
Massive spin-2 particles and the swampland

Joan Quirant 

DIP meeting, 22nd March 2023

Work in progress with S. Kundu and E. Palti



Motivation



Motivation
• Massive spin-2 particles appear in (string) compactifications

➢ KK copies of the graviton

➢ Ignore their effects at low energies

➢ Top-down approach

E

Graviton,m = 0

ΛEFT

Massive spin − 2 replicas



Motivation
• Massive spin-2 particles appear in (string) compactifications

➢ KK copies of the graviton

➢ Ignore their effects at low energies

➢ Top-down approach

• But… from a bottom-up perspective

E

Graviton,m = 0

ΛEFT

Massive spin − 2 replicas

➢ Gravity coupled to a massive spin-2 particle

E

Graviton,m = 0

ΛEFT

Massive spin − 2 particle

➢ Single massive spin-2 particle

E

Massive spin − 2 particle

ΛEFT

Swampland 
program



Motivation
• Massive spin-2 particles appear in (string) compactifications

➢ KK copies of the graviton

➢ Ignore their effects at low energies

➢ Top-down approach

• But… from a bottom-up perspective

E

Graviton,m = 0

ΛEFT

Massive spin − 2 replicas

➢ Gravity coupled to a massive spin-2 particle

E

Graviton,m = 0

ΛEFT

Massive spin − 2 particle

➢ Single massive spin-2 particle

E

Massive spin − 2 particle

ΛEFT

(Swampland) 
constraints for massive 

spin-2 particles?



Motivation
• Massive spin-2 particles appear in (string) compactifications

➢ KK copies of the graviton

➢ Ignore their effects at low energies

➢ Top-down approach

• But… from a bottom-up perspective

E

Graviton,m = 0

ΛEFT

Massive spin − 2 replicas

➢ Gravity coupled to a massive spin-2 particle

E

Graviton,m = 0

ΛEFT

Massive spin − 2 particle

➢ Single massive spin-2 particle

E

Massive spin − 2 particle

ΛEFT

(Swampland) 
constraints for massive 

spin-2 particles?

Massive spin-2 
particles

Swampland 
program

Are these 
scenarios in the 

swampland?



Contents
0) Motivation

1) QuickStart guide

2) Recap of previous constraints

3) Our approach: the Classical Regge Growth (CRG) Conjecture.

4) Results (and pending work)

6) Conclusions and outlook

We will only  consider 
𝑑 = 4 in this talk



QuickStart guide
• Massive spin-2 particles 𝑤𝜇𝜈



QuickStart guide
• Massive spin-2 particles 𝑤𝜇𝜈

➢ 5 different polarisations (2 tensorial, 2 vectorial, 1 scalar)



QuickStart guide
• Massive spin-2 particles 𝑤𝜇𝜈

➢ 5 different polarisations (2 tensorial, 2 vectorial, 1 scalar)

➢ Free (linearised) theory described by the Fierz-Pauli action Fierz, Pauli 1939

𝐿𝐹𝑃 ∼ −
1

2
𝜕𝛼𝑤𝜇𝜈 𝜕

𝛼𝑤𝜇𝜈 + 𝜕𝛼𝑤𝜇𝜈 𝜕
𝜈𝑤𝜇𝛼 − 𝜕𝜇𝑤𝜕𝜈𝑤

𝜇𝜈 +
1

2
𝜕𝜇𝑤𝜕

𝜇𝑤 −
1

2
𝑚2(𝑤𝜇𝜈 − 𝑤2)

Massless spin-2, ห−𝑔𝑅
Linearised

Mass term



QuickStart guide
• Massive spin-2 particles 𝑤𝜇𝜈

➢ Free (linearised) theory described by the Fierz-Pauli action Fierz, Pauli 1939

𝐿𝐹𝑃 ∼ −
1

2
𝜕𝛼𝑤𝜇𝜈 𝜕

𝛼𝑤𝜇𝜈 + 𝜕𝛼𝑤𝜇𝜈 𝜕
𝜈𝑤𝜇𝛼 − 𝜕𝜇𝑤𝜕𝜈𝑤

𝜇𝜈 +
1

2
𝜕𝜇𝑤𝜕

𝜇𝑤 −
1

2
𝑚2(𝑤𝜇𝜈 − 𝑤2)

Massless spin-2, ห−𝑔𝑅
Linearised

Mass term

➢ Non-linear interactions: ghosts may appear Boulware, Deser, 1972                 . Two ghost-free theories

❖ de Rham, Gabadadze, and Tolley (dRGT) theory 𝐿 ∼ −𝑔 𝑅 −
𝑚2

4
𝑉 𝑤, 𝛼1, 𝛼2 , 𝛼1, 𝛼2 ∈ 𝑅

❖ Pseudolinear theory: 𝐿 ∼ 𝐿𝐹𝑃 + 𝜆1𝐿2,3 + 𝜆2𝐿0,3 + 𝜆3𝐿0,4, with 𝐿𝑛,𝑚 = 𝜕𝑛𝑤𝑚, 𝜆𝑖 ∈ 𝑅

Rham, Gabadadze, Tolley ’10,’11

Folkerts, Pritzel, Wintergerst ’11, Hinterbichler ’13

➢ 5 different polarisations (2 tensorial, 2 vectorial, 1 scalar)



QuickStart guide
• Massive spin-2 particles 𝑤𝜇𝜈

➢ Free (linearised) theory described by the Fierz-Pauli action Fierz, Pauli 1939

𝐿𝐹𝑃 ∼ −
1

2
𝜕𝛼𝑤𝜇𝜈 𝜕

𝛼𝑤𝜇𝜈 + 𝜕𝛼𝑤𝜇𝜈 𝜕
𝜈𝑤𝜇𝛼 − 𝜕𝜇𝑤𝜕𝜈𝑤

𝜇𝜈 +
1

2
𝜕𝜇𝑤𝜕

𝜇𝑤 −
1

2
𝑚2(𝑤𝜇𝜈 − 𝑤2)

Massless spin-2, ห−𝑔𝑅
Linearised

Mass term

➢ Non-linear interactions: ghosts may appear Boulware, Deser, 1972                 . Two ghost-free theories

❖ de Rham, Gabadadze, and Tolley (dRGT) theory 𝐿 ∼ −𝑔 𝑅 −
𝑚2

4
𝑉 𝑤, 𝛼1, 𝛼2 , 𝛼1, 𝛼2 ∈ 𝑅

❖ Pseudolinear theory: 𝐿 ∼ 𝐿𝐹𝑃 + 𝜆1𝐿2,3 + 𝜆2𝐿0,3 + 𝜆3𝐿0,4, with 𝐿𝑛,𝑚 = 𝜕𝑛𝑤𝑚, 𝜆𝑖 ∈ 𝑅

Rham, Gabadadze, Tolley ’10,’11

Folkerts, Pritzel, Wintergerst ’11, Hinterbichler ’13

Our approach will be model-independent, with no reference to any specific theory

➢ 5 different polarisations (2 tensorial, 2 vectorial, 1 scalar)



QuickStart guide
• The four-point amplitude of  massive spin-2 particles

𝒜 = +

𝑤𝜇𝜈
1

𝑤𝜇𝜈
2

𝑤𝜇𝜈
3

𝑤𝜇𝜈
4

𝑤𝜇𝜈
1

𝑤𝜇𝜈
3

𝑤𝜇𝜈
4𝑤𝜇𝜈

2

+ exchange of other particles (if there are)

➢ Momentum conservation: 𝑝1 + 𝑝2 = 𝑝3 + 𝑝4

➢ Mandelstam variables: 𝑠 = − 𝑝1 + 𝑝2
2, 𝑡 = − 𝑝1 + 𝑝3

2, 𝑢 = − 𝑝1 − 𝑝4
2, 𝑠 + 𝑡 + 𝑢 = 4𝑚2

➢ 𝒜 = 𝒜 s, t → Large 𝑠 limit (Regge limit), expansion around 𝑠 → ∞. Large {𝑠, 𝑡} limit (High energy limit), expansion around 𝑠, 𝑡 → ∞
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Recap of previous constraints
• Massive spin-2 particles have been (and are) extensively studied

Fierz, Pauli, Dam, Veltman, Zakharov, Vainsthein, Boulware, Deser, Dvali, Gabadadze, Gregory, Arkani-Hamed, Georgi, Schwartz, de Rham, 
Gabadadze, Tolley, Folkerts, Pritzel, Wintergerst , Hinterbichler, Bonifacio, Klaewer, Lüst, Palti, Heisenberg ...

• Not a general review (very biased) . Highlight some works relevant for us:

➢ Klaewer, Lust, Palti, 18: swampland conjecture involving massive spin-2 particles 

➢ Bonifacio, Hinterbichler, Hinterbichler, Joyce, Rosen ’17, ’18: constraints from superluminality

➢ Bonifacio, Hinterbichler ’20 : constraints from dimensional reduction

➢ Bonifacio, Hinterbichler ’18 & Rosen ’19: constraints on ΛEFT



The spin-2 conjecture
Klaewer, Lust, Palti, 18
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The spin-2 conjecture

• An EFT with gravity 𝑔𝜇𝜈 + massive spin-2 particle 𝑤𝜇𝜈with mass 𝑚 and interaction scale of the helicity-1 mode 𝑀𝑤, has a cut-off scale Λ𝑚

Klaewer, Lust, Palti, 18

Λ𝑚 ∼
𝑚𝑀𝑝

𝑀𝑤

➢ Follows from an application of the WGC conjecture to the helicity-1 mode  of the massive spin-2 field:

𝑤𝜇𝜈 = ℎ𝜇𝜈 + 2𝜕(𝜇𝜒𝜈) + Π𝜇𝜈
𝐿 𝜋

Helicity-2 
mode

Helicity-1 
mode

Helicity-0 
mode

𝐿𝐹𝑃 ∋ −
1

8
𝑚2𝐹𝜇𝜈 𝐹

𝜇𝜈

𝐹𝜇𝜈 = 𝜕𝜇𝜒𝜈 − 𝜕𝜈𝜒𝜇

Couples to matter 
current through

𝐿𝑖𝑛𝑡 =
𝑚2

𝑀𝑤
𝜒𝜇𝐽

𝜇

WGC
Λ𝑊𝐺𝐶 ∼ 𝑔𝑈 1 𝑀𝑝,

𝑔𝑈 1 =
m

2𝑀𝑤
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Constraints on ΛEFT
By ΛEFT we mean the scale at which perturbative
unitarity breaks down (strong coupling scale):
news degrees of freedom or strong coupling
effects must be taken into account at this scale.
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➢ How? Studying when perturbative unitarity breaks down: 𝒜 ∼
𝐸𝑛

Λ𝑛
→ 𝐸 ∼ Λ → 𝒜 ∼ 1

➢ Study tree-level four-particle scattering amplitudes of massive spin-2 particles: can be done in general, without reference to any Lagrangian
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𝒜 = + + + +𝛼 𝛽 𝜆𝛾 𝜉
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➢ Scattering of 2 → 2massive spin-2 particles, amplitudes go like: 𝒜 ∼
𝐸2 𝑘+2

𝑀𝑝𝑚
𝑘+1 2 → 𝒜 ∼ 1 when 𝐸 ≡ Λ𝑘 ∼ 𝑀𝑝𝑚

𝑘+1 1/(𝑘+2)

➢ Maximize Λ𝑘∼ 𝑀𝑝𝑚
𝑘+1 1/(𝑘+2)

Construct the theory with the lowest possible 𝑘: cancellations among the different contributions
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2 1/3
highest possible scale for a theory containing one massive spin-2 particle (and no higher spin particles)

➢ 𝒜 ∼
𝐸6

𝑀𝑝𝑚
2 2. Contributions with 𝒜 ∼ 𝐸𝑚, with 𝑚 > 6 chosen to cancel each other

➢ Can only be improved including additional massive particles with spin 2 or higher spin

➢ If one insists on cancelling the terms producing 𝐸6 → only trivial solution, all cubic couplings (the theory) must vanish



Constraints on ΛEFT
• Λ ≡ Λ3 = 𝑀𝑝𝑚

2 1/3
highest possible scale for a theory containing one massive spin-2 particle (and no higher spin particles)

• Our work will be along the same lines. Instead of the behaviour 𝐸𝑚, 𝑚 ≥ 6, we will only be interested in the 
amplitudes going like 𝑠𝑚, m ≥ 3.

➢ 𝒜 ∼
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Classical Regge Growth (CRG) Conjecture
• Formulated in Chowdhury, Gadde, Gopalka, Halder, Janagal, Minwalla ’19

• Same spirit as swampland conjectures. It states

➢ Classical: non analyticities can only be simple poles. Tree-level scattering

• Evidence for the conjecture: three arguments in support of it

➢ True in any two-derivative theory involving particles with spin< 2.Obeyed by all classical string scattering amplitudes. Classical 
Einstein S-matrix saturates it.

➢ It can be argued that in the ‘impact parameter (𝛿) space’: 𝑆 𝛿, 𝑠 ∼ 𝑠𝑚, m ≤ 2. Subtleties changing  to the usual 𝑆 𝑡, 𝑠 .

➢ Strongest: Connection to the chaos bound :

❖Take AdS/CFT → Theory on the bulk having a CFT dual → Flat limit→ If 𝑆 ∼ 𝑠𝑛, 𝑛 ≥ 3→The CFT violates the chaos bound 
proposed in Maldacena, Shenker, Stanford ’15 .

Chandorkar, Chowdhury, Kundu, Minwalla ’21

Chandorkar, Chowdhury, Kundu, Minwalla ’21.

The S-matrix of a consistent classical theory cannot grow faster than s2 at fixed t
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Classical Regge Growth (CRG) Conjecture
• Apply CRG to a massive spin-2 particle
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• Apply CRG to a massive spin-2 particle

➢ Can we construct a theory in which the scattering of 2 → 2 (identical) massive spin-2 particles goes like 𝒜 ∼ 𝑠𝑛, 𝑛 ≤ 2?

• Previously on… Bonifacio, Hinterbichler  ’18 & Rosen ’19

➢ Shown that at least 𝐴 ∼ 𝐸6 for any theory containing one massive spin-2 particle and no higher spin particles.

➢ If one insists cancelling the terms producing 𝐸6 → only trivial solution, all cubic couplings (the theory) must vanish

𝒜 = +𝛼 𝛽 + exchange of other particles ∼ 𝑠𝑛, 𝑛 ≤ 2

• Previous results related to our question but not exactly the same

➢ Terms like 𝒜 ∼ 𝑠4 ∼ 𝐸8 cancel in both cases

➢ Terms like 𝒜 ∼ 𝑡4 cancel in Bonifacio, Hinterbichler  ’18 & Rosen ’19  both noth in our case

➢ Terms like 𝒜 ∼
𝑠3

𝑡
∼ 𝐸4 cancel in our case but ok in Bonifacio, Hinterbichler  ’18 & Rosen ’19 

➢ Include all possibilities: exchange of a massive and massless spin-2 particle, a spin-1 particle and a scalar particle
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❖ Different from the cubic case, where 𝑝1 + 𝑝2 + 𝑝3 = 0 → pi ⋅ 𝑝𝑗
𝑛
= 𝑓 𝑚𝑛

❖ More derivatives → higher 𝑠𝑛 → most of the terms will vanish

❖ In Bonifacio, Hinterbichler ’18: algorithm to deal with an arbitrary but finite number of derivatives

❖ Can be expanded in a basis of tensor structures: σ𝑛,𝑚 𝑎𝑚,𝑛𝑠
𝑛𝑡𝑚 σ𝑖 𝑓𝑖(𝑠, 𝑡) . In the 𝑓𝑖(𝑠, 𝑡) the derivatives are always 
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❖ Finite contribution at fixed 𝑠𝑎𝑡𝑏
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➢ 4 independent cubic vertices involving three massive spin-2 particles (E.g. 𝑤𝜇
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𝑛𝑤1𝑤2𝑤3𝑤4, 𝑛 = 1,… ,∞

❖ Different from the cubic case, where 𝑝1 + 𝑝2 + 𝑝3 = 0 → pi ⋅ 𝑝𝑗
𝑛
= 𝑓 𝑚𝑛

❖ More derivatives → higher 𝑠𝑛 → most of the terms will vanish

❖ In Bonifacio, Hinterbichler ’18: algorithm to deal with an arbitrary but finite number of derivatives

❖ Can be expanded in a basis of tensor structures: σ𝑛,𝑚 𝑎𝑚,𝑛𝑠
𝑛𝑡𝑚 σ𝑖 𝑓𝑖(𝑠, 𝑡) . In the 𝑓𝑖(𝑠, 𝑡) the derivatives are always 

contracted with the indices of the massive spin-2 particles, e.g. 𝜕𝜇𝜕𝜈𝑤𝜇𝜈
1 𝑤2

𝛿
𝛾
𝑤3

𝜉
𝛿
𝑤4

𝛾
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❖ Finite contribution at fixed 𝑠𝑎𝑡𝑏

➢ Results only considering the 𝑓𝑖 𝑠, 𝑡 .

➢ Exchange of a massless spin-2, massive spin-1 and scalar particle
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Results
• To satisfy the CRG: all cubic vertices must vanish→ the theory is trivial (there is no theory)

If the CRG conjecture is true, it does not seem possible to construct a theory containing a single (interacting) massive 
spin-2 particle (with no higher spin particles). 

E

ΛEFT

E

Graviton,m = 0

ΛEFT

Massive spin − 2 particle

• Need to include all the contact terms. Include also parity-odd terms.

• From Bonifacio, Hinterbichler  ’18 & Rosen ’19 we expect our result to hold in the most general case. Working on it
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Thank you for your attention!

• Applied the CRG conjecture (𝒜Tree level ∼ 𝑠𝑛, 𝑛 ≤ 2) to theories containing a massive spin-2 particle (no higher spin)

• Preliminary results: it cannot be satisfied unless the theory is trivial (no theory).
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QuickStart guide
• 2 → 2 tree level scattering of  massive spin-2 particles

𝒜 = +

𝑤𝜇𝜈
1

𝑤𝜇𝜈
2

𝑤𝜇𝜈
3

𝑤𝜇𝜈
4

𝑤𝜇𝜈
1

𝑤𝜇𝜈
3

𝑤𝜇𝜈
4𝑤𝜇𝜈

2

+ exchange of other particles (if there are)

➢ Momentum conservation: 𝑝1 + 𝑝2 = 𝑝3 + 𝑝4

➢ Mandelstam variables: 𝑠 = − 𝑝1 + 𝑝2
2, 𝑡 = − 𝑝1 + 𝑝3

2, 𝑢 = − 𝑝1 − 𝑝4
2, 𝑠 + 𝑡 + 𝑢 = 4𝑚2

➢ 𝒜 = 𝒜 s, t → Large 𝑠 limit (Regge limit), expansion around 𝑠 → ∞. Large {𝑠, 𝑡} limit (High energy limit), expansion around 𝑠, 𝑡 → ∞
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Recap of previous constraints
• Massive spin-2 particles have been (and are) extensively studied

Fierz, Pauli, Dam, Veltman, Zakharov, Vainsthein, Boulware, Deser, Dvali, Gabadadze, Gregory, Arkani-Hamed, Georgi, Schwartz, de Rham, 
Gabadadze, Tolley, Folkerts, Pritzel, Wintergerst , Hinterbichler, Bonifacio, Klaewer, Lüst, Palti, Heisenberg ...

• Not a general review (very biased) . Highlight some works relevant for us:

➢ Klaewer, Lust, Palti, 18: swampland conjecture involving massive spin-2 particles 

➢ Bonifacio, Hinterbichler, Hinterbichler, Joyce, Rosen ’17, ’18: constraints from superluminality

➢ Bonifacio, Hinterbichler ’20 : constraints from dimensional reduction

➢ Bonifacio, Hinterbichler ’18 & Rosen ’19: constraints on ΛEFT



The spin-2 conjecture
Klaewer, Lust, Palti, 18



Plugging into the 
Fierz-Pauli action 

The spin-2 conjecture

• An EFT with gravity 𝑔𝜇𝜈 + massive spin-2 particle 𝑤𝜇𝜈with mass 𝑚 and interaction scale of the helicity-1 mode 𝑀𝑤, has a cut-off scale Λ𝑚

Klaewer, Lust, Palti, 18

Λ𝑚 ∼
𝑚𝑀𝑝

𝑀𝑤

➢ Follows from an application of the WGC conjecture to the helicity-1 mode  of the massive spin-2 field:

𝑤𝜇𝜈 = ℎ𝜇𝜈 + 2𝜕(𝜇𝜒𝜈) + Π𝜇𝜈
𝐿 𝜋

Helicity-2 
mode

Helicity-1 
mode

Helicity-0 
mode

𝐿𝐹𝑃 ∋ −
1

8
𝑚2𝐹𝜇𝜈 𝐹

𝜇𝜈

𝐹𝜇𝜈 = 𝜕𝜇𝜒𝜈 − 𝜕𝜈𝜒𝜇

Couples to matter 
current through

𝐿𝑖𝑛𝑡 =
𝑚2

𝑀𝑤
𝜒𝜇𝐽

𝜇

WGC
Λ𝑊𝐺𝐶 ∼ 𝑔𝑈 1 𝑀𝑝,

𝑔𝑈 1 =
m

2𝑀𝑤



Plugging into the 
Fierz-Pauli action 

The spin-2 conjecture

• An EFT with gravity 𝑔𝜇𝜈 + massive spin-2 particle 𝑤𝜇𝜈with mass 𝑚 and interaction scale of the helicity-1 mode 𝑀𝑤, has a cut-off scale Λ𝑚

Klaewer, Lust, Palti, 18

Λ𝑚 ∼
𝑚𝑀𝑝

𝑀𝑤

➢ Follows from an application of the WGC conjecture to the helicity-1 mode  of the massive spin-2 field:

𝑤𝜇𝜈 = ℎ𝜇𝜈 + 2𝜕(𝜇𝜒𝜈) + Π𝜇𝜈
𝐿 𝜋

Helicity-2 
mode

Helicity-1 
mode

Helicity-0 
mode

𝐿𝐹𝑃 ∋ −
1

8
𝑚2𝐹𝜇𝜈 𝐹

𝜇𝜈

𝐹𝜇𝜈 = 𝜕𝜇𝜒𝜈 − 𝜕𝜈𝜒𝜇

Couples to matter 
current through

𝐿𝑖𝑛𝑡 =
𝑚2

𝑀𝑤
𝜒𝜇𝐽

𝜇

WGC
Λ𝑊𝐺𝐶 ∼ 𝑔𝑈 1 𝑀𝑝,

𝑔𝑈 1 =
m

2𝑀𝑤

• Strong form: if the graviton itself is massive

Λ𝑚 ∼ 𝑚

Experimental bounds: 𝑚𝑔𝑟𝑎𝑣 < 10−22𝑒𝑉; Ligo, Virgo ’16
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𝐹𝜇𝜈 = 𝜕𝜇𝜒𝜈 − 𝜕𝜈𝜒𝜇
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current through
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𝑀𝑤
𝜒𝜇𝐽

𝜇

WGC
Λ𝑊𝐺𝐶 ∼ 𝑔𝑈 1 𝑀𝑝,

𝑔𝑈 1 =
m

2𝑀𝑤

• Strong form: if the graviton itself is massive

Λ𝑚 ∼ 𝑚

• Some objections in  de Rham, Heisenberg, Tolley ’18

Experimental bounds: 𝑚𝑔𝑟𝑎𝑣 < 10−22𝑒𝑉; Ligo, Virgo ’16



Superluminality constraints
Bonifacio, Hinterbichler, Joyce, Rosen ’17, ’18

• Demanding absence of time advance in eikonal scattering of 2 → 2 massive spin-2 particles (similar to Arkani-Hamed, Georgi, Schwartz ’02) : 

➢ Model independent: S-matrix approach

➢ Constraints on the cubic vertices of the theory

➢ Translates into constraints on the allowed Lagrangians
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Superluminality constraints
Bonifacio, Hinterbichler, Joyce, Rosen ’17, ’18

• Demanding absence of time advance in eikonal scattering of 2 → 2 massive spin-2 particles (similar to Arkani-Hamed, Georgi, Schwartz ’02) : 

➢ Model independent: S-matrix approach

➢ Constraints on the cubic vertices of the theory

➢ Translates into constraints on the allowed Lagrangians

• Single massive spin-2 particle

➢ Cubic vertices must appear in a specific linear combination → specific 
linear combination for the terms in the Lagrangian producing them 

❖ dRGT: 𝐿 ∼ −𝑔 𝑅 −
𝑚2

4
𝑉 ℎ, 𝛼1, 𝛼2 , 𝛼1, 𝛼2 ∈ 𝑅

❖ Pseudolinear theory: 𝐿 ∼ 𝐿𝐹𝑃 + 𝜆1(𝐿2,3 + 𝐿0,3) + 𝜆2𝐿0,4, 

with 𝐿𝑛,𝑚 = 𝜕𝑛ℎ𝑚, 𝜆1 ∈ 𝑅

• Massive spin-2 particle coupled to gravity
Hinterbichler, Joyce, Rosen ’17 Bonifacio, Hinterbichler, Joyce, Rosen ’18

➢ Vertices with 2 gravitons 1 massive spin-2 particle: must vanish. 
Consistent with Arkani-Hamed, Georgi, Schwartz ’02

➢ Particular linear combination for the cubic terms for the two spin-
2 particles (1 parameter family) 

➢ Additional constraints if matter is added

Space of parameters is reduce but theories are not ruled out
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• In GR in any dimension the four-point graviton amplitude 𝒜 behaves at high energies as 𝒜 ∼ 𝐸2. 

➢ Four-point massive spin-2 amplitude → generically 𝒜 ∼ 𝐸10; dRGT theory 𝒜 ∼ 𝐸6

𝐸 = Center of mass energy
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• In GR in any dimension the four-point graviton amplitude 𝒜 behaves at high energies as 𝒜 ∼ 𝐸2. 
𝐸 = Center of mass energy
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• GR dimensionally reduced with all the modes kept → just a rewriting →𝒜 ∼ 𝐸2 for the lower dimensional amplitudes

➢ From the lower dimensional point of view: massless spin-2 coupled to a tower of massive gravitons, vectors and scalars

➢ Computing the amplitude: 𝒜 ∼ 𝛼10𝐸
10 + 𝛼8𝐸

8 + 𝛼6𝐸
6 + 𝛼4𝐸

4 + 𝛼2𝐸
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➢ 𝛼10, 𝛼8, 𝛼6, 𝛼4 must vanish
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➢ Four-point massive spin-2 amplitude → generically 𝒜 ∼ 𝐸10; dRGT theory 𝒜 ∼ 𝐸6
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• In GR in any dimension the four-point graviton amplitude 𝒜 behaves at high energies as 𝒜 ∼ 𝐸2. 
𝐸 = Center of mass energy

• GR dimensionally reduced with all the modes kept → just a rewriting →𝒜 ∼ 𝐸2 for the lower dimensional amplitudes

➢ From the lower dimensional point of view: massless spin-2 coupled to a tower of massive gravitons, vectors and scalars

➢ Computing the amplitude: 𝒜 ∼ 𝛼10𝐸
10 + 𝛼8𝐸

8 + 𝛼6𝐸
6 + 𝛼4𝐸

4 + 𝛼2𝐸
2 +⋯

➢ 𝛼10, 𝛼8, 𝛼6, 𝛼4 must vanish

+

+ + + …

• 𝐷-dim  GR in ℳ𝐷 = ℝ1,D−d ×𝒩𝑑, with 𝒩 closed, smooth, connected, orientable, Ricci flat Riemannian manifold. Terms up to two 
derivatives.

➢ Tower of massive spin-2 particles 𝑤𝜇𝜈
𝑎 with mass 𝑚𝑎

2 = 𝜆𝑎

➢ 𝒜 ∼ 𝐸2 for the four-point graviton amplitude in ℝ1,D−d imposes: 
𝜆𝑎+1

𝜆𝑎
≤ 4 →

𝑚𝑎+1

𝑚𝑎
≤ 2

There cannot be 
parametric gaps!E

Graviton,m = 0

ΛEFT

Massive spin − 2 particle

➢ Four-point massive spin-2 amplitude → generically 𝒜 ∼ 𝐸10; dRGT theory 𝒜 ∼ 𝐸6



Constraints on ΛEFT
Bonifacio, Hinterbichler ’18 & Rosen ’19

By ΛEFT we mean the scale at which perturbative
unitarity breaks down (strong coupling scale):
news degrees of freedom or strong coupling
effects must be taken into account at this scale.



Summary so far
• Massive spin-2 particles

➢ Linearised level: unique theory, Fierz-Pauli theory.

➢ Non-linear extension: dangerous! Ghosts may appear! Two known ghost-free non-linear theories: dRGT (massive gravity) and pseudolinear 
theory

➢ Conjectured that Λ𝑚 ∼
𝑚𝑀𝑝

𝑀𝑤
(coupled to gravity), strong form: Λ𝑚 ∼ 𝑚 (massive gravity); motivated by WGC.

➢ Shown that at least 𝐴 ∼ 𝐸6 for any theory containing one massive spin-2 particle and no higher spin particles.

➢ No parametric gaps between massive spin-2 particles coming from a tower produced when dimensional reducing GR (at two derivative level, 
some assumptions)

A swampland menace…
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