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A charge density wave system near commensurability and with strong 
damping is considered, as a model for NbSe 3. The observed threshold field 
is associated with depinning of  a commensurate part of  the charge density, 
while the excess charge, in form of phase kinks, contributes just to the 
ohmic conductivity. The characteristic length associated with the fre- 
quency generation is one lattice constant. 

NIOBIUM TRISELENIDE, NbS%, is of  considerable 
interest as a system with Fr6hlich conductivity due to 
sliding charge density waves (CDW) [1]. The conduc- 
tivity is strongly non-ohmic when the electric field E 
exceeds a critical value Ec [2], and well defined fre- 
quencies appear in a d.c. field [3]. These phenomena 
are associated with a depinning of  the charge density 
wave; however the depinning mechanism is not yet 
understood. It has been suggested that the depinning 
is a result of quantum tunneling [4, 5] or of  depinning 
from impurities [6-101.  

We suggest here that tl~e depinning field is an 
intrinsic effect due to lattice pinning. The CDW wave- 
vectors are [ 11 ] ql = (0, 0.243 + 0.005, 0) for the 
transition at T1 = 142K and q2 = (0.5, 0.263 + 0.005, 
0.5) for the transition at T2 = 59 K. The corresponding 
band is almost 1[4 filled and the CDW is therefore 
4-fold commensurate with the lattice, except for 
relatively small regions where the excess charge is 
localized as phase kinks or discommensurations 
[12-14] .  

In the absence of impurities phase kinks lead to 
F r6hlich type conductivity [ 15, 16]. We assume here 
that in the presence of  impurity or phonon scattering 
the conductivity of the phase kinks is essentially ohmic 
and that there is no sharp depinning field associated 
with their motion. In contrast, parts of  the CDW are 
pinned by the lattice commensurability and their 
motion requires a field stronger than some well defined 
depinning field Ec. The distinction between the motion 
below and above Ec is made more precisely below. 

* On leave from the Department of Nuclear Physics, 
The Weizmann Institute of  Science, Rehovot, Israel. 

The contribution of  the phase kinks to the current 
is bounded due to their limiting velocity and various 
damping effects. Therefore for strong enough fields the 
whole CDW must move; in particular the motion of  
charge far from centers of  phase kinks requires passing 
through a commensurability barrier. This is illustrated 
in Fig. 1 : The states ~ ,  are degenerate ground states, 
while ~/n require higher energies. In presence of  an elec- 
tric field qJn -+ 0n -* ~n+l as function of  time with the 
field overcoming the loss in commensurability energy. 

Consider a CDW of the form A cos (Q" r + ~) where 
Q is a commensurate wavevector and A is the correspond- 
ing gap in the electron spectrum. The phase ~ is space 
dependent since f ~b'(y, t) dy 4= 0 (y  is the chain direc- 
tion) measures the deviation from commensurability or 
the phase-kink density nk. If  the phase is also time 
dependent it describes an electric current. This current 
has a component with a rapid spatial variation (periodi- 
city ~ Q~X) and a slowly varying component associated 
with the drift velocity ~ ~ (y ,  t) of  the whole Fermi sea 
[16]. For example, if ~ (y ,  t) = q51(y) -- Qyvt  then the 
CDW is propagating with a uniform velocity v; the corre- 
sponding current is uniform (~  v) plus oscillations on a 
microscopic scale. In the d.c. measurements which we 
consider here [2, 3, 7] the contacts are distributed over 
a length of  order 10 -2 cm while the CDW wavelength is 
of  order 10 -7 cm. Therefore the microscopic oscillations 
average to zero and the measured current J is a space 
average of  the drift velocity J ~ f ~ (y ,  t) dy. Hence only 
time variations in the velocity can give rise to a time 
dependence in the measured current. 

We describe the ohmic regime by a moving solution 
$ ( x  -- v t )  with velocity v and the corresponding current 
is ~ v f ¢ ' (x  -- vt)  dx ~ vnk. Since the velocity v is 

583 



584 NONLINEAR CONDUCTIVITY AND NARROW BAND NOISE IN NbSe3 Vol. 43, No. 7 

., io [o o! 

; {o,~o I 
i 

' I i 

I ° 
~, °l 

I 

~7, o i 

°l !° 

o~ ~o ~o< o,~ 
r , 

I i '  t I 

! ' I I ! 
I O I o o! oi io 
i r ! ! l  
roio  , lo 

![el r 
ioloolol Iolo 

° + °I 

Io°i °1 I ° I°°l 

i i  ~ , ,  i i 

I ! ! , ! I I I ! L L 

Io $ ~ ,ool ¢ io ¢ 

' ' '  ; i i i l o l  ~ool Ol o . . . .  , , io 

j I ~ I I / i I ~ ! 
, ~1 i ;o~ ; ' ~ I o ; o ;  !o oi * jo 

i i r , i , , i ! t 
oiol io q ]o!oolol !olo 

I I ,= ! ! ' I I i I ~ 
o!tlool o ol;io! 
Ii~ii~IIII 
ol io~oi p~oo~ol Io!ooi 

Fig. I. Ion positions in a nearly commensurate CDW. 
Dashed lines are the ion positions in the absence of  the 
CDW, defining the!at t ice  constant b. In presence of  an 
electric field ~n -+ @n "+ @n+l depinning the CDW as 
well as moving the phase kink. 
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Fig. 2. Schematic current field curve for low soliton 
density n ~  = 0.1 with (a) low damping coo/coe = 0.1 
(see [21 ]) and (b) strong damping coo/coo ~> 1. The 
intersections with the dashed line [equation (4)] 
define the critical field, E c. 

limited, above some critical field K c the solution 
¢(x ,  [) will not be a moving type. This definition of 
Ec, as a transition from moving to non-moving type 
solution, has two consequences: (a) The moving 
solution involves the low phase kink density nk, while 
the non-moving solution involves all the electronic 
charge. (b) A moving solution cannot generate a time 
dependent current since f ~ ' (x  -- vt) dx is independent 
of  time. Thus only for E > E~ a time dependent current 
can be generated. 

To demonstrate these ideas we proceed with the 
following model. In presence of  an electric field the 
current is written in the form [15-17]  

J = Perle rrS 

where (~J> is the space average of O~o/Ot and S is the area 

per conducting chain. The coefficient Pe¢¢ gives the frac- 
tion of the total charge which is carried by the electric 
field. The total electron density is given by the volume 
enclosed by the Fermi surface in the absence of  the 
CDW. Here we allow for the possibility that only a frac- 

tion Pete ~ 1 of  this total density contributes to the 
CDW current and determine Pe¢¢ by experimental data. 
If  Pc is the fraction of  condensate electrons [6] then 
Peel > Pc since also normal electrons are dragged by tile 
moving CDW. Note that the CDW wavevector (2' pairs 
any two degenerate states at k and k + Q' over the 
whole Brillouin zone, even if only part of these states are 
at the Fermi level. Therefore a moving CDW drags the 
normal electrons and Pefl can be close to 1. In particular 

Pc '+ 0 as T--> TCDW but Peff can remain constant. 
Although a two fluid model is not strictly valid in 

the presence of  free carriers [18], we assume that the 
CDW motion can be described by a phase equation with 
a phenomenological damping constant F [19]. In pre- 
sence of 4th order commensurabili ty this equation has 

the form [ 15, 1 71 

/ I ,4" .. 8 A  4 ,Oef f 
- -  ¢ + PC--  @¢"  + ~ sin 4¢ = t 2 v F e E - - ,  (2) 
m Pc 

whereM*/m defines the Frohlich mass, I4/is the band- 
width, vp the Fermi velocity and X is the dimensionless 
e l ec t ron -phonon  coupling constant. Each term on the 
left-hand side of  equation (2) may involve a different 
condensate density, which can be absorbed in the 
relevant parameters. Also thermal fluctuations are 
neglected in equation (2), since the system is rather 
3-dimensional and phase kinks are in fact 2-dimensional 

walls. 
The characteristic parameters in the problem are: 

The unit length ~ = VF WX/X/(4X/5-~ 2) which satisfies 
>> b since A < W(b is the lattice constant); the pinning 

frequency coo = ( 2 m / M ' X )  u =4A2/W, the crossover fre- 
quency coc = 32A4/(FxW=) and the field E1 = 16A4pe/ 
(ev~XW=pe¢e). With these definitions equation (2) for 
t) = 4<) becomes 

~ - - - ~  ~ , " +  sin ~, = - .u (3) 
cog co~ /& 

This equation has been studied in the context  of  
Josephson junctions [20, 21]. In the commensurate 
situation, where ~ is independent of  x, there is a 
depinning field which is Ee = E1 for (we/coo) = < 0.703, 
while for larger values of (we/coo)", E'c is decreasing 
[20]. For NbSea the a.c. conductivity data [22] (see 
below) shows that coe < coo, so that Ee = El ,  if the 
system were commensurate. For coo/coe -+ ~' the time 
average ( ~ >t, which determines the d.c. current, is 
related to the field by 
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E = E,(1 + (~>~/w~) 1'2 (4) 

Equation (3) in the presence of a phase-kink lattice 
has been investigated by Marcus and Imry [21]. For a 
given phase kink density nk (i.e. n~ a is the mean 
distance over which ff changes by 27r) they show that a 
propagating kink lattice of  the form ~(x  -- vt) is a 
solution of  equation (3). The current is then determined 
by ( ~ ) = f ~(x  -- vt)  dx/L = -- 2rrvnk, where L is the 
length of  the system. The velocity v is in the range 
0 ~< v <~ coo~ corresponding to fields 0 ~< E ~< E c. At Ec 
the second order derivatives in equation (3) cancel each 
other so that the solution must satisfy equation (4). 
Since at E = E c also ( ~ ) = -- 2zrwo~nk, we obtain 

E c = E z [1 + (2rmk~Wo/Wc)2] 1:2. (5) 

The current-field curves are shown in Fig, 2. For 
law fields the current is ohmic ; the velocity (for low 
kink density, nk~ ~< (27r) -1) is found from a linear 
response analysis [21 ] 

v = ~ T r w c ~ E I E i .  (6) 

The kink conductivity is then 

a k = pettrrenk~Wc/(8SEa). (7) 

In the weak damping case, w o < w c the velocity v 
in equation (5) approaches the limiting velocity coo~ 
(i.e. the phason velocity) for some E < E~ and then the 
kink conductivity becomes nonlinear (curve a in Fig. 2), 

For strong damping equation (6) yields v "~ COo~ 
even at E = Et and non-linearity in the kink conduc- 
tivity appears at most in the range E~ < E < E e which is 
narrow for sufficiently low kink density 27rnk~wo/wc < 
0.5 (curve b in Fig. 2). Therefore for strong damping and 
low soliton density the kink conductivity is essentially 
linear for E < E c. 

Note that for very strong damping we '~ COo the 
velocity Wo~ is high and higher order damping terms in 
equation (2) may be important. In fact, if COo is the pin- 
ning frequency, it is estimated that Wo ~ 102wc [7]. In 
this case equation (5) is not reliable; however we may 
still use it, considering wo as a phenomenological 
parameter which sets an upper bound on the kink 
velocity which is not necessarily related to the 
phason velocity. 

The propagating kink lattice solution is possible 
only for E < Ee; for E > Ec the solution changes 
qualitatively, involving t)(x, t) which changes slowly 
in space relative to the change with time. We approxi- 
mate this situation by a space independent solution, 
and consider the overdamped case 

~(t)/wc + sin ~(t) = E/Ex. (8) 

The solution (up to an integration constant) is 
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wc(ExlE) [(E2/E~ - 11 

~(t) = 1 + (Ez/E) sin (co c t x / ( E t / E ) : -  1)" (9) 

The time average yields equation (4) and the d.c. current 
[equation (1)] is 

JCDW = Pelf ~ x/(E/Ez) 2 -  1. (10) 

Equation (9) shows that a d.c. field above threshold 
E > Ec, leads to a time dependent current, This time 
dependence is due to the commensurability energy 
which changes with time as the field drives the phase 
~(t). The fundamental frequency of  equation (9) is 
f2(E) = c%[(E1/E) 2 -  I] 1/2 and is therefore propor- 
tional to the current 

27rJcDw/(ef~) : Petf/(2S).  (1 1) 

These frequencies have indeed been observed 
experimentally [3, 23, 24]; the left-hand side yields 

4 × 1013 cm -2. The area of  the u'nit cell, perpen- 
dicular to the b-axis, is 148 )~2 ; there are however two 
equivalent chains in the unit cell which contribute to 
each CDW transition [25]. Therefore the area per con- 
tributing chain is S = 74,~, z and equation (11) yields 
Pelf ~"  0.6. Considering the experimental accuracy of  

30% this is rather close to 1, i.e. most of  the elec- 
trons move with the CDW. Note also that the ratio of 
current to frequency is independent of  temperature, 
even if T ~  TcI~w [23, 24]. This confirms our previous 
assertion that Pelf can be very different from Pc. 

Equation (11) may also be understood as a current 
of particles with density n and drift velocity va so that 
JcDw =neva .  If  a space periodicity A is now introduced 
then va becomes time dependent, a frequency f2 = 
2zrva/A is generated and 2ZrJcr)w/(ef2 ) = nApeff. In our 
case the periodicity is generated by the lattice, i.e. 
A = b and n = (2bS) -I corresponding to 1/4 electron 
per atom per spin for a 1[4 filled band. 

In models based on impurity pinning [6-10]  A = 
7r/kF~ 4b where k r  is the Fermi wavevector. The 
corresponding density is 2kF[(nS) so that nA = 2/S 
which is a factor 4 higher than above. For impurity 
pinning of a phase-kink lattice, each kink has charge 
el2 so that nA = (2S) -z , same as in our model. Bak 
[26] has used this mechanism to deduce that the phase- 
kink charge pelf el2 is close to e/2. (Here however 
A "~ 30b and the corresponding drift velocity is larger 
by a factor ~ 30, e.g. of  order ~ 1 cmsec -z a t J c ~ w - -  
10Acre-2.)  

The oscillating current in a d.c. field was also 
observed in TaS3 [27], with the left-hand side of  
equation (11) being ~ 2 x 1014 cm -2. The area of the 
unit cell is 560 ~2 but it contains 24 nearly equivalent 
chains, which is consistent with the Hall constant [28]. 
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Therefore the area per contributing chain is 23 A 2 which 
yields 0~ee --~ 0.9. Since TaS3 is commensurate [291 our 
depinning mechanism is even more obvious. 

Finally we comment on two additional features of 
the experimental data - temperature dependence of 
gc and a.c. conductivity data. The critical field Ec shows 
a minimum near T ~  0.8 TcDw [1,2]. In equation (5) 
&(T) and F(T) indeed yield opposite temperature 
dependencies. As T increases, &(T) decreases, vanishing 
at TcDw, while F(T) increases (from the high field 
conductivity [ 1,2]) as 1" ~ T '~ with 1 ~< x -..< 3. However 
a more detailed microscopic derivation is needed for this 
analysis. 

The a.c. conductivity shows a crossover behaviour as 
in a relaxation oscillator model [7, 8] with ~ c ~  10 s 
sec -1 . This corresponds to equation (3) with a time 
dependent field, space independent solution (n k = 0) 
and co o >> cue. However the data shows [221 that the 
crossover region is very broad (from 10 v sec -1 to 10 9 

sec -1) and cannot fit a sinNe crossover frequency. The 
conductivity in presence of phase kinks can be evaluated 
within linear-response theory, as done for the polariz- 
ability [30]. The effect of the phase kinks is to break 
translation invariance so that the a.c. field can couple 
to all extended phonon modes with wavevectors q. This 
introduces new crossover frequencies at coo(1 + ~2q2) 
which smear the crossover region, in qualitative agree- 
ment with experinaent. 

In conclusion, we have shown that lattice commen- 
surability can explain the depinned CDW phenomena in 
NbSe 3. This is supported by the observation of the same 
phenomena in the similar but commensurate TaS3. 
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