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Motivation



Motivation

The problem with gravitational collgpse

Classical black holes formed by gravitational collapse:

e Suffer from a singularity [Hawking, Penrose (1970)]

« Cannot be avoided beyond a certain radius (Buchdahl bound)
[Buchdahl (1959)]



Motivation

Why the frozen star solution?

* |s characterized by the eq. of state:
Pr = —p, =0
* The classical (geometric) proxy of the collapsed polymer
[Brustein, Medved (2017)]

* The frozen star satisfies r = 2m(r) throughout the interior, such that

T

m(r) = 4nG / dx 2®p(x)  [Brustein, Medved (2019)]

0
making every spherical layer a horizon




Motivation

Why the frozen star solution?

Assuming a static, spherically sym. spacetime:

, ) | 2 . . .
ds* = —f(r)dt* + =—dr* + r*(d#* + sin*0d¢?)
f(r)
and solving the Einstein egs. for the condition p = —p,:
~\ 7/
(rf) —1—r?p
% (rf) =1+1"p,

leads to




Motivation

Why the frozen star solution?

 The frozen star corresponds to the choice m(r) =1r/2

* The corresponding density and pressures:

1—(rf) 1
;0 — T-? — T‘—?
1= (rf) _ 1
T T T e
r il




Motivation

Why the frozen star solution?

* The eqn. of state of the frozen star is key to its regularity
* Similar exotic matter has been previously studied:

 EMS tensor at the horizon has the block diagonal form
[Medved, Martin, Visser (2004)]
Pr = —P
* p = —p has appeared in other models for BH interiors

(Gravastar [Mazur, Mottola (2015)], etc)
[Chapline, Hohlfeld, Laughlin, Santiago (2001)]



The frozen star model

"S-
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Gravitational potential

ds? = —f(r)dt? + f~1(r)dr? + r?dQ?

* Replace f(r) = 0with f(r) =1—-v¢=€,e K 1

[Rabinowitz, Guendelman (1993) (in a Cosmological context!)]

« Coordinates are now manifestly regular



* The frozen star geometry can be viewed as a spherically sym. collection
of rigid 1d strings with tension 1/’

* The total mass enclosed in a sphere with radius r is then

m(r) =4r [ 1/’ = 4xn/d’ r
0

 Comparing with

leads to
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Regularity of the surface [Brustein, Medved, Simhon (2022)]

Transitioning from p # 0 /nside to p = 0 outside

* Define the crust: a layer of thickness ¢, K 24 < R on the surface
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Regularity of the surface [Brustein, Medved, Simhon (2022)]

Transitioning from p # 0 /nsideto p = 0 outside

* Define the crust: a layer of thickness ¢, K 24 < R on the surface

« Assume key symmetfries of the interior persistinto the crust:
p = —Dr f=f1

* Ansatz. f(r) is a polynomial expansion in terms of

r—(R—A) 21
R R

* f(r), f'(r)and f"'(r) are continuous
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Regularity of the surface [Brustein, Medved, Simhon (2022)]

Transitioning from p # 0 /nsideto p = 0 outside

Assumptions + Matching conditions — Continuous metric throughout crust:

/14 4A+5N L (14301 +5)) 4
fz,A) = (4/\2(1+A)3>(x_1+)‘) _( 16A3(1 1 \)? >($_1+/\)
1+ 3\ :
(16)\3(1 + )\)3) (@=1+4)

where

_ T
L = R
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Regularization of the center [Brustein, Medved, TS, Simhon (2023)]

Similarly, regularization of the divergence p ~ T%

will require a transition layer to a regular core

RegionI. The core r <n

Region T: Transition layer n <7 < 27€

Region S: Interior of the frozen star 2n <r < R— \
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Regularization of the center [Brustein, Medved, TS, Simhon (2023)]

 Assume:;

« f,f" and f"" are continuous

B
° p(T:O):—Q
Ui

« B>0. [B]=llength]™”

° IOI(BanaT) — _T‘I'n%
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Regularization of the center [Brustein, Medved, TS, Simhon (2023)]

* Assumptions+Matching conditions lead to

| T2B+T3 _
—_—— 4 — r
3772 47 ?77
f(B,mr) = < 6 o o B
7 fT(Banar)a 7]<7’<277: ;<B'T] SE
5 (
e, 1T >2n,
where )

1 (26B — 36) (r —n)°> (=34B +45)(r —n)*
B = — (—4B + 12
fT( 175 T) 12 ( + ) + 67]5 + 3774

(100B —120) (r —n)*> 1 4B s 1 8B
+ 207 TG (r=mn)"+ 3 . (r —n)
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Regularization of the center [Brustein, Medved, TS, Simhon (2023)]

Unregularized Regularized core
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The gravitational potential experienced by a massive particle

V(r)
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* f(r) = € shifts the coordinate radius of the

star outwards to

R* =

~ 2M(1 +
. (1+e¢€)

* Potential barrier for L > 0 trajectories

deflects matter and light close to r = 0:

el?
V(T — 0) ~ T_z

1.2
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* Purely radial (L = 0) trajectories pass thorough the center and reemerge
In proper time
4M diameter

(1-€)VEZ—¢ek  velocity

Where E is the conserved momentum per unit mass,

AT =

(1) = F = const
f‘rdT_ = const.

« Very large redshift (¢ << 1) —» Frozen star is essentially black

At HME A . > 1
Asymptotic ___—» Al = : = Ar—
coordinate (1 —e)eVE?2 — ¢k €

time




The trajectory of incoming particles:
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The trajectory of incoming particles:

22



The trajectory of incoming particles:

el?
V(T — O) ~ 7‘_2

Deflection due
to potential
barrier close
to center
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The trajectory of incoming particles:

el?
V(T — O) ~ 7‘_2

Deflection due
to potential
barrier close
to center
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Spacetime (Penrose) diagram




“Kruskal” coordinates - ¢ — 0 case

* Whene -0, f(r) -0
* det(g) is finite, but the redshift diverges

e Solution - look for “Kruskal”-like coordinates



“Kruskal” coordinates - ¢ — 0 case

 Kruskal-like coordinate transformation:

[ ] N 1/2
I'=exp |— ( : 2)1/2 sinh ((1 — "'Uz) / t)
1 — v
[ %] | . 1 2
R=exp|— : —— | cosh (1 — -vz) / t
(1 — -1,?2)1/2

* The transformed metric:

1

2 __
ds __RQ_TQ

(dT? . ng) + }1 (1 . 1;2) (m (R‘E _ TE))Q 402
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“Kruskal” coordinates - ¢ — 0 case

1
R? — T?

ds? = — (d’r?3 . dRQ) + i (1 - uf) (m (32 - TZ))Q A2

* The transformed metric has finite T,R components

* t = Const. surfaces are straight lines through the origin:

Z = tanh((1 — v?)t)

R
v = Const. surfaces are hyperbolae:
21
R? —T? = Exp[—

(1-— v2)1/2]
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Dimensionality whene — 0

 Kruskal coordinates allow to probe geometry even when v? - 1

 Taking v? — 1, interior collapses to a single null surface:

i 2T | 21
R2 — T2 = Exp |- — T2 =R2

1
(1—v2)2]

r=Const. surfaces

N—




Dimensionality whene — 0

Effectively — frozen star is 1+1 dimensional
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Finite € €e—>0

[Brustein, Medved, TS, Simhon (2023), arXiv:2301.09712]
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The Oscillation Spectrum




The oscillation spectrum of a frozen star

How to obtain the spectrum of oscillations?

* Frozen star is ultra-stable against perturbations
[Brustein, Medved, Simhon (2022)]
— trivial spectrum
* Source of ultra-stability is the eq. of state

* Possible solution - slight modification to p = —p.,
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The oscillation spectrum of a frozen star

How to obtain the spectrum of oscillations?

* Frozen star is ultra-stable against perturbations

[Brustein, Medved, Simhon (2022)]
— trivial spectrum

* Source of ultra-stability is the eq. of state

: : : et 4 We start
* Possible solution - slight modification to p = —p, here
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The oscillation spectrum of a frozen star

How to obtain the spectrum of oscillations?

* Frozen star is ultra-stable against perturbations

[Brustein, Medved, Simhon (2022)]
— trivial spectrum

We will

* Source of ultra-stability is the eq. of state
show this

* Possible solution - slight modification to p = —p.,
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The oscillation spectrum of a frozen star

« Modify the eq. of state by a small perturbation (0 < y « 1):

[Brustein, Medved, TS, in preparation]

7\ b
PR — (1—(a—b)?’(§) )p
* Modification in the eqgn. of state is induced by a modified metric:

r @
9tt=€+’7(ﬁ)

N r\?b
=i ()

ca=2 b=0 R
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The oscillation spectrum of a frozen star

 We repurpose an existing framework for oscillations of anisotropic

neutron stars [Doneva, Yazadjiev (2012)]
* The frozen star is anisotropic:p, = 0butp, = —p # 0

* Derivations assume Cowling approximation -> No metric perturbations

32



The oscillation spectrum of a frozen star

e Generic static and spherically symmetric spacetime
ds* = —e*®dt* + * dr? 4 r?dQ)?
* Anisotropic fluid
Ty = puyuy + pkuky + q (g + vpuy — kyky)
where u* is the velocity and k* is purely radial such that u, k# =0

« Egns. of motion: arise from the variation of the energy conservation
condition

V,6T" =0

* In rest frame: u#* = (u%,0,0,0) , k* = (0,k",0,0)
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The oscillation spectrum of a frozen star

Equations of motion

* Project in direction parallel to u*:
0 = ulV,8T" = — V,6pu” -V, [((p +q) 8 + Jk”kﬁ) 5uﬂ 0

— (p+q)ayou’ =V, u"o (ck"k,) ,

« Project in direction P!’ = &', + utu, (perpendicular to u)
(1)
0=PEV,OT, =0 (p+q)aa+ (p+q)u” (V,d0u, — Vadu,)

+ V5,090, + 1 uaV,0q + PV, (0kuE”)
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The oscillation spectrum of a frozen star

Equations of motion

* Define the Lagrangian variation vector
ogr  ou’
ot ut’

Solutions to L projection equation have the form
§o = — Z Vim (T.}. t) 99Yrm (91 (f))
Lm

i=1,2,3=r,0,6

== Vem (1) 0sYum (6, 9)
£m

N AW (T, T)
g=Y ey,

{,m
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The oscillation spectrum of a frozen star

Dynamical equations

Define oscillatory modes W (r,t) = W(r)e'®t, V = V(r)e®t:

A—-29

44 . o 2 -
0=—w?(p+pe T—2+3r5p+5(p+p)ar+;c‘iﬂ

0=(p+q)e **w?V +dq
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The oscillation spectrum of a frozen star

Solutions to leading order in y:

s W(r),V(r) are power laws:
V},.m_ ~ Vg?‘g, I’ng _ LVETE—I—l

* The oscillation spectrum is:
2

W = (20 + (- 4)
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The oscillation spectrum of a frozen star

Solutions to leading order in y:

s W(r),V(r) are power laws:

w-m. ~ VeT’g; Ijlf@m — 14/76 TE—I_l

* The oscillation spectrum is:
9 Ultra-stability when p = —p,

ﬁ(2£2+£—4) w* (v = 0) =0

wQ
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Summary and outlook

* Frozen star works well as a BH mimicker



Summary and outlook

* Frozen star works well as a BH mimicker

\/ Regular, well-behaved throughout the interior

\/ Behaves like a Schwarzschild BH from outside



Summary and outlook

* Frozen star works well as a BH mimicker

\/ Regular, well-behaved throughout the interior

\/ Behaves like a Schwarzschild BH from outside

 |s ultra-stable:

* Must be “defrosted” to obtain an oscillation spectrum

* Next step - rotating frozen stars (more realistic)



Thank you!
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