^{\gamma} + \alpha_{a}^{\gamma} + exchange of other particles} \sim s^{n}, n \leq 2$

- > Include all possibilities: exchange of a massive and massless spin-2 particle, a spin-1 particle and a scalar particle
- Previously on... Bonifacio, Hinterbichler '18 & Rosen '19
 - > Shown that at least $A \sim E^6$ for any theory containing one massive spin-2 particle and no higher spin particles.
 - > If one insists cancelling the terms producing $E^6 \rightarrow$ only trivial solution, all cubic couplings (the theory) must vanish

Classical Regge Growth (CRG) Conjecture

- Apply CRG to a massive spin-2 particle
 - > Can we construct a theory in which the scattering of $2 \rightarrow 2$ (identical) massive spin-2 particles goes like $\mathcal{A} \sim s^n$, $n \leq 2$?

 $\mathcal{A} = \alpha_{a}^{\gamma} + \beta_{a}^{\gamma} + \alpha_{a}^{\gamma} + exchange of other particles} \sim s^{n}, n \leq 2$

- > Include all possibilities: exchange of a massive and massless spin-2 particle, a spin-1 particle and a scalar particle
- Previously on... Bonifacio, Hinterbichler '18 & Rosen '19
 - > Shown that at least $A \sim E^6$ for any theory containing one massive spin-2 particle and no higher spin particles.
 - > If one insists cancelling the terms producing $E^6 \rightarrow$ only trivial solution, all cubic couplings (the theory) must vanish
- Previous results related to our question but not exactly the same
 - ➢ Terms like $A ~ s^4 ~ E^8$ cancel in both cases
 - Forms like $\mathcal{A} \sim t^4$ cancel in Bonifacio, Hinterbichler '18 & Rosen '19 both noth in our case

Forms like
$$\mathcal{A} \sim \frac{s^3}{t} \sim E^4$$
 cancel in our case but ok in Bonifacio, Hinterbichler '18 & Rosen '19

- Model independent approach: construct directly the tree-level amplitudes. How?
 - 1. Find all possible Lorentz-invariant cubic vertices Costa, Penedones, Poland, Rychkov `11. Impose symmetry under $w^1 \leftrightarrow w^2 \leftrightarrow w^3$

- 3. Compute the Amplitude $A_{\text{tree}}(s, t) = A_{\text{exchange}} + A_{\text{contact}}$ for any polarisation: $5^4 = 625$ choices (not all different)
- 4. Take { $s \rightarrow \infty$, t fixed} and expand $A_{\text{tree}}(s, t) = A_0 s^0 + A_1 s^1 + A_2 s^2 + A_3 s^3 + \cdots$
- 5. Impose $A_i = 0, i \ge 3$

- Model independent approach: construct directly the tree-level amplitudes. How?
 - 1. Find all possible Lorentz-invariant cubic vertices Costa, Penedones, Poland, Rychkov `11. Impose symmetry under $w^1 \leftrightarrow w^2 \leftrightarrow w^3$

- 3. Compute the Amplitude $A_{\text{tree}}(s, t) = A_{\text{exchange}} + A_{\text{contact}}$ for any polarisation: $5^4 = 625$ choices (not all different)
- 4. Take { $s \rightarrow \infty$, t fixed} and expand $A_{\text{tree}}(s, t) = A_0 s^0 + A_1 s^1 + A_2 s^2 + A_3 s^3 + \cdots$
- 5. Impose $A_i = 0, i \ge 3$

- Model independent approach: construct directly the tree-level amplitudes. How?
 - 1. Find all possible Lorentz-invariant cubic vertices Costa, Penedones, Poland, Rychkov `11. Impose symmetry under $w^1 \leftrightarrow w^2 \leftrightarrow w^3$

- 3. Compute the Amplitude $A_{\text{tree}}(s, t) = A_{\text{exchange}} + A_{\text{contact}}$ for any polarisation: $5^4 = 625$ choices (not all different)
- 4. Take { $s \rightarrow \infty$, t fixed} and expand $A_{\text{tree}}(s, t) = A_0 s^0 + A_1 s^1 + A_2 s^2 + A_3 s^3 + \cdots$
- 5. Impose $A_i = 0, i \ge 3$

- Model independent approach: construct directly the tree-level amplitudes. How?
 - 1. Find all possible Lorentz-invariant cubic vertices Costa, Penedones, Poland, Rychkov `11. Impose symmetry under $w^1 \leftrightarrow w^2 \leftrightarrow w^3$

- 3. Compute the Amplitude $A_{\text{tree}}(s,t) = A_{\text{exchange}} + A_{\text{contact}}$ for any polarisation: $5^4 = 625$ choices (not all different)
- 4. Take { $s \rightarrow \infty$, t fixed} and expand $A_{\text{tree}}(s, t) = A_0 s^0 + A_1 s^1 + A_2 s^2 + A_3 s^3 + \cdots$
- 5. Impose $A_i = 0, i \ge 3$

- Model independent approach: construct directly the tree-level amplitudes. How?
 - 1. Find all possible Lorentz-invariant cubic vertices Costa, Penedones, Poland, Rychkov `11. Impose symmetry under $w^1 \leftrightarrow w^2 \leftrightarrow w^3$

- 3. Compute the Amplitude $A_{\text{tree}}(s,t) = A_{\text{exchange}} + A_{\text{contact}}$ for any polarisation: $5^4 = 625$ choices (not all different)
- 4. Take { $s \rightarrow \infty$, t fixed} and expand $A_{\text{tree}}(s, t) = A_0 s^0 + A_1 s^1 + A_2 s^2 + A_3 s^3 + \cdots$
- 5. Impose $A_i = 0, i \ge 3$

- Model independent approach: construct directly the tree-level amplitudes. How?
 - 1. Find all possible Lorentz-invariant cubic vertices Costa, Penedones, Poland, Rychkov `11. Impose symmetry under $w^1 \leftrightarrow w^2 \leftrightarrow w^3$

- 3. Compute the Amplitude $A_{\text{tree}}(s,t) = A_{\text{exchange}} + A_{\text{contact}}$ for any polarisation: $5^4 = 625$ choices (not all different)
- 4. Take { $s \rightarrow \infty$, *t* fixed} and expand $A_{\text{tree}}(s, t) = A_0 s^0 + A_1 s^1 + A_2 s^2 + A_3 s^3 + \cdots$
- 5. Impose $A_i = 0, i \ge 3$

Considering only parity-even terms:

- → 4 independent cubic vertices involving three massive spin-2 particles (E.g. $w_{\mu}^{1\nu}w_{\nu}^{2\alpha}w_{\alpha}^{3\mu}$, $R_{\alpha\beta}^{1\mu\nu}$, $R_{\gamma\delta}^{2\alpha\beta}R_{\mu\nu}^{3\gamma\delta}$, ...)
- > ∞ number of contact terms. E.g: $w^1 w^2 w^3 w^4 \rightarrow (\partial^{\mu} \partial_{\mu})^n w^1 w^2 w^3 w^4$, $n = 1, ..., \infty$
 - Different from the cubic case, where $p_1 + p_2 + p_3 = 0 \rightarrow (p_i \cdot p_j)^n = f(m^n)$
 - ♦ More derivatives \rightarrow higher $s^n \rightarrow$ most of the terms will vanish
 - In Bonifacio, Hinterbichler '18: algorithm to deal with an arbitrary but finite number of derivatives
 - Can be expanded in a basis of tensor structures: $\sum_{n,m} a_{m,n} s^n t^m (\sum_i f_i(s,t))$. In the $f_i(s,t)$ the derivatives are always contracted with the indices of the massive spin-2 particles, e.g $\partial^{\mu} \partial^{\nu} w^1_{\mu\nu} w^2^{\gamma}_{\delta} w^3^{\delta}_{\xi} w^4^{\xi}_{\gamma}$
 - Finite contribution at fixed $s^a t^b$
- > Results only considering the $f_i(s, t)$.
- > Exchange of a massless spin-2, massive spin-1 and scalar particle

- Considering only parity-even terms:
 - ▶ 4 independent cubic vertices involving three massive spin-2 particles (E.g. $w_{\mu}^{1\nu}w_{\nu}^{2\alpha}w_{\alpha}^{3\mu}$, $R_{\alpha\beta}^{1\mu\nu}$, $R_{\gamma\delta}^{2\alpha\beta}R_{\mu\nu}^{3\gamma\delta}$, ...)
 - > ∞ number of contact terms. E.g: $w^1 w^2 w^3 w^4 \rightarrow (\partial^{\mu} \partial_{\mu})^n w^1 w^2 w^3 w^4$, $n = 1, ..., \infty$
 - Different from the cubic case, where $p_1 + p_2 + p_3 = 0 \rightarrow (p_i \cdot p_j)^n = f(m^n)$
 - ♦ More derivatives \rightarrow higher $s^n \rightarrow$ most of the terms will vanish
 - In Bonifacio, Hinterbichler '18: algorithm to deal with an arbitrary but finite number of derivatives
 - Can be expanded in a basis of tensor structures: $\sum_{n,m} a_{m,n} s^n t^m (\sum_i f_i(s,t))$. In the $f_i(s,t)$ the derivatives are always contracted with the indices of the massive spin-2 particles, e.g. $\partial^{\mu} \partial^{\nu} w_{\mu\nu}^1 w_{\delta}^{2\gamma} w_{\delta}^{\delta} w_{\gamma}^{4\xi}$
 - ✤ Finite contribution at fixed $s^a t^b$
 - > Results only considering the $f_i(s, t)$.
 - > Exchange of a massless spin-2, massive spin-1 and scalar particle

- Considering only parity-even terms:
 - → 4 independent cubic vertices involving three massive spin-2 particles (E.g. $w_{\mu}^{1\nu}w_{\nu}^{2\alpha}w_{\alpha}^{3\mu}$, $R_{\alpha\beta}^{1\mu\nu}$, $R_{\gamma\delta}^{2\alpha\beta}R_{\mu\nu}^{3\gamma\delta}$, ...)
 - > ∞ number of contact terms. E.g: $w^1 w^2 w^3 w^4 \rightarrow (\partial^{\mu} \partial_{\mu})^n w^1 w^2 w^3 w^4$, $n = 1, ..., \infty$
 - Different from the cubic case, where $p_1 + p_2 + p_3 = 0 \rightarrow (p_i \cdot p_j)^n = f(m^n)$
 - ♦ More derivatives \rightarrow higher $s^n \rightarrow$ most of the terms will vanish
 - In Bonifacio, Hinterbichler '18: algorithm to deal with an arbitrary but finite number of derivatives
 - ← Can be expanded in a basis of tensor structures: $\sum_{n,m} a_{m,n} s^n t^m (\sum_i f_i(s,t))$. In the $f_i(s,t)$ the derivatives are always contracted with the indices of the massive spin-2 particles, e.g. $\partial^{\mu} \partial^{\nu} w_{\mu\nu}^1 w_{\delta}^{2\gamma} w_{\delta}^{3\delta} w_{\gamma}^{4\xi}$
 - Finite contribution at fixed $s^a t^b$
 - > Results only considering the $f_i(s, t)$.
 - **Exchange** of a massless spin-2, massive spin-1 and scalar particle

- Considering only parity-even terms:
 - → 4 independent cubic vertices involving three massive spin-2 particles (E.g. $w_{\mu}^{1\nu}w_{\nu}^{2\alpha}w_{\alpha}^{3\mu}$, $R_{\alpha\beta}^{1\mu\nu}$, $R_{\gamma\delta}^{2\alpha\beta}R_{\mu\nu}^{3\gamma\delta}$, ...)
 - > ∞ number of contact terms. E.g: $w^1 w^2 w^3 w^4 \rightarrow (\partial^{\mu} \partial_{\mu})^n w^1 w^2 w^3 w^4$, $n = 1, ..., \infty$
 - Different from the cubic case, where $p_1 + p_2 + p_3 = 0 \rightarrow (p_i \cdot p_j)^n = f(m^n)$
 - More derivatives \rightarrow higher $s^n \rightarrow$ most of the terms will vanish
 - In Bonifacio, Hinterbichler '18: algorithm to deal with an arbitrary but finite number of derivatives
 - ← Can be expanded in a basis of tensor structures: $\sum_{n,m} a_{m,n} s^n t^m (\sum_i f_i(s,t))$. In the $f_i(s,t)$ the derivatives are always contracted with the indices of the massive spin-2 particles, e.g. $\partial^{\mu} \partial^{\nu} w_{\mu\nu}^1 w_{\delta}^{2\gamma} w_{\delta}^{3\delta} w_{\gamma}^{4\xi}$
 - Finite contribution at fixed $s^a t^b$
 - > Results only considering the $f_i(s, t)$.
 - Exchange of a massless spin-2, massive spin-1 and scalar particle

• To satisfy the CRG: all cubic vertices must vanish \rightarrow the theory is trivial (there is no theory)

If the CRG conjecture is true, it does not seem possible to construct a theory containing a single (interacting) massive spin-2 particle (with no higher spin particles).

• Need to include all the contact terms. Include also parity-odd terms.

• From Bonifacio, Hinterbichler '18 & Rosen '19 we expect our result to hold in the most general case. Working on it

• To satisfy the CRG: all cubic vertices must vanish \rightarrow the theory is trivial (there is no theory)

If the CRG conjecture is true, it does not seem possible to construct a theory containing a single (interacting) massive spin-2 particle (with no higher spin particles).

• Need to include all the contact terms. Include also parity-odd terms.

• From Bonifacio, Hinterbichler '18 & Rosen '19 We expect our result to hold in the most general case. Working on it

• To satisfy the CRG: all cubic vertices must vanish \rightarrow the theory is trivial (there is no theory)

If the CRG conjecture is true, it does not seem possible to construct a theory containing a single (interacting) massive spin-2 particle (with no higher spin particles).

- Need to include all the contact terms. Include also parity-odd terms.
 - From Bonifacio, Hinterbichler '18 & Rosen '19 We expect our result to hold in the most general case. Working on it

- Applied the CRG conjecture ($A_{\text{Tree level}} \sim s^n$, $n \leq 2$) to theories containing a massive spin-2 particle (no higher spin)
- Preliminary results: it cannot be satisfied unless the theory is trivial (no theory).
 - > Theories containing one massive spin-2 particle (and no higher spin particles) would be in the swampland
- Cautious: need to include all contact terms and parity-odd terms. Previous results in the literature: expect our results to hold.
- Two main tasks to do:
 - > Locally: include all possible terms . Definite answer: are massive-2 particles compatible with the CRG conjecture?
 - Solution Support of it.

- Applied the CRG conjecture ($A_{\text{Tree level}} \sim s^n$, $n \leq 2$) to theories containing a massive spin-2 particle (no higher spin)
- Preliminary results: it cannot be satisfied unless the theory is trivial (no theory).
 - > Theories containing one massive spin-2 particle (and no higher spin particles) would be in the swampland
- Cautious: need to include all contact terms and parity-odd terms. Previous results in the literature: expect our results to hold.
- Two main tasks to do:
 - > Locally: include all possible terms . Definite answer: are massive-2 particles compatible with the CRG conjecture?
 - Solution Support of it.

- Applied the CRG conjecture ($A_{\text{Tree level}} \sim s^n$, $n \leq 2$) to theories containing a massive spin-2 particle (no higher spin) •
- Preliminary results: it cannot be satisfied unless the theory is trivial (no theory). •
 - > Theories containing one massive spin-2 particle (and no higher spin particles) would be in the swampland
- Bonifacio, Hinterbichler '18 & Rosen '19 Cautious: need to include all contact terms and parity-odd terms. Previous results in the literature: expect our results ٠ to hold.
- Two main tasks to do: ٠
 - Locally: include all possible terms. Definite answer: are massive-2 particles compatible with the CRG conjecture?
 - Globally: prove the CRG conjecture. Have a more direct evidence in support of it.
- Stay tunned!

- Applied the CRG conjecture ($A_{\text{Tree level}} \sim s^n$, $n \leq 2$) to theories containing a massive spin-2 particle (no higher spin)
- Preliminary results: it cannot be satisfied unless the theory is trivial (no theory).
 - > Theories containing one massive spin-2 particle (and no higher spin particles) would be in the swampland
- Cautious: need to include all contact terms and parity-odd terms. Previous results in the literature: expect our results to hold.
- Two main tasks to do:
 - > Locally: include all possible terms . Definite answer: are massive-2 particles compatible with the CRG conjecture?
 - Solution Support of it.
- Stay tunned!

Removed slides

QuickStart guide

• $2 \rightarrow 2$ tree level scattering of massive spin-2 particles

- > Momentum conservation: $p_1 + p_2 = p_3 + p_4$
- ➤ Mandelstam variables: $s = -(p_1 + p_2)^2$, $t = -(p_1 + p_3)^2$, $u = -(p_1 p_4)^2$, $s + t + u = 4m^2$

 $\succ \mathcal{A} = \mathcal{A}(s, t) \rightarrow \text{Large } s \text{ limit (Regge limit), expansion around } s \rightarrow \infty$. Large $\{s, t\}$ limit (High energy limit), expansion around $\{s, t\} \rightarrow \infty$

Recap of previous constraints

• Massive spin-2 particles have been (and are) extensively studied

Fierz, Pauli, Dam, Veltman, Zakharov, Vainsthein, Boulware, Deser, Dvali, Gabadadze, Gregory, Arkani-Hamed, Georgi, Schwartz, de Rham, Gabadadze, Tolley, Folkerts, Pritzel, Wintergerst, Hinterbichler, Bonifacio, Klaewer, Lüst, Palti, Heisenberg ...

- Not a general review (very biased) . Highlight some works relevant for us:
 - Klaewer, Lust, Palti, 18: swampland conjecture involving massive spin-2 particles
 - > Bonifacio, Hinterbichler, Hinterbichler, Joyce, Rosen '17, '18: constraints from superluminality
 - Bonifacio, Hinterbichler '20 : constraints from dimensional reduction
 - \succ Bonifacio, Hinterbichler '18 & Rosen '19: constraints on $\Lambda_{\rm EFT}$

Recap of previous constraints

• Massive spin-2 particles have been (and are) extensively studied

Fierz, Pauli, Dam, Veltman, Zakharov, Vainsthein, Boulware, Deser, Dvali, Gabadadze, Gregory, Arkani-Hamed, Georgi, Schwartz, de Rham, Gabadadze, Tolley, Folkerts, Pritzel, Wintergerst, Hinterbichler, Bonifacio, Klaewer, Lüst, Palti, Heisenberg...

- Not a general review (very biased) . Highlight some works relevant for us:
 - Klaewer, Lust, Palti, 18: swampland conjecture involving massive spin-2 particles
 - > Bonifacio, Hinterbichler, Hinterbichler, Joyce, Rosen '17, '18: constraints from superluminality
 - Bonifacio, Hinterbichler '20 : constraints from dimensional reduction
 - > Bonifacio, Hinterbichler '18 & Rosen '19: constraints on Λ_{EFT}

Klaewer, Lust, Palti, 18

Klaewer, Lust, Palti, 18

• An EFT with gravity $g_{\mu\nu}$ + massive spin-2 particle $w_{\mu\nu}$ with mass m and interaction scale of the helicity-1 mode M_w , has a cut-off scale Λ_m

Klaewer, Lust, Palti, 18

- An EFT with gravity $g_{\mu\nu}$ + massive spin-2 particle $w_{\mu\nu}$ with mass m and interaction scale of the helicity-1 mode M_w , has a cut-off scale Λ_m
- Strong form: if the graviton itself is massive

 $\Lambda_m \sim m$

Experimental bounds: $m_{grav} < 10^{-22} eV$; Ligo, Virgo '16

Klaewer, Lust, Palti, 18

- An EFT with gravity $g_{\mu\nu}$ + massive spin-2 particle $w_{\mu\nu}$ with mass m and interaction scale of the helicity-1 mode M_w , has a cut-off scale Λ_m
 - $\Lambda_{m} \sim \frac{m M_{p}}{M_{w}}$ MGC $\Lambda_{wGC} \sim g_{U(1)}M_{p},$ $g_{U(1)} = \frac{m}{\sqrt{2}M_{w}}$ $Follows from an application of the WGC conjecture to the helicity-1 mode of the massive spin-2 field:
 <math display="block">w_{\mu\nu} = h_{\mu\nu} + 2\partial_{(\mu}\chi_{\nu)} + \prod_{\mu\nu}\pi$ Plugging into the Fierz-Pauli action $L_{FP} \ni -\frac{1}{8}m^{2}F_{\mu\nu}F^{\mu\nu}$ Couples to matter current through $L_{int} = \frac{m^{2}}{M_{w}}\chi_{\mu}J^{\mu}$ $F_{\mu\nu} = \partial_{\mu}\chi_{\nu} \partial_{\nu}\chi_{\mu}$
 - Strong form: if the graviton itself is massive

 $\Lambda_m \sim m$

Experimental bounds: $m_{grav} < 10^{-22} eV$; Ligo, Virgo '16

• Some objections in de Rham, Heisenberg, Tolley '18

Superluminality constraints

Bonifacio, Hinterbichler, Joyce, Rosen '17, '18

- Demanding absence of time advance in eikonal scattering of $2 \rightarrow 2$ massive spin-2 particles (similar to Arkani-Hamed, Georgi, Schwartz '02):
 - Model independent: S-matrix approach
 - Constraints on the cubic vertices of the theory
 - Translates into constraints on the allowed Lagrangians

Superluminality constraints

Bonifacio, Hinterbichler, Joyce, Rosen '17, '18

- Demanding absence of time advance in eikonal scattering of $2 \rightarrow 2$ massive spin-2 particles (similar to Arkani-Hamed, Georgi, Schwartz '02):
 - Model independent: S-matrix approach
 - Constraints on the cubic vertices of the theory
 - Translates into constraints on the allowed Lagrangians
 - Hinterbichler, Joyce, Rosen '17
- Single massive spin-2 particle
- ➤ Cubic vertices must appear in a specific linear combination → specific linear combination for the terms in the Lagrangian producing them

$$\mathbf{A} \quad \mathsf{dRGT}: L \sim \sqrt{-g} \left(R - \frac{m^2}{4} V(h, \alpha_1, \alpha_2) \right), \{\alpha_1, \alpha_2\} \in R$$

♦ Pseudolinear theory: $L \sim L_{FP} + \lambda_1(L_{2,3} + L_{0,3}) + \lambda_2 L_{0,4}$, with $L_{n,m} = \partial^n h^m$, $\lambda_1 \in R$

- Bonifacio, Hinterbichler, Joyce, Rosen '18
- Massive spin-2 particle coupled to gravity
 - Vertices with 2 gravitons 1 massive spin-2 particle: must vanish. Consistent with Arkani-Hamed, Georgi, Schwartz '02
 - Particular linear combination for the cubic terms for the two spin-2 particles (1 parameter family)
 - > Additional constraints if matter is added

Space of parameters is reduce but theories are not ruled out

Superluminality constraints

Bonifacio, Hinterbichler, Joyce, Rosen '17, '18

- Demanding absence of time advance in eikonal scattering of $2 \rightarrow 2$ massive spin-2 particles (similar to Arkani-Hamed, Georgi, Schwartz '02):
 - Model independent: S-matrix approach
 - Constraints on the cubic vertices of the theory
 - Translates into constraints on the allowed Lagrangians

Hinterbichler, Joyce, Rosen '17

- Single massive spin-2 particle
- ➤ Cubic vertices must appear in a specific linear combination → specific linear combination for the terms in the Lagrangian producing them

$$\mathbf{\diamond} \quad \mathsf{dRGT}: L \sim \sqrt{-g} \left(R - \frac{m^2}{4} V(h, \alpha_1, \alpha_2) \right), \{\alpha_1, \alpha_2\} \in R$$

• Pseudolinear theory: $L \sim L_{FP} + \lambda_1(L_{2,3} + L_{0,3}) + \lambda_2 L_{0,4}$, with $L_{n,m} = \partial^n h^m$, $\lambda_1 \in R$

- Bonifacio, Hinterbichler, Joyce, Rosen '18
- Massive spin-2 particle coupled to gravity
 - Vertices with 2 gravitons 1 massive spin-2 particle: must vanish. Consistent with Arkani-Hamed, Georgi, Schwartz '02
 - Particular linear combination for the cubic terms for the two spin-2 particles (1 parameter family)
 - Additional constraints if matter is added

Space of parameters is reduce but theories are not ruled out

Bonifacio, Hinterbichler '20

Bonifacio, Hinterbichler '20

• In GR in any dimension the four-point graviton amplitude \mathcal{A} behaves at high energies as $\mathcal{A} \sim E^2$.

E = Center of mass energy

▶ Four-point massive spin-2 amplitude → generically $\mathcal{A} \sim E^{10}$; dRGT theory $\mathcal{A} \sim E^{6}$

Bonifacio, Hinterbichler '20

• In GR in any dimension the four-point graviton amplitude \mathcal{A} behaves at high energies as $\mathcal{A} \sim E^2$.

¹¹²²¹²

E = Center of mass energy

- ▶ Four-point massive spin-2 amplitude → generically $\mathcal{A} \sim E^{10}$; dRGT theory $\mathcal{A} \sim E^{6}$
- GR dimensionally reduced with all the modes kept \rightarrow just a rewriting $\rightarrow A \sim E^2$ for the lower dimensional amplitudes
 - From the lower dimensional point of view: massless spin-2 coupled to a tower of massive gravitons, vectors and scalars
 - $\blacktriangleright \quad \text{Computing the amplitude: } \mathcal{A} \sim \alpha_{10} E^{10} + \alpha_8 E^8 + \alpha_6 E^6 + \alpha_4 E^4 + \alpha_2 E^2 + \cdots$
 - $\succ \alpha_{10}, \alpha_8, \alpha_6, \alpha_4$ must vanish

Bonifacio, Hinterbichler '20

• In GR in any dimension the four-point graviton amplitude \mathcal{A} behaves at high energies as $\mathcal{A} \sim E^2$.

- GR dimensionally reduced with all the modes kept \rightarrow just a rewriting $\rightarrow \mathcal{A} \sim E^2$ for the lower dimensional amplitudes
 - From the lower dimensional point of view: massless spin-2 coupled to a tower of massive gravitons, vectors and scalars
 - $\blacktriangleright \quad \text{Computing the amplitude: } \mathcal{A} \sim \alpha_{10}E^{10} + \alpha_8E^8 + \alpha_6E^6 + \alpha_4E^4 + \alpha_2E^2 + \cdots$
 - $\alpha_{10}, \alpha_8, \alpha_6, \alpha_4$ must vanish
- D-dim GR in $\mathcal{M}_D = \mathbb{R}^{1,D-d} \times \mathcal{N}^d$, with \mathcal{N} closed, smooth, connected, orientable, Ricci flat Riemannian manifold. Terms up to two derivatives.

E = Center of mass energy

Constraints on Λ_{EFT}

Bonifacio, Hinterbichler '18 & Rosen '19

By Λ_{EFT} we mean the scale at which perturbative unitarity breaks down (strong coupling scale): news degrees of freedom or strong coupling effects must be taken into account at this scale.

Summary so far

- Massive spin-2 particles
 - Linearised level: unique theory, Fierz-Pauli theory.
 - Non-linear extension: dangerous! Ghosts may appear! Two known ghost-free non-linear theories: dRGT (massive gravity) and pseudolinear theory
 - Conjectured that $\Lambda_m \sim \frac{m M_p}{M_w}$ (coupled to gravity), strong form: $\Lambda_m \sim m$ (massive gravity); motivated by WGC.
 - Shown that at least $A \sim E^6$ for any theory containing one massive spin-2 particle and no higher spin particles.
 - No parametric gaps between massive spin-2 particles coming from a tower produced when dimensional reducing GR (at two derivative level, some assumptions)

A swampland menace...

