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Motivation
The problem with gravitational collapse

Classical black holes formed by gravitational collapse:

• Suffer from a singularity

• Cannot be avoided beyond a certain radius (Buchdahl bound)
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[Hawking, Penrose (1970)]

[Buchdahl (1959)]



• Is characterized by the eq. of state:
𝑝𝑟 = −𝜌, 𝑝⊥ = 0

• The classical (geometric) proxy of the collapsed polymer

• The frozen star satisfies 𝑟 = 2𝑚 𝑟 throughout the interior, such that

making every spherical layer a horizon
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[Brustein, Medved (2019)]

[Brustein, Medved (2017)]

Motivation
Why the frozen star solution?



Assuming a static, spherically sym. spacetime:

and solving the Einstein eqs. for the condition 𝜌 = −𝑝𝑟:

leads to
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Motivation
Why the frozen star solution?



• The frozen star corresponds to the choice

• The corresponding density and pressures:
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= 𝟎

Motivation
Why the frozen star solution?



• The eqn. of state of the frozen star is key to its regularity

• Similar exotic matter has been previously studied: 

• EMS tensor at the horizon has the block diagonal form

𝑝𝑟 = −𝜌

• 𝑝 = −𝜌 has appeared in other models for BH interiors 
(Gravastar , etc)
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[Chapline, Hohlfeld, Laughlin, Santiago (2001)]

[Medved, Martin, Visser (2004)]

[Mazur, Mottola (2015)]

Motivation
Why the frozen star solution?



The frozen star model
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The frozen star model
Gravitational potential

𝑑𝑠2 = −𝑓 𝑟 𝑑𝑡2 + 𝑓−1 𝑟 𝑑𝑟2 + 𝑟2𝑑Ω2

• Replace 𝑓 𝑟 = 0 with 𝑓 𝑟 = 1 − 𝜐2 ≡ 𝜖 , 𝜖 ≪ 1

• Coordinates are now manifestly regular 
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[Rabinowitz, Guendelman (1993) (in a Cosmological context!)]



The frozen star model

• The frozen star geometry can be viewed as a spherically sym. collection 
of rigid 1d strings with tension

• The total mass enclosed in a sphere with radius 𝑟 is then

• Comparing with  

leads to
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8𝜋



The frozen star model
Regularity of the surface
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Transitioning from 𝜌 ≠ 0 inside to 𝜌 = 0 outside

• Define the crust : a layer of thickness ℓ𝑝 ≪ 2𝜆 ≪ 𝑅 on the surface

𝑅
𝜆𝜆

[Brustein, Medved, Simhon (2022)]



The frozen star model
Regularity of the surface
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Transitioning from 𝜌 ≠ 0 inside to 𝜌 = 0 outside

• Define the crust : a layer of thickness ℓ𝑝 ≪ 2𝜆 ≪ 𝑅 on the surface

• Assume key symmetries of the interior persist into the crust:
𝜌 = −𝑝𝑟 , 𝑓 = ሚ𝑓

• Ansatz: 𝑓(𝑟) is a polynomial expansion in terms of
𝑟 − (𝑅 − 𝜆)

𝑅
<
2𝜆

𝑅

• 𝑓 𝑟 , 𝑓′ 𝑟 and 𝑓′′(𝑟) are continuous

[Brustein, Medved, Simhon (2022)]



The frozen star model
Regularity of the surface

13

Transitioning from 𝜌 ≠ 0 inside to 𝜌 = 0 outside

Assumptions + Matching conditions → Continuous metric throughout crust:

where

[Brustein, Medved, Simhon (2022)]



The frozen star model
Regularization of the center
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• Similarly, regularization of the divergence 

will require a transition layer to a regular core

• Region I:  The core

• Region T: Transition layer                        

• Region S: Interior of the frozen star 

[Brustein, Medved, TS, Simhon (2023)]



The frozen star model
Regularization of the center
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• Assume:

• 𝑓, 𝑓′ and 𝑓′′ are continuous

• k                             

• ,                   , 

• /

[Brustein, Medved, TS, Simhon (2023)]



The frozen star model
Regularization of the center

16

[Brustein, Medved, TS, Simhon (2023)]

• Assumptions+Matching conditions lead to

where



The frozen star model
Regularization of the center
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Unregularized Regularized core

[Brustein, Medved, TS, Simhon (2023)]



The frozen star model

The gravitational potential experienced by a massive particle
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𝑉(𝑟)

𝑟/2𝑀
𝑟 ∼ 𝑅 𝜖

𝑉 𝑟 =
1

2
𝜖

𝐿2

𝑟2
+ 1



The frozen star model

• 𝑓 𝑟 = 𝜖 shifts the coordinate radius of the 

star outwards to

𝑅∗ =
2𝑀

1 − 𝜖
≈ 2𝑀(1 + 𝜖)

• Potential barrier for 𝐿 > 0 trajectories 

deflects matter and light close to 𝑟 = 0:

𝑉 𝑟 → 0 ∼
𝜖𝐿2

𝑟2
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The frozen star model

• Purely radial (𝐿 = 0) trajectories pass thorough the center and reemerge
in proper time

Δ𝜏 =
4𝑀

1 − 𝜖 𝐸2 − 𝜖𝑘
∼
𝑑𝑖𝑎𝑚𝑒𝑡𝑒𝑟

𝑣𝑒𝑙𝑜𝑐𝑖𝑡𝑦

Where 𝐸 is the conserved momentum per unit mass,

𝑓 𝑟
𝑑𝑡

𝑑𝜏
≡ 𝐸 = 𝑐𝑜𝑛𝑠𝑡.

• Very large redshift (𝜖 ≪ 1) → Frozen star is essentially black

Δ𝑡 =
4𝑀𝐸

1 − 𝜖 𝜖 𝐸2 − 𝜖𝑘
= Δ𝜏

E

𝜖
≫ 1
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Asymptotic 
coordinate 
time



The frozen star model

The trajectory of incoming particles:
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The frozen star model

The trajectory of incoming particles:
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The frozen star model

The trajectory of incoming particles:
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Deflection due 
to potential 
barrier close 
to center

𝑉 𝑟 → 0 ∼
𝜖𝐿2

𝑟2



The frozen star model

The trajectory of incoming particles:
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Deflection due 
to potential 
barrier close 
to center

𝑉 𝑟 → 0 ∼
𝜖𝐿2

𝑟2



The frozen star model
Spacetime (Penrose) diagram
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𝑟 = 𝑅𝑆



The frozen star model
“Kruskal” coordinates - 𝜖 → 0 case

• When 𝜖 → 0, 𝑓 𝑟 → 0

• det(𝑔) is finite, but the redshift diverges 

• Solution – look for “Kruskal”-like coordinates
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The frozen star model
“Kruskal” coordinates - 𝜖 → 0 case

• Kruskal-like coordinate transformation:

• The transformed metric:

25



The frozen star model
“Kruskal” coordinates - 𝜖 → 0 case

• The transformed metric has finite 𝑇, 𝑅 components

• 𝑡 = 𝐶𝑜𝑛𝑠𝑡. surfaces are straight lines through the origin:
𝑇

𝑅
= tanh 1 − 𝜐2 𝑡

• 𝑟 = 𝐶𝑜𝑛𝑠𝑡. surfaces are hyperbolae:

𝑅2 − 𝑇2 = 𝐸𝑥𝑝[−
2𝑟

1 − 𝜐2 1/2
]
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The frozen star model
Dimensionality when 𝜖 → 0

• Kruskal coordinates allow to probe geometry even when 𝜐2 → 1

• Taking  𝜐2 → 1, interior collapses to a single null surface: 

𝑅2 − 𝑇2 = 𝐸𝑥𝑝 −
2𝑟

1 − 𝜐2
1
2

𝑟=Const. surfaces

𝜐2→1
𝑇2 = 𝑅2
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The frozen star model
Dimensionality when 𝜖 → 0

• Possible trajectories inside (from Killing equations):

• For  𝜐2 → 1 the only remaining trajectories are
𝑇 = ±𝑅

• Motion is permitted only on the horizon– interior is excluded / 
compactified

27

Effectively – frozen star is 1+1 dimensional



The frozen star model
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Finite 𝝐 𝝐 → 𝟎

[Brustein, Medved, TS, Simhon (2023), arXiv:2301.09712]



The Oscillation Spectrum
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The oscillation spectrum of a frozen star

30

How to obtain the spectrum of oscillations?

• Frozen star is ultra-stable against perturbations

→ trivial spectrum

• Source of ultra-stability is the eq. of state

• Possible solution – slight modification to 𝜌 = −𝑝𝑟

[Brustein, Medved, Simhon (2022)]



The oscillation spectrum of a frozen star

30

We start
here

How to obtain the spectrum of oscillations?

• Frozen star is ultra-stable against perturbations

→ trivial spectrum

• Source of ultra-stability is the eq. of state

• Possible solution – slight modification to 𝜌 = −𝑝𝑟

[Brustein, Medved, Simhon (2022)]



The oscillation spectrum of a frozen star

How to obtain the spectrum of oscillations?

• Frozen star is ultra-stable against perturbations

→ trivial spectrum

• Source of ultra-stability is the eq. of state

• Possible solution – slight modification to 𝜌 = −𝑝𝑟
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We will 
show this 

[Brustein, Medved, Simhon (2022)]



The oscillation spectrum of a frozen star

• Modify the eq. of state by a small perturbation (0 < 𝛾 ≪ 1):

• Modification in the eqn. of state is induced by a modified metric:

• 𝑎 = 2, 𝑏 = 0
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[Brustein, Medved, TS, in preparation]



The oscillation spectrum of a frozen star

• We repurpose an existing framework for oscillations of anisotropic 

neutron stars

• The frozen star is anisotropic: 𝑝⊥ = 0 but 𝑝𝑟 = −𝜌 ≠ 0

• Derivations assume Cowling approximation -> No metric perturbations

[Doneva, Yazadjiev (2012)]
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The oscillation spectrum of a frozen star

• Generic static and spherically symmetric spacetime

• Anisotropic fluid

where 𝑢𝜇 is the velocity and 𝑘𝜇 is purely radial such that  𝑢𝜇𝑘
𝜇 = 0

• Eqns. of motion: arise from the variation of the energy conservation 
condition

• In rest frame: 𝑢𝜇 = 𝑢𝑡 , 0,0,0 , 𝑘𝜇 = (0, 𝑘𝑟 , 0,0)
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Equations of motion

• Project in direction parallel to 𝑢𝜇:

• Project in direction 𝑃𝛼
𝜇
= 𝛿𝛼

𝜇
+ 𝑢𝜇𝑢𝛼 (perpendicular to 𝑢𝜇)

(I)

(II)

The oscillation spectrum of a frozen star
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Equations of motion

• Define the Lagrangian variation vector

• Solutions to ⊥ projection equation have the form

The oscillation spectrum of a frozen star

35



Dynamical equations

Define oscillatory modes  𝑊 𝑟, 𝑡 = 𝑊 𝑟 𝑒𝑖𝜔𝑡 , 𝑉 = 𝑉 𝑟 𝑒𝑖𝜔𝑡:

The oscillation spectrum of a frozen star
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Solutions to leading order in 𝛾:

• 𝑊(𝑟), 𝑉(𝑟) are power laws:

• The oscillation spectrum is:

The oscillation spectrum of a frozen star
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Solutions to leading order in 𝛾:

• 𝑊(𝑟), 𝑉(𝑟) are power laws:

• The oscillation spectrum is:

The oscillation spectrum of a frozen star
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Ultra-stability when  𝜌 = −𝑝𝑟



• Frozen star works well as a BH mimicker

Summary and outlook
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• Frozen star works well as a BH mimicker

Regular, well-behaved throughout the interior

Behaves like a Schwarzschild BH from outside

Summary and outlook
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• Frozen star works well as a BH mimicker

Regular, well-behaved throughout the interior

Behaves like a Schwarzschild BH from outside

• Is ultra-stable:

• Must be “defrosted” to obtain an oscillation spectrum

• Next step – rotating frozen stars (more realistic)

Summary and outlook
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Thank you!
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