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Self-induced transparency and the soliton lattice
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The propagation of a step-function light pulse in a nondamping resonant medium is

studied. Numerical analysis and conservation laws show that the asymptotic solution

cannot be described by a single soliton-lattice-type solution. As the pulses propagate in

space they become narrower and with larger amplitude, but the time separation between

pulses remains constant. This result is explained by an asymptotic area theorem which

restricts the time average of the electric field to be equal to that of the input field.

I. INTRODUCTION

The propagation of coherent optical pulses in a
resonant medium has led to the remarkable
phenomenon of self-induced transparency. ' An
input pulse of finite duration in time decomposes
asymptotically into a number of individual steady-
state pulses. Each pulse is a soliton with the asso-
ciated electric field behaving as a hyperbolic
secant; the number of these pulse is fixed by the
area theorem. '

Here we consider the situation of a step-function
imput pulse, with infinite duration in time. Since
pulses are' constantly generated, the asymptotic
solution cannot decompose into well-separated soli-
tons, and the usual area theorem is not useful.

Instead, it is conceivable that "soliton-lattice"
solutions inay be an asymptotic description of this
situation. A soliton-lattice solution corresponds
to an electric field proportional to
dn [(t z/U)lr; A—], where d, n is a Jacobian elliptic
function7 with parameter A, (0 & A, & 1), u is the

velocity of the soliton lattice, and r measures the

time width of each soliton. The periodicity of
dn (u;A, ), where u =(t —z/u)/r, is 2K(A, ), and E is

the complete elliptic integral; it diverges when

k~ 1 and then each pulse is a well-separated

sech(u) soliton.
The motivation for this study is threefold. First

there is a renewed interest in soliton lattices in oth-

er areas of physics, in particular in condensed

matter physics. ' Secondly, recent experiments'
on a relatively dense medium of Re04 impurities
in a KBr or KI matrix with long pulses showed

generation of a sequence of many pulses. It is not

yet clear however, if self-induced transparency is

indeed responsible for this phenomenon.
The final motivation is the article by Crisp,

who investigated the soliton-lattice solution in de-

tail. Crisp claimed that a step-function input
evolves asymptotically into a soliton-lattice solu-

tion with A, =—.The clue for this peculiar value
5

'

of A, = —, was not sufficiently clear and led us to re-

peat Crisp's calculation. We find that going to
longer times or further in space then Crisp did, a
soliton lattice is not the asymptotic solution. As
the pulse train propagates in space, each pulse be-

comes narrower and with larger amplitude, this

corresponds to some local "A,"which gets closer to
1 as function of space.

In addition we use analytic conservation laws for
energy and momentum, which show that a pro-

pagating soliton lattice cannot be the only asymp-
totic behavior. Instead, however, we show an

asymptotic area theorem which fixed the time
average of the electric field to be equal to that of
the input field. This implies for a dn (u;A, ) solu-

tion that the area of each pulse is 2m, in close
agreement with the numerical results.

II. NUMERICAL SOLUTION

8(z, t)+c8'(z, t) = —ac sin8(z, t),
where the dot is r)/Bt and the prime is t)/Bx; c is
the velocity of light and a =2rrntois /(ch), where n

is the density of resonating atoms, p their dipole
moment, and to the resonance frequency. The elec-
tric field envelope is given by

g(z, t) =8(z, t)p, /fi .
Equation (1) is studied with the following boun-

(2)

The self-induced transparency equation of a non-

damped medium, without inhomogeneous broaden-

ing and at resonance reduced to a single differen-
tial equation' for a phase variable 8(z, t)
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dary conditions.

(a) The input pulse is a step function

where z =0 is the boundary between the medium

(z&0) and the vacuum (z&0).
(b) The system is initially in its ground state

0=0, i.e., it is an attenuator,

(3)

X= I
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0
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8(z, t)=0 for t &z/c . (4)

In terms of the dimensionless variables e= g/go

x =zaR/(p. $0),

y =(t —z/c)p, do/A',

Eq. (1) can be written as

X=2

X=&

2.0-

~8l ill!I/ JNL

Bx
=—sio8,

J JJJ JJ

with the boundary conditions in the relevant range

y)0, x)0,
e(O,y) =1,
8(x,O) =0 .

Following Crisp we study this system by suc-
cessive substitution in the integral equations

x
e(x,y) =1— sin(x', y)dx',

8(x,y)= J e(x,y')dy',

starting from some initial functions, e.g.,
e' '(x,y)=1, 8' '(x,y)=0, Eq. (8) generates the
first-order functions, which in turn generate the
second-order functions, etc. The solution is then
the limit of this set of functions, provided the limit
exists.

The number of required iterations increases rath-
er fast with the range of (x,y) being solved; for the
results below we needed up to 120 iterations to
achieve convergence of at least six significant di-

gits. The results are independent of which initial
function is used, since the boundary conditions are
sufficient to guarantee a unique solution.

The results are shown in Figs. 1 —5. In Figs. 1

and 2 the results for small x and y & 200 are
shown. The results of Crisp for x =1,2, 3 and

y & 100 are similar to ours, and seem to indicate a
steady-state solution. . This solution has a periodici-

'0 80
I

l20
1 I

ISO 200
Y

FIG. 1. The electric field e(x,y) which solves Eq. (6)
with the boundary conditions Eq. (7), for x =1,2, 3 with

y &200.

ty of by=6. 4 and from its amplitude Crisp con-
cluded that it is a dn (u;A, ) with A, = —,. However,

by considering also 100&y & 200 it is seen that
there is an additional longer periodicity and the
solution cannot be represented by a dn (u;A, ) which
has a single periodicity.

The results for larger values of x in Fig. 3 show
even more significant changes. As x increases, the
pulse amplitude becomes larger, and each pulse be-
comes narrower. This corresponds to dn (u;A, )

functions whose parameter A, is ——, at x =1 and
increases with x to X-0.95 at x =11. The func-
tions dn (u;A, ) are exact solutions of Eq. (1) only
for a constant A,; the "x-dependent A,

" is just a
qualitative way of describing the solution.

The narrow peak near y =0 with e(x,O) =1
represents a short pulse propagating with velocity
e, much faster than the pulse train. It is a result
of the sudden turn-on of the input pulse at t =0,
i.e., the medium cannot respond sufficiently fast to
slow down the initial edge of the input pulse. This
effect can be eliminated by turning on the input
pulse more slowly.

Figures 4 and 5 show the results as function of x
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leads to the momentum

P(t)= f dt 0'(0+ , c—0'). (13)
0

From Eqs. (1) and (13) follows the conservation
law

dP(t) 2

dt
=etc ( 1 —costi)g t) —

& coR (14)

0 l

0 l6 20 24

FIG. 6. The threshold value of x, defined as the
maximal x for which e(x,y) =1 as function of y. The
average slope gives the velocity of the pulse-train front,
U 0.85.

III. CONSERVATION LAWS
AND THE SOLITON LATTICE

Conservation laws are an analytic property «
the solutions of Eq. (1) and are very useful in
determining asymptotic solutions. " Equation (1)
has an infinite number of conservation laws '; for
our purpose it is sufficient to use only two of these
which correspond to energy and momentum con-
servation.

Conservation laws can be derived by noting that
Eq. (1) is the Euler-Lagrange equation of the fol-
lowing Lagrangian density:

I (z, t) = , 0 + , c00—'+ac—(cos0 1), —(10)

where 8=0(z, t}. Invariance under time or space
translations leads to conserved energy and momen-
tum.

For our system with z & 0, the energy is

E(t)= f dz[ —,0 +ac(1—cos0)] .

This is the total energy in the system, in units of
iri /(2irp ). The first term is the electromagnetic
energy 8 (z, t)/4n, while the second term is the en-

ergy stored in the resonating two-level system
nfico(1 —cos0), since cos0 is the degree of inver-
sion. Note that the choice of signs agrees with
0=0 being the ground state.

From Eqs. (1), (11), and the boundary conditions
0(O, t)=mti, 0( oo, t) =0, we obtain the conservation
law

This means that the input area got equals the area

S(z, t')dt' at any z asymptotically, i.e., only a
0

finite difference may exist when t + ~.
The proof is a simple consequence of the con-

tinuity of the function 0(z, t). The difference
0(z, t) 0(O, t) mus—t be finite for any finite z, even
in the limit t~ oo, otherwise 0(z, oo ) is not con-
tinuous as function of z. Therefore
[0(z, t) —0(0,t)]/t~0 as tab oo, and from the de-
finition Eq. (2) the result Eq. (15) is obtained.

We proceed now to apply these analytic results
to the soliton-lattice solutions, and see if they can
be a consistent asymptotic solution.

The soliton lattice is the general solution of Eq.
(1) which is a function of t —z/u. Equation (1)
has then the form

~ ~

9 ——1 =ac sin0
U

with solutions given by the Jacobian elliptic func-
tion with parameter A,

1

sin —,(0—m. ) =sn t —Z/U
'A

and the relation

Note that the energy is increasing in a constant
rate [Eq. (12)], while the momentum changes in an
oscillating fashion [Eq. (14)].

In addition to conservation laws there is another
important restriction on the solution which is an
asymptotic area theorem. The usual area
theorem does not hold in our case since it as-
sumes that the pulses separate and 8(z, ao )=0. We
show here that the analogous area theorem in our
case is the equation

lim —f S(z,t')dt'= go .
~~~ t

BE(t}
Bt

where cog ——p 80/iit'.

Invariance of (10) under translations in space

(12)
U C

Thus only two of the parameters ~, v, and A, are in-
dependent. The angle 0 in Eq. (17) increases by 2m.

when the time is increased by 2~X(A, ). As A, ~O
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(
2JM

d
t —z/U

Rr
" (19)

this sequence of 2m pulses reduces to well-

separated solitons. The electric field is given by

Ri ——

2 (A, —1)
E Q)g AE+: . 2E ac

2

(23)

For A,—+1 this reduces to the well-known hyperbol-
ic secant pulse.

Consider first the restriction of Eq. (15) on the
solution (19), assuming it is the correct asymptotic
behavior. The average of Eq. (19) on one period is

(p/K)~/(rK) and Eq. (15) yields

where K =K (A, ), E =E(A, ) are the complete ellip-
tic integrals.

The average rate of momentum increase divided

by the average rate of input momentum increase
[Eqs. (13) and (14)] is given by

2

7j

co~K (A, )
(20)

In terms of the dimensionless variables Eq. (5) the
soliton-lattice solution has now the form

4 &E ac m

77 Q)g AK

2ac
2

COg

(24)

2K(A, ) K(A, )
g(x,y) = — dn y — —x;)L.

A, K(A, )
(21)

with the single free parameter A,. The periodicity
of this solution in the y variable is 2m. This is
very close to the result of the numerical analysis.
This closeness was also noted by Crisp, and its
proof is the asymptotic area theorem Eq. (15).

The numerical periodicity, defined as the dis-
tance between nearest maxima, is, however, not ex-
actly 2m,' it varies in the range 6.3—6.5. The vari-
ations in this periodicity are not a result of numer-
ical errors, since our results have converged to at
least six digits; therefore this periodicity is signifi-
cantly different from 2m. The variations in the
periodicity refiect our result that the asymptotic
solution is not a singly periodic function, although
the dn function is a good approximation in some
range of x andy.

The solution (21) gives also the soliton-lattice
velocity as

l, O
I I I I I I I I

.
I I

~~~m w ~m ee m ~ m m w w ~~ W ~~~~~ ~

Note that the right-hand side of Eq. (14) (rate of
input momentum) oscillates in time; however, the
average on the period of (21) yields t, coscoz t ) =0.

The conservation laws are satisfied on the aver-

age if R& ——1 and R2 ——1. The solution of these
equations yields the value of A, as function of the
parameter ac/m~ as shown in Fig. 7. Clearly the
value of A, depends on ac/co+ and cannot be
described by a universal value. The two curves in
Fig. 7 are rather close to each other, indicating
that the soliton-lattice description may be a good
approximation, although not an exact one.

The conservation laws are an exact result, valid
for any time. This of course cannot be achieved
just by the solution Eq. (21). The assumption on
the average conservation law means that Eq. (23) is
not exact for all times, but the energy and momen-
turn input redistribute within each period to agree
with Eq. (21). As we have shown, even this as-

U =[AK(A)/n], (22) 0.8

From the slope of Fig. 6, U=0. 85 which yields
A, =0.997. Thus the pulse train, or at least its
front, propagates with an "effective" A, which is

very close to one. This is consistent with the ten-

dency of the pulses to break up, i.e., X~1.
Finally consider the restrictions imposed by the

conservation laws. If all the input energy results
in a propagating soliton lattice, then the average
energy in one period times the velocity U should

equal the input power. The ratio of output to in-

put powers [the two sides of Eq. (12)] is then

0.6-

0.4—

0,2—

00 I I I I I I I I I I

00 0, I 0.2 0.5 0.4 0.5 0.6 07 0.8 0.9 l.0
QC/~

R

FIG. 7. Values of A, as function of ac/co~, which

satisfy the average energy conservation (full line) and
the average momentum conservation (dashed line).
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sumption cannot be exact. In addition there are
higher-order conservation laws ' which cannot all
be simultaneously satisfied for Eq. (21);just as the
curves in Fig. 7 are not identical.

Crisp suggested that energy conservation im-

plies A, E/E =1. This is independent of uc/co&,
unlike our result (23). Conservation laws in the
variables x,y can also be constructed, and then they
are independent of nc/co+. However, these conser-
vation laws are not useful since the boundary value

e(x = ao,y) is not known. The condition e(z, t) =0
for t &z/c, which leads to e( &n, t) =0 for any t

[and to Eqs. (12) and (14)], is equivalent to
e( Oo,y) =0 only for y &0 which is not useful.

IV. CONCLUSIONS

A,=0.95 for x =11. This shows the tendency of
the pulses to separate as they propagate into the
medium. The mean separation, however, of the
pulses cannot change because of the asymptotic
area theorem Eq. (15). Therefore the pulse separa-
tion is manifested by the pulses becoming narrower
with larger amplitude, corresponding qualitatively
to A, closer to 1.

We have considered here the idealized equation
of self-induced transparency. The inclusion of in-

homogeneous broadening is usually believed not to
affect the solution, except for renormalizing some
parameters. ' In particular it was shown that the
soliton lattice Eq. (17) is a solution of the equa-
tions with inhomogeneous broadening. ' The ef-
fects of relaxation are less clear and further work
on this aspect is needed.

%e have shown that a single soliton-lattice
—type solution cannot be an asymptotic solution
of Eq. (1) with the boundary conditions Eqs. (3)
and (4). The soliton-lattice functions are however

a useful qualitative way of describing the solutions.
For x =1 we obtain A,=0.8, increasing with x to

ACKNO%'LED GMENT

%e wish to thank J. C. Diels for bringing Ref. 6
to our attention and for useful discussions.

S. L. McCall and E. L. Hahn, Phys. Rev. Lett. 18, 908
(1967); Phys. Rev. 183, 457 (1969).

2For a review, see, G. L. Lamb, Jr., Rev. Mod. Phys.
43, 99 (1971).

For a review, see, R. K. Bullough, P. J. Caudrey, J; C.
Eilbeck, and J. D. Gibbon, Opto-electronics 6, 121
{1974).

4F. T. Arecchi, V. Degiorgio, and C. G. Someda, Phys.
Lett. 27A, 588 (1968).

5M. D. Crisp, Phys. Rev. Lett. 22, 820 (1969).
6M. D. Crisp, Phys. Rev. A 5, 1365 (1972).
7E. T. Whittaker and G. N. Watson, 2 Course of

Modern Analysis (Cambridge University, London,

1962).
P. Bak, in Solitons and Condensed Matter Physics, edit-

ed by A. R. Bishop and T. Schneider {Springer, Ber-
lin, 1978), p. 216; B. Horovitz, ibid. , p. 254.

B. Horovitz, Phys. Rev. Lett. 46, 742 (1981);J. Phys.
C 15, 161 (1982).

~oA. R. Chraplyvy, Ph. D. thesis, Cornell University,
1978 (unpublished).

~G. L. Lamb, Jr., M. O. Senlly, and F. A. Hopf, Appl.
Opt. 11, 2572 (1972).

2A. C. Scott, F. Y. F. Chu, and D. W. McLaughlin,
Proc IEEE 6» 1443 (1973)


