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a minimum of the free energy, while at the insta-
bility temperature the first and second derivatives
of F cancel.

In summary, we have shown that, because of
electron-phonon coupling, the tetrahedrally co-
ordinated semiconductors undergo a plasma in-
stability at high temperature which could be the
cause of melting. For the case of silicon, we
find that the electron-hole pair density near melt-
ing is much higher than the one predicted by the
classical formula n = (tel, &„)"'exp[- Ea (T )/2k T ].
The creation of a high-density electron-hole plas-
ma by an external source decreases the instabili-
ty temperature so that the crystal will melt at
lower 1'.

'D. M. Auston, D. M. Surko, T. N. C. Venkatesan,
R. E. Slusher, and J. A. Qolovchenko, Appl. Phys. Lett.
35, 437 (1978).

'W. F. Tseng, J.W. Mayer, S. U. Campisano,
G. Foti, and E. Rimini, Appl. Phys. Lett. 32, 824
(1978).

3P. L. Liu, R. Yen, N. Bloembergen, and R. T. Hodg-
son, Appl. Phys. Lett. 34, 864 (1979).

H. W. Lo and A. Compaan, Phys. Rev. Lett. 44, 1604

(1980); A. Aydiuli, H. W. Lo, M. C. Lee, and A. Com-
paan, Phys. Rev. Lett. 46, 1640 (1981); J. Bok and
M. Combescot, Phys. Rev. Lett. 47, 1564 (1981).

5Q. G. Bentini, C. Cohen, A. Desalvo, and A. V.
Drigo, Phys. Rev. Lett. 46, 156 (1981).

6J. A. Van Vechten, R. Tsu, F. W. Saris, and D. Hoon-
hout, Phys. Lett. 74A, 417 422 (1979); J. A. Van
Vechten, J. Phys. (Paris), Colloq. 41, C4-15 (1980).

~J. Bok, Phys. Lett. 84A, 448 (1981).
M. Combescot, Phys. Lett. 85A, 308 (1981).
V. Heine and J. A. Van Veohten, Phys. Rev. B 13,

1622 (1976)
'OA similar idea has been used by L. R. Godefroy and

P. Aigrain, in Moeeedings of the International Confer-
ence on the Physics of Semiconductors, Exeter, 1953
(Institute of Physics, London, 1960).
"W. Bludau, A. Onton, and W. Heinke, J. Appl. Phys.

45 ]846 (]974)
' The masses would decrease with T for a direct gap,

which is not the case for Si.
For simplicity, we assume G to be homogeneous in

space, which is never the case experimentally, to avoid
additional problems due to the motion of the e-h plasma.

' The Auger effect gives 1/7(n) = Cn with C = 4& 10 3

cm s '. But, at very high density, one can even ex-
pect a four-particle process.

' With the Auger lifetime, G would be of the order of
033 cm 3 s 1
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A unified description of solitons in both charge-density-wave (CDW) and spin-density-
wave (SDW) systems is presented within Hartree-Fock theory. Spin-carrying solitons
correspond to a localized SDW region within a CDW ground state or vice versa. Solitons
can have a fractional spin component when the CDW and SDW coexist in the ground state.
In particular, a SDW in an odd-order commensurate system must coexist with a CDW and
solitons have an irrational spin component.

PACS numbers: 72.15.Nj, 71.38.+ i, 75.60.Ch

The ground state of most quasi-one-dimension-
al (1D) conductors is either a charge-density
wave (CDW) or a spin-density wave (SDW).' The
CDW system has been extensively studied and a
variety of nonlinear soliton-type excitations were
found. ' ' The present work extends these theo-
ries to include also a SDW order parameter. In
this scheme the previously known solitons are
naturally manifest and the counting rule'" for
charge or spin is derived by use of derivative ex-
pansions. A table of all passible solitons is pre-
sented; new solitons with an irrational or frac-
tional spin component are found to exist when the

CDW and SDW coexist in the ground state. This
is indeed the case for a SDW with odd-order com-
mensurability.

The system under consideration is that of a
quasi-1D electron gas with nonretarded coupling
constants" g, for backward scattering, g, for
forward scattering, and g, for umklapp scattering
when the electron band is half filled. The system
is studied in the Hartree-Fock scheme' ' which
is a reasonable approximation to the SDW com-
pounds of the (tetramethyl tetraselenafulvalene)P'
family. "

Consider the electron spinor g (x) =(ut (x),
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u
&
t(x), v ~ t(x), v

&
t(x)) where u, (x) are right- and left-moving electrons, i.e., the electron field is u, (x)

x exp(ikFx)+v, (x) exp(-ik~x), with k~ the Fermi momentum and o = &, & the spin values. If o, and ~,.
are Pauli matrices in spin space and (u, v) space, respectively, then the electron Green s function
satisfies the equation

fi 8/St +iv FTs 8/Sx — Q (&; 7, +a, o'3T, )]G(x, t;x't')=5(x x'-)6(t —&'),

where v~ is the Fermi velocity and the cr3 polar-
ization for the SDW is chosen. The CDW order
parameter is ~, =&t.- cos6I~, ~2 = —~~ sine~ with

~~ and 0~ its amplitude and phase, respectively;
and similarly for the SDW order parameter, &,

s+s COSOsP +2 +s Syn0s ~

An equivalent set of order parameters are the
amplitudes &~,4~ and phases 9g, ~~ for the CDW
of the t or & components, respectively. (b.c cos9c
+& s cos9 s = & ~ cos9 ~, etc.) In the following I as-
sume that ~~ =&~ and that these amplitudes are
space and time independent. This corresponds
to 9c =9s+&/2 =—9 and a constant amplitude & =&~
=&~, where

Amplitude variations of either &~ or ~~ reduce
the condensation energy and face a large energy
barrier. ' Furthermore, variations in &y or &~

do not carry topological charges'" [Egs. (5) and

(6) below]; therefore the phases 9 =&(8q +9~) and

y = Y'(8~ —9~) are sufficient for soliton classifica-
tion in general and for detailed description of low-
energy solitons in particular.

The Green's function can be written as a power
expansion in derivatives of &, (X,t) and &, (x, t).'.
To zeroth order in derivatives the fast varying
parts of the charge and spin densities are

9'(x), y'(x)-L ' and Eqs. (5) and (6) can be used.
This proof fails when &(x) =0 at some point where
both phases are not defined. 4 ' This, however,
happens only for special values of the coupling
constants; by a continuous change in the latter
the counting rule is recovered. '6 The counting
rule can also be derived by bosonization of the
theory

The equations of motion are now obtained from
the Hartree-Fock self-consistency equation. Con-
sider first the half-filled band:

=(i/4)(g +g,)Tr[T,G@,f;x, t')],
=(i/4)(gs+g, )Tr[o,T,. G(x, t;x, t')],

where" gc = —2g, +g„gs =g„and the upper (low-
er) sign corresponds to j =I (j =2). Both order
parameters can coexist in the ground state only
if g~ =gs, which defines a coexistence line g,

p 12,13

To derive equations of motion for both ampli-
tude and phase an expansion to second order in
derivatives is necessary. ' However, for the
phase-only problem the following procedure is

2h 2E,
ln coscp cos (2k Fx + 8),

mg) p b,

26 2E
2$sD~= ln ' sing sin(2kFx+9),

7J'g F

~ CDW

(4)

(5)

where E, is the electron cutoff energy and spin
refers here to its third component. The slowly
varying charge and spin densities (p, S) and cur-
rents (j,js) are, to first order in derivatives,

p= 2k/~+ /8~, q =-8/~;

3~/2() ————X

7r g

/2P
————X——0

C
2~/M

I ~ e
3~/M

)( u-. X

0 M=4n

X M=4n+2

(b)

Q M=4n+ l

X M=4n+3

»=~'/~, 2js =-W~. (6)
I( X~/2'

X Q X

If S8=9(x= ) —8(x=- ) and &y=y(X= )
—p(x = —~), then the counting rule" is that the
charge and spin of a localized configuration are
69/w and 4p/2&, respectively The proof .is
made by spreading the conserved charge and spin
continuously over a macroscopic length I so that

C I @ ~ 8
w/ M 2w/M 3~/M

FIG. 1. Minima of the potential in Eq. {10). For g&
&g s, the minima are on the solid lines p=rn, while
for ps &p~ they are on or near the dashed lines +=It (n

+-,'). (a) Circles, &&=4n; crosses, »'=4n+2. (b) Cir-
cles, ~=4n+1; crosses, ~=4n+3.
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more efficient: Consider Eq. (1) and its adjoint equation; multiply both equations by a matrix A, sub-
tract the equations from each other, and then take the trace and the limit x'-x, t'- t'. For A = 1, the
equation of continuity p (x, t) +j'(x t) =0 results. By using A =w, or A = vs, and Eqs. (5), (6), and (7),
equations to second order in derivatives of 9(x,t) or p(x, f) are obtained. Both equations can be con-
sidered as Euler-Lagrange equations of the Lagrangian

R(8 P}= (2FV F) (22'9 —22U F 8 + fP —yVF p —+ V(9 0)} (6

where

V(S, V) =2eo, g. s .e, s eos(22)+, e
— s,) eos (2S)

1 1 Zc 4's

Pc -g3 gs 83 2 g2 g 2 g2

1 1
+g3 2 2 —, , cos 2~ cos 2p

gc -~3 gs g3

For a fixed 0 or a fixed p this is the well-
known sine-Gordon system'" which has a soliton
solution. The soliton corresponds to a localized
change of + & in the phase, i.e., charge + 1 and

spin 0 or spin + ~ and charge 0. A composite soli-
ton with both spin and charge (the polaron) can
also be considered. ""

The derivative expansion is justified if the po-
tential V(8, p) is small, i.e., for spinless solitons
if!g,[«gc in a CDW system (p=0) or Ig, l«g,
in a SDW system (p =&/2), and for charge neutral
solitons if I gc -g&l «gc.

The present approach gives a new insight into
the nature of solitons with spin. The presence
of spin requires a change in p [Eq. (6)] which in
turn interchanges CDW and SDW components [Eq.
(2)]. For example, in a CDW system this soliton
generates a localized region of a SDW. The un-

winding of the phase 0~ =~ +p relative to 0 ~
=0 —p

results in a localized SDW and a net spin. Simi-
larly in a SDW a spin-carrying soliton generates

! a localized CDW.
Consider next a system with a higher-order

commensurability M, where the electron band is
N/M filled, with N&M reduced integers and M
~3. In such systems additional scatterings be-
tween + kF states arise through intermediate
states with k =(2m —3)kF, 3-m&M, whose ener-
gies &„ are of order &,. The scattering between
these states involves a direct coupling to &c and
an exchange coupling to &s by a momentum trans-
fer 2kF (m —2). (All these coupling constants are
taken below to equal g, .) Since this process in-
volves the small parameter 6/E„ the Lagrangian
of Eqs. (8) and (9) withg, =0 can be used to de-
scribe the incommensurate system and then the
commensurability energy can be added.

As shown by Lee, Rice, and Anderson, "the
commensurability energy is found by evaluating
an M &~ determinant with the matrix elements
discussed above. The potential in Eq. (8) be-
comes

V(9, y) =2rruF — cos(2p) + ' cos(VI9) cos[(M —2)p] .1 1 4n
'- gc gs gc 8c I

The potential is given here to lowest order in the
small parameter

n= +(&/ ...,,)-(&/E.)
'

m=3

and in the umklapp coupling g, '. For M =2 this
corresponds to lowest order in g, which is equal
or proportional to g, ."

Note that for gs&gc and odd M the terms in Eq.
(10) have incompatible minima; the resulting
ground state is not a pure SDW, i.e. , p ~)(/2, and
the commensurability energy is of order g'. This
result is also obvious from symmetry considera-
tions: An odd invariant - &s" of a SDW is not al-
lowed by time reversal (A~- —A~) while the in-
variant 4c&s" ' is allowed and generates a finite

1418

! Thus for odd &M the ground state cannot be a
pure SDW; it is either a pure CDW (gc &g~) or a
coexisting SDW and CDW (g~~gc). When &c
«~ ~ a minimum of Eq. (10) (for 9 =0) is at
—tan '(4 ~/4c) = p, = [1 —q (-)' ""]))'/2, where

n =nP —2)(g, /gc)" '/~.

The degenerate minima of the potential (10) are
shown in Fig. 1. The elementary solitons which
connect nearest minima are listed in Table I.
Also bound states of these solitons may be possi-
ble, depending on values of the coupling constants.

Some of the solitons in Table I are known from
previous studies. The spinless soliton with
charge 2/M is the "p particle, ""the M=2 sys-
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TABLE I. Soliton charge p, spin &, and energy E&
for ~th-order commensurate systems.

Ground- state
system g2$R -Ss/n

CDW or SDW,
&& even

CDW, ~ odd

SDW, M oddb

CDW or SDW,
incommensurate

I
2/M

I
1lM

0
1
0
1
fl

1

v'&]

1 c

v'r)

1
7j

1

For ground states with a SDW only, the spin com-
ponent parallel to the SDW polarization is defined.

The irrational p is given by Eq. (11).
For &i =4n (n~ 1) soliton has an electric dipole.
Two types, one of which has an electric dipole.

tern has the polyacetylene-type solitons, ' ' and
for the M =3 CDW system the S = ~,p = ~ is also
known. " In the incommensurate limit M - ~ and
q- 0, only a spin-~ neutral soliton survives. ""

The new types of solitons with irrational spins
are associated with CDW-SDW coexistence. This
is also obvious from Eg. ('l) where a change of p
which is not n& results in a different CDW-SDW
mixture. To visualize such a soliton consider the
ground state discussed above (gs)g„~ odd)
where 8 ~

—8 ~ =2+, with p, /m irrational, and the
degenerate ground state obtained by interchang-
ing the & and & components 0~ —~ i = —2&0. The
soliton which interpolates between these states
has an irrational spin p, /2~.

A few comments on the meaning of these re-
sults are appropriate: (a) A ground-state SDW

polarized in the a, direction breaks the rotation
symmetry and a soliton spin cannot be defined in
the perpendicular directions, i.e. , (v, ) =(v,) =0
but (cr, ') and (o,') diverge. The soliton spin then
represents only. rotations around the polarization
axis which allow irrational eigenvalues. Similar-
ly the soliton charge can in principle be irration-
al, as in some field theory models. " (b) The
counting rule gives the expectation values of the
charge and spin component a, . These, however,
are true eigenvalues since the soliton configura-
tion is nondegenerate, '" i.e., the corresponding
fluctuations vanish in the limit of a slowly vary-
ing sampling function. "'" (c) Rotations of the
SDW polarization axis with an angle 0~ in a plane
lead to an additional term in the Lagrangian, L,
=sin'p(8~'-vF~8~')/4~vF, this shows the stability
of solitons with a constant 0~.

Another peculiar result is that some solitons
have an electric dipole (footnotes c and d in the
table). These solitons correspond to the curved
trajectories in Figs. 1(a) and 1(b), where 8 which
minimizes the potential shifts as p varies.

Table I also lists the order of magnitude of the
soliton energy E ~ in powers of g. The derivative
expansion is self-consistent if E~«&. Cases
with E~- ~ are consistent with known results '"
although the derivative expansion is valid for
igc -gsi gc~ or g, «max(gc~gs) for anM=2
charged soliton. The charge and spin values,
however, are determined by the counting rule
which is independent of the derivative expansion.

In conclusion, a unified description for solitons
in both CDW and SDW is shown. New types of sol-
itons are found with an irrational spin component
for systems with a coexisting CDW and SDW.
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NMR data on TiBe~ have been taken from 1.3 to 270 K in magnetic fields up to 60 ko,
The linear dependence of the Knight shift and the NMR linewidth with y = M/H show that
the increase of y versus applied field at low temperatures is due to a homogeneous prop-
erty of the electron gas. The d-electron contribution to the spin-lattice relaxation rate
is found to scale linearly with gT in a wide temperature r~&ge spanning the spin-Quctua-
tion temperature.

PACS numbers: 76.60.Cq, ' 75.20.En, 76.60.Es

The properties of the intermetallic compound

TiBe, have attracted considerable interest in re-
cent years. This cubic C-15 type material has a
strongly enhanced, temperature-dependent sus-
ceptibility" and at low temperatures the y = M/II
susceptibility changes with the magnetic field'
and shows a maximum at about 50 to 60 ko. The
large enhancement of the susceptibility without
any long-range magnetic ordering at low temper-
ature, together with the specific heat, resistiv-
ity, "and ESR data' show that the electronic sys-
tem in TiBe, exhibits the properties of an inter-
acting Fermi liquid with a low spin-fluctuation
temperature' (T,f

- 20 to 50 K). The consequen-
ces of the interactions on a microscopic scale,
the behavior of the dynamic susceptibility, and
the origin of the field-dependent X are open prob-
lems which call for more experimental work. Qn
the other hand, the influence of sample prepara-
tion on some macroscopic properties, such as
the magnitude of the maximum of M/H, is apparent
in the early publications. '4 More systematic in-
vestigations as a function of preparation tech-
niques are presently attempted. ' It is quite im-
portant to determine whether the differences in
the macroscopic parameters are induced mainly

by homogeneous modifications of the electronic
structure, by sample inhomogeneities, or by local
environment effects around impurities. NMR as
a microscopic probe is well suited to clear up
this point and to provide information on the dy-
namical susceptibility through nuclear relaxation

measurements.
In this Letter we present NMR investigations

on the Ti nuclei in a wide range of fields and
temperatures. The TiBe, sample was prepared
by Monod et al.4 and before reduction into pow-
der for the NMR measurements it has been heat
treated in vacuum at 800 K for 100 h. The resis-
tivity ratio r = p(300 K)/p(4. 2 K), the low-field
susceptibility y (10 kG), and the susceptibility
ratio p = g(60 kG)/y(10 kG) were r = 36, y(10)
=8.4&10 ' emu/mole, and p=1.18, respectively,
after annealing. On the other hand r = 110, y(10)
= 9.7 x 10 ' emu/mole, and p = 1.27 were found
on a sample prepared in Los Alamos, which con-
firms the different results of Refs. 3 and 4 and
shows that our sample is adequate for investigat-
ing any problem linked with sample homogeneity.

The NMR spectra were taken with a phase-co-
herent spectrometer operating at a fixed fre-
quency in the range from 5 to 16 MHz. The mag-
netic field was calibrated by measuring the NMR

signal of '09Ag in a silver sample' located in the
same sample holder as the TiBe,. We recorded
the full integral of the spin echo versus magnetic
field. The pulse separation time (7 &400 psec)
was always much shorter than the tiine decay of
the spin echo.

At 272 and 77 K the Knight shifts were K= (0.09
+0.01)%I and —(0.49 &0.005)g in good agreement
with the results of Saji et al. ' and slightly differ-
ing from the values estimated from the more re-
cent measurements of Takayi et al. ' At 1.3 K
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