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The propagation of a step-function light pulse in a nondamping resonant medium is
studied. Numerical analysis and conservation laws show that the asymptotic solution
cannot be described by a single soliton-lattice-type solution. As the pulses propagate in
space they become narrower and with larger amplitude, but the time separation between
pulses remains constant. This result is explained by an asymptotic area theorem which
restricts the time average of the electric field to be equal to that of the input field.

I. INTRODUCTION

The propagation of coherent optical pulses in a
resonant medium has led to the remarkable
phenomenon of self-induced transparency.!™* An
input pulse of finite duration in time decomposes
asymptotically into a number of individual steady-
state pulses. Each pulse is a soliton with the asso-
ciated electric field behaving as a hyperbolic
secant; the number of these pulses is fixed by the
area theorem.! ™3

Here we consider the situation of a step-function
imput pulse, with infinite duration in time. Since
pulses are constantly generated, the asymptotic
solution cannot decompose into well-separated soli-
tons, and the usual area theorem is not useful.

Instead, it is conceivable that “soliton-lattice”
solutions may be an asymptotic description of this
situation. A soliton-lattice solution®~® corresponds
to an electric field proportional to
dn[(t —z/v)/7;A], where dn is a Jacobian elliptic
function’ with parameter A (0<A <1), v is the
velocity of the soliton lattice, and 7 measures the
time width of each soliton. The periodicity of
dn(u;\), where u =(t —z /v)/7, is 2K(A), and K is
the complete elliptic integral’; it diverges when
A—1 and then each pulse is a well-separated
sech(u) soliton.

The motivation for this study is threefold. First
there is a renewed interest in soliton lattices in oth-
er areas of physics, in particular in condensed
matter physics.>° Secondly, recent experiments'®
on a relatively dense medium of ReOy impurities
in a KBr or KI matrix with long pulses showed
generation of a sequence of many pulses. It is not
yet clear however, if self-induced transparency is
indeed responsible for this phenomenon.

The final motivation is the article by Crisp,®

who investigated the soliton-lattice solution in de-
tail. Crisp claimed that a step-function input
evolves asymptotically into a soliton-lattice solu-
tion with A= % The clue for this peculiar value
of k:% was not sufficiently clear and led us to re-
peat Crisp’s calculation. We find that going to
longer times or further in space then Crisp did, a
soliton lattice is not the asymptotic solution. As
the pulse train propagates in space, each pulse be-
comes narrower and with larger amplitude; this
corresponds to some local “A” which gets closer to
1 as function of space.

In addition we use analytic conservation laws for
energy and momentum, which show that a pro-
pagating soliton lattice cannot be the only asymp-
totic behavior. Instead, however, we show an
asymptotic area theorem which fixed the time
average of the electric field to be equal to that of
the input field. This implies for a dn (u;A) solu-
tion that the area of each pulse is 27, in close
agreement with the numerical results.

II. NUMERICAL SOLUTION

The self-induced transparency equation of a non-
damped medium, without inhomogeneous broaden-
ing and at resonance reduced to a single differen-
tial equation' 3 for a phase variable 6(z,?)

0(z,t)+c0'(z,t) = —acsinb(z,t) , (1

where the dot is 3/9¢ and the prime is 3/9x; ¢ is
the velocity of light and @=2mnwu?/(ch), where n
is the density of resonating atoms, u their dipole
moment, and o the resonance frequency. The elec-
tric field envelope is given by

8(z,0)=06(z,t)u /% . 2)
Equation (1) is studied with the following boun-
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dary conditions.
(a) The input pulse is a step function

:80, t>0
8(0,0=|, t<0 (3)

where z =0 is the boundary between the medium
(z>0) and the vacuum (z <0).

(b) The system is initially in its ground state
0=0, i.e., it is an attenuator,

6(z,t)=0 fort<z/c . (4)
In terms of the dimensionless variables e= §/8

x =zahi/(u8y) ,

y=(t—z/c)uéy/%, (5)
Eq. (1) can be written as

de .

3% =—sinf ,

a0

v _ 6

3y €, (6)

with the boundary conditions in the relevant range
y20, x>0,

e0,y)=1,
6(x,0)=0. (7)

Following Crisp® we study this system by suc-
cessive substitution in the integral equations

elx,p)=1— foxsin(x’,y)dx’ R
0(x,y)= foye(x,y’)dy’ ,

starting from some initial functions, e.g.,
€%x,p)=1, 69x,y)=0, Eq. (8) generates the
first-order functions, which in turn generate the
second-order functions, etc. The solution is then
the limit of this set of functions, provided the limit
exists.

The number of required iterations increases rath-
er fast with the range of (x,y) being solved; for the
results below we needed up to 120 iterations to
achieve convergence of at least six significant di-
gits. The results are independent of which initial
function is used, since the boundary conditions are
sufficient to guarantee a unique solution.

The results are shown in Figs. 1—5. In Figs. 1
and 2 the results for small x and y <200 are
shown. The results of Crisp6 for x =1,2,3 and
y <100 are similar to ours, and seem to indicate a
steady-state solution.. This solution has a periodici-

(8)
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FIG. 1. The electric field e(x,y) which solves Eq. (6)
with the boundary conditions Eq. (7), for x =1,2,3 with

»y <200.

ty of Ay~6.4 and from its amplitude Crisp con-
cluded that it is a dn (u;A) with k=—:—. However,
by considering also 100 <y <200 it is seen that
there is an additional longer periodicity and the
solution cannot be represented by a dn (u;A) which
has a single periodicity.

The results for larger values of x in Fig. 3 show
even more significant changes. As x increases, the
pulse amplitude becomes larger, and each pulse be-
comes narrower. This corresponds to dn (u;A)
functions whose parameter A is ~% at x =1 and
increases with x to A~0.95 at x =11. The func-
tions dn (u;A) are exact solutions of Eq. (1) only
for a constant A; the “x-dependent A” is just a
qualitative way of describing the solution.

The narrow peak near y =0 with €(x,0)=1
represents a short pulse propagating with velocity
¢, much faster than the pulse train. It is a result
of the sudden turn-on of the input pulse at ¢ =0,
i.e., the medium cannot respond sufficiently fast to
slow down the initial edge of the input pulse. This
effect can be eliminated by turning on the input
pulse more slowly.

Figures 4 and 5 show the results as function of x
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FIG. 2. Same as Fig. 1 with x =4,5,6.

for a given y. Since y =wgt —(w% /ac)x, where
wgr=p 80 /h is the Rabi frequency, for vk <<ac a
given y is almost a given ¢, if x is not too large [ex-
perimentally"'® 0} /(ac) =10"2—10"4].

The results in Figs. 4 and 5 demonstrate again
that the pulses tend to separate as x increases, i.e.,

FIG. 3. Same as Fig. 1 with x =7,9,11, with y <100.

-20

FIG. 4. €(x,y) as function of x with y =8,12,16.

the pulses become narrower with larger amplitude.
For x ~20 there is an additional feature—the pulse
train propagates by a (0—)-like pulse in its front
which generates an additional 27 pulse to the pulse
train.

Figure 6 shows the position of the pulse train
front x,, defined as the maximal x for which
€=1, as function of y. The curve shows some os-
cillations which mean that the pulse train does not
move uniformly with a constant velocity. The os-
cillations are however rather small, and the mean
slope of the curve defines a velocity U =xy, /y
~0.85. Using Eq. (5) the corresponding velocity
in real space is

v=c[l+ac/(0k )] . 9)

For ac >> wk this yields v <<c. The condition
ac >>w% means that, the energy stored in the
resonating atoms is much larger than the elec-
tromagnetic energy.

Although the solutions cannot be described by a
single dn (u ;) solution, they do have a uniform
characteristic. This is the periodicity, or the dis-
tance between successive peaks, which is in the
range 6.3—6.5. This will be explained in Sec. III
in terms of an asymptotic area theorem.
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FIG. 5. Same as Fig. 4 with y =20,24,28.
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FIG. 6. The threshold value of x, defined as the
maximal x for which €(x,y)=1 as function of y. The
average slope gives the velocity of the pulse-train front,
U~0.85.

III. CONSERVATION LAWS
AND THE SOLITON LATTICE

Conservation laws are an analytic property of
the solutions of Eq. (1) and are very useful in
determining asymptotic solutions.>!! Equation (1)
has an infinite number of conservation laws>'?; for
our purpose it is sufficient to use only two of these
which correspond to energy and momentum con-
servation.

Conservation laws can be derived by noting that
Eq. (1) is the Euler-Lagrange equation of the fol-
lowing Lagrangian density:

L(z,t)=—;-92+%céﬂ’+ac(cos9—1) , (10)

where 6=0(z,t). Invariance under time or space
translations leads to conserved energy and momen-
tum.

For our system with z > 0, the energy is

E(t)= fowdz[§92+ac(1—cos9)] . 11

This is the total energy in the system, in units of
#/(2mu?). The first term is the electromagnetic
energy & %(z,t)/4m, while the second term is the en-
ergy stored in the resonating two-level system
n#iw(1—cos), since cosf is the degree of inver-
sion. Note that the choice of signs agrees with
6=0 being the ground state.

. From Egs. (1), (11), and the boundary conditions
6(0,t)=wpg, 6(w,t)=0, we obtain the conservation
law

AE(t)
ar

where wg =80 /%.
Invariance of (10) under translations in space

S0k , (12)

leads to the momentum
Pt)= [ " dt0'(6+5c0). (13)

From Egs. (1) and (13) follows the conservation
law

dP(t)
dt

Note that the energy is increasing in a constant
rate [Eq. (12)], while the momentum changes in an
oscillating fashion [Eq. (14)].

In addition to conservation laws there is another
important restriction on the solution which is an
asymptotic area theorem. The usual area
theorem' 3 does not hold in our case since it as-
sumes that the pulses separate and &8(z, 0 )~0. We
show here that the analogous area theorem in our
case is the equation

=ac(1—cosa)Rt)—%w%< . (14)

lim - [ 8(z,0dr' =&, . (15)

t—ow t

This means that the input area 8yt equals the area

for &(z,t')dt’ at any z asymptotically, i.e., only a
finite difference may exist when t— oo.

The proof is a simple consequence of the con-
tinuity of the function 6(z,z). The difference
0(z,t)—6(0,t) must be finite for any finite z, even
in the limit ¢t — o0 ; otherwise 6(z, o ) is not con-
tinuous as function of z. Therefore
[6(z,t)—6(0,t)]/t—0 as t— «, and from the de-
finition Eq. (2) the result Eq. (15) is obtained.

We proceed now to apply these analytic results
to the soliton-lattice solutions, and see if they can
be a consistent asymptotic solution.

The soliton lattice is the general solution of Eq.
(1) which is a function of ¢t —z/v. Equation (1)
has then the form

£
v

0 —ac sind (16)

with solutions given by the Jacobian elliptic func-
tion’ with parameter A

sing(0—m)=sn t—_jﬂ;l] (17)
and the relation

1 1 af

y e (18)

Thus only two of the parameters 7, v, and A are in-
dependent. The angle 6 in Eq. (17) increases by 27
when the time is increased by 27K (1). As A—0
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this sequence of 2 pulses reduces to well-
separated solitons. The electric field is given by

8(z,t)= —%‘lidn
fir

’—*i/—”;x] . (19)
.

For A—1 this reduces to the well-known hyperbol-
ic secant pulse.

Consider first the restriction of Eq. (15) on the
solution (19), assuming it is the correct asymptotic
behavior. The average of Eq. (19) on one period is
(e /K)m/(7K) and Eq. (15) yields

T

T

In terms of the dimensionless variables Eq. (5) the
soliton-lattice solution has now the form

2K(k)dn K(A) T__ il 21
T

G(x,y)— P y )»ZK(A,)
with the single free parameter A. The periodicity
of this solution in the y variable is 27r. This is
very close to the result of the numerical analysis.
This closeness was also noted by Crisp,6 and its
proof is the asymptotic area theorem Eq. (15).

The numerical periodicity, defined as the dis-
tance between nearest maxima, is, however, not ex-
actly 27r; it varies in the range 6.3—6.5. The vari-
ations in this periodicity are not a result of numer-
ical errors, since our results have converged to at
least six digits; therefore this periodicity is signifi-
cantly different from 27. The variations in the
periodicity reflect our result that the asymptotic
solution is not a singly periodic function, although
the dn function is a good approximation in some
range of x and y.

The solution (21) gives also the soliton-lattice
velocity as

U=[AK(A)/7]*. (22)

From the slope of Fig. 6, U~0.85 which yields
A=0.997. Thus the pulse train, or at least its
front, propagates with an “effective” A which is
very close to one. This is consistent with the ten-
dency of the pulses to break up, i.e., A—1.

Finally consider the restrictions imposed by the
conservation laws. If all the input energy results
in a propagating soliton lattice, then the average
energy in one period times the velocity v should
equal the input power. The ratio of output to in-
put powers [the two sides of Eq. (12)] is then

2
ac m 2
K ) . —w%{ K (A*—1)
R]—_— —_— —I<—+ 2 > (23)
m PRTILea s
o | 2K

where K =K (L), E =E(A) are the complete ellip-
tic integrals.”

The average rate of momentum increase divided
by the average rate of input momentum increase
[Egs. (13) and (14)] is given by
2

4 ac T
—KE|— |— | —1
m 0k |AK

2ac
— —1
@R

Note that the right-hand side of Eq. (14) (rate of
input momentum) oscillates in time; however, the
average on the period of (21) yields {coswgt ) =0.

The conservation laws are satisfied on the aver-
age if R;=1 and R,=1. The solution of these
equations yields the value of A as function of the
parameter ac /w% as shown in Fig. 7. Clearly the
value of A depends on ac/w% and cannot be
described by a universal value. The two curves in
Fig. 7 are rather close to each other, indicating
that the soliton-lattice description may be a good
approximation, although not an exact one.

The conservation laws are an exact result, valid
for any time. This of course cannot be achieved
just by the solution Eq. (21). The assumption on
the average conservation law means that Eq. (23) is
not exact for all times, but the energy and momen-
tum input redistribute within each period to agree
with Eq. (21). As we have shown, even this as-
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FIG. 7. Values of A as function of ac/w%, which
satisfy the average energy conservation (full line) and
the average momentum conservation (dashed line).
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sumption cannot be exact. In addition there are
higher-order conservation laws>!? which cannot all
be simultaneously satisfied for Eq. (21); just as the
curves in Fig. 7 are not identical.

Crisp® suggested that energy conservation im-
plies A’K /E =1. This is independent of ac /ok,
unlike our result (23). Conservation laws in the
variables x,y can also be constructed, and then they
are independent of ac/w%. However, these conser-
vation laws are not useful since the boundary value
€(x = o0,y) is not known. The condition €(z,7)=0
for t <z /c, which leads to €( w0 ,t)=0 for any t
[and to Egs. (12) and (14)], is equivalent to
€( «,y)=0 only for y <0 which is not useful.

IV. CONCLUSIONS

We have shown that a single soliton-lattice
—type solution cannot be an asymptotic solution
of Eq. (1) with the boundary conditions Egs. (3)
and (4). The soliton-lattice functions are however
a useful qualitative way of describing the solutions.
For x =1 we obtain A~0.8, increasing with x to

A~0.95 for x =11. This shows the tendency of
the pulses to separate as they propagate into the
medium. The mean separation, however, of the
pulses cannot change because of the asymptotic
area theorem Eq. (15). Therefore the pulse separa-
tion is manifested by the pulses becoming narrower
with larger amplitude, corresponding qualitatively
to A closer to 1.

We have considered here the idealized equation
of self-induced transparency. The inclusion of in-
homogeneous broadening is usually believed not to
affect the solution, except for renormalizing some
parameters.!~® In particular it was shown that the
soliton lattice Eq. (17) is a solution of the equa-
tions with inhomogeneous broadening.*> The ef-
fects of relaxation are less clear® and further work
on this aspect is needed.
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