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The conductivity of added charge (e.g. solitons) to a dimerized Peierls 
condensate with N coupled phonon bands is considered. If the phonon 
frequencies are low compared with the Peierls gap and the charge extends 
over several atoms then: (a) The infra-red frequencies w~n(n = 1,2 . . . . .  
N) and their relative weights are independent of the charge configuration. 
(b) The product II~=l(w~/w~), where con are the Raman frequencies, is 
isotope independent. The results are valid even if electron-electron inter- 
actions are present and a pinning effect is included. The product rule (b) 
is in good agreement with data on trans (CH)x and (CD)~. This data also 
yields the coupling constants and the pinning force. 

THE DOPING PROCESS of polyacetylene and the 
nature of the charge transfer are of considerable recent 
interest [1 ]. In particular Fincher et aL have shown that 
lightly doped (<  0.1%) polyacetylene (CH)x with a 
variety of acceptors or donors leads to the appearance 
of new infra-red (i.r.) active modes at 900 cm -1 (width 
of ~ 400 cm - l )  and at 1370 cm -1 (width of ~ 50 cm-l). 
This i.r. activity is independent of the dopant type and 
is therefore evidence that charge has been transferred to 
the polyacetylene chain and its coupling with the poly- 
acetylene vibrational normal modes causes the i.r. acti- 
vity. Of additional interest is the i.r. data of (CD)x 
[3-5]  where three lines appear with Na doping [5]. 

Undoped polyacetylene is a semiconductor with a 
gap of 2A o "" 1.4 eV [6]. This gap is maintained upon 
doping, so that the new i.r. modes are within the gap, at 
frequencies 6o ,~ A o. 

This behaviour is considered as an evidence [4, 7] 
for the soliton configuration in polyacetylene [8-11 ]. 
Here I show that this unusual behaviour is a universal 
result of  the translation degree of freedom of the added 
charge, independent of its configuration. 

Consider N phonon bands in an undimerized system 
whose bare frequencies at a zone boundary q = lr/a are 
coo [a is the lattice constant, i.e. the c - c  distance along 
the chain in (CH)x] and their dimensionless electron- 
phonon coupling constants are ;k n (n = 1, 2 . . . . .  N). 
For trans (CH)~ each C - H  unit has 4 degrees of freedom 
for vibration within the polymer plane which may 
couple to the electronic charge, i.e. N = 4. Because of 
the polymer zig-zag shape two of these modes, associ- 
ated with the carbon vibration, should be strongly 
coupled. 

In the presence of dimerization the zone boundary 
(equivalent to the zone center) phonons have frequencies 

R co, and are Raman active. These modes correspond to 
oscillations in the dimerization amplitude [ 12, 13] and 
their frequencies are known from Raman scattering 
[14-16] .  

When a unit charge is added to a dimerized chain a 
defect of length ~ in the dimerization pattern results 
and i.r. activity appears. We expect that ~ ~ ~o = vF/Ao 
where v F is the Fermi velocity. There are two types of 
phonons [17] : extended modes, whose dispersion 
6On(q) = 6o~(1 + ~q2/12)1/2 is not affected by the 
defect, and localized modes with a discrete spectrum. In 
principal all modes become i.r. active since translation 
invariance is broken. However the contribution of the 
extended modes at the zone center and further than ~-1 
from the zone center are both vanishing. The spread of 
wavevectors in the range (0, ~-t) results in a spread in 
frequency of the order of wn R •20. Therefore, although 
the total contribution of the extended modes may be 
comparable to that of the localized modes it is less 
likely to be observed because of its much larger width. 
This is indeed confirmed by the numerical lattice cal- 
culation [7]. 

In the following I consider only the localized i.r. 
modes. A linear combination of these modes yields the 
time dependent center of mass ~(t); by solving the 
coupled set of equations of  motion the i.r. frequencies 
ton (n = 1, 2 . . . . .  N)  are obtained as functions of co ° 
and X,. 

Two assumptions are made in the derivation: 

(a) All phonon frequencies are small compared with 
internal electronic transition frequencies. The latter are 
of order A o and the conditions (to~'n/Ao) 2 ~ 1 are 
valid for polyacetylene. In the presence of a pinning 
potential, the electronic transition frequencies in this 
potential are also assumed to be large compared with 
the phonon frequencies. 
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(b) Lattice discreteness is neglected, i.e. ~ ~" a. This 
assumption is consistent with the metallic behaviour 
above 1% doping [6] and with the results below. This 
assumption justifies the use of dispersionless bare fre- 
quencies too, the relevant ones being ~-1 away from the 
zone boundary. 

These two assumptions lead to the following con- 
clusions: 

(a) The i.r. frequencies and the ratio of their inten- 
sities are independent of  the charge configuration. Thus 
the claim [4, 7] that the charged soliton configuration 
explains the i.r. data does not prove that solitons are 
indeed the charge carriers. The latter can be tested only 
if the electronic structure is involved, e.g. by comparing 
i.r. intensities with interband transitions or by measuring 
the dielectric constant. 

(b) The zero frequency translation mode acquires a 
finite frequency if pinning is present, e.g. due to 
Coulomb interaction with the dopant ion in doped 
polyacetylene. The number of i.r. modes, including the 
pinned mode, equals the number of Raman modes, or 
the number of  bare coupled phonons. This confirms that 
the pinned mode in polyacetylene is at 900 cm -1 [2], 
and not at a much lower frequency as claimed in [7]. 

(c) The product II ,( to~/to~) is isotope independent 
[see equation (21)]. The product rule is in good agree- 
ment with data of  (CH)x and (CD)x. This remarkable 
result in fact justifies the neglect of lattice discreteness. 

(d) The results ( a ) - ( c )  are valid even if a direct 
electron-electron interaction is present. If, however, 
the latter is neglected, the parameter too, Xn and the 
pinning force can be determined, as summarized in 
Tables 1 and 2. 

The approach to intra-gap i.r. activity, presented 
below, generalizes two known examples. The first one 
is the motion of an incommensurate charge density 
wave [13, 18]. The ion displacement at the ruth site is 
u(m) = Uo cos (qoma + ~) where Uo is the displacement 
amplitude, qoa/Tr irrational and the phase variable ~ is 
the center of mass coordinate mentioned above. The 
second example is the i.r. activity of charged solitons in 
polyacetylene [7]. 

In a dimerized Peierls condensate, such as poly- 
acetylene, qo = 7r/a so that u(m)  = (--)mu o ; thus # is 
not coupled to the ion displacement and there are no 
i.r. modes (except at high frequencies [19] ). The addi- 
tion of charge, e.g. by doping, restores the i.r. activity 
associated with the translation mode, as shown next. 

The displacement pattern along the chain axis has 
the form un(m) = (--)mAn(ma)/4,v n, where n = 1, 
2 . . . . .  N are the normal modes and an their couplings 
to the electrons as defined in [8]. The neglect of  the 
lattice discreteness leads to a continuum model for 
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An(x) [9--11]. The An dependent part of the Hamil- 
tonian is 

H{An} = f dx Z (2rrVFX.)-' [A2n(X) + (£Xn(X)/to°n) 2] 
r l=l 

+ A(x)C(x) }, (1) 

where kn = 4a2na/(rrvvKn) with Kn the spring constants 
for distorting the undimerized system [8], 2xn the 
canonical momenta, A(x) = ~,~ An(x ) and C(x) involves 
electron operators describing backscattering of electrons 
across the Fermi sea. All the relevant phonons near the 
zone boundary couple to the same electron scattering 
C(x). The total Hamiltonian involves also the electron 
kinetic energy and direct electron-electron interactions. 
Here only the phonon equations of motion are relevant, 
and equation (1) yields 

An(x, t) + An(x,  t)lto °2 = --  lrVvXnC(x, t). (2) 

The ground state of the dimerized system is uniform 
A(x) = A o. The addition of charge leads to an x depen- 
dent solution 

An(X) = -- ~vvXnC(x) = A(x).  Xn/X, (3) 

where X = Xn X,. Consider now a solution of the form 
A[x - - ~ ( t ) ] ,  i.e. the static solution with time dependent 
center of mass. Each normal mode has its own center of  
mass variable ~n(t) satisfying A(x -- 0) = ~ ,  An(X -- ~,)" 
Expanding to first order in Cn yields O(t) = Zn dPn(t)Xn/ 
X. 

The main ingredient in the derivation is that the 
electronic part, C(x, t), follows adiabatically the ion 
displacement, which is justified for (to/Ao) 2 ,~ 1. Thus 
A(x -- ok) = -- 7rvFXC(x, t) and to first order in ~(t), 
A'(x)~ = rrVF;kSC. Expansion of equation (2) to first 
order in ~n yields 

(~n(t) + ~n(t) l to~ -- O(t) = 0. (4) 

These equations correspond to the Lagrangian 

L { ~ , , }  = t 

x[~[-qJ~+(&.lw°,,)2]X.lX+~=) , (5) 
where N c is the number of unit charges, 

I2o' = ~n "~  (toO)-' (6) 

andM c the kinetic mass per unit charge. To see this con- 
sider a uniform motion with velocity v, i.e. On = ~, 
~bn = V so that L = ~MeNe~. 
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The mass Me can be identified from the kinetic 
term in equation (1) where A, (x  - 0) = - ~A~(x) to 
first order in 0; hence 

M e = f A'2(x) dx/(nhvF~2~Ne) 

The equations of  motion for 0n(co) are now 

(1 --  co2/~ozn)On(to) -- (l --  C00(CO ) 

= _ 

For the single soliton solution A(X) = Ao tanh 
(xAo/vF) equation (7) yields the known result [8, 10] 
Ms = 4Ag/(37rM~Ft2~). In the incommensurate limit 
(i.e. high density of  the soliton lattice [20] ) A(x) = 
Ao exp (i2kFx) + h.c. where k F is the Fermi wave- 
vector. Equation (7) now yields the mass M e = MR 
where MF/m = 4A~/M2~, and m = kF/vF. MF is just 
the Fr6hlich mass of  an incommensurate charge density 
wave [ 12, 211 if ~o  2 ,~ A~. 

I f p  is the average charge density, p =Nc/L, then 
motion of the center of  mass implies an electric 
current 

00(t)  
/ ( t )  = ep 

0t 

The charge is assumed to move rigidly with the center 
of  mass, which is again justified for low frequencies 
(co/A0)2 "¢ 1. As an example, a linear response analysis 
for the soliton solution [ 9 - 1 1 ]  yields 

/(co) =. iepcoO(co) [ 1 + 0r2/12) (co/Ao) 2 + 0(co/Ao)* ]. 

The Lagrangian (5) describes a frictionless motion 
of  the charge. The dopant  ions however provide a 
pinning potential for the charge on the polyacetylene 
chain. For a charge distribution p [x --  ¢(t)]  the pinning 
interaction is 

Vpi~ = --  e 2 / V(x)p[x - -  0(t)]  dx. 

Expansion to second order in 0 yields 

VP in = - -  EB --  ½e202(t).i V"(x)p(x) dx, 

where 

EB = e 2 j V(x)p(x)  dx 

is the binding energy. The effective Lagrangian in the 
presence of an external electromagnetic potential A (t) 
in the chain direction becomes 

Le, ~ = ½MeNc~2~ { ~  [ -  + ( ¢ . / c o ° ) 2 l X . / x  

(1 - -  a)O ~ I -- e~NcA(t)~(t) + 
] 

where 

a = -- e 2 f Vn(x)p(x) dx/(McNcI2~). 
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( l l )  

(7) where E(co) is the electric field. Equation (11) is easily 
solved for the field 0(co) and equation (8) yields the 
conductivity 

p Do(co) 
o(co) icoMeI2~ - -  1 + (1 --  t~)Do(co) 

(12) 

where 

v x .  cooz 
Do(co) = ~ 2 - - -  oz" (13) 

X co - - c o .  

The poles of  equation (12) yield the i.r. frequencies 
co~. For ~ = 0 there is a pole at co = co~ = 0 which 
corresponds to the Fr6hlich type superconductivity [ 12] 
Re 0(6o) = 8(co)lrp/Me for co < co~ [co~ is the next pole 

(8) of  equation (12)]. For c~ ~ 0 translation invariance is 
lost and the Fr6hlich mode becomes a pinned mode at 
frequency co~ ¢ 0. The function Do(co) is plotted in 
Fig. 1 for a 3 phonon system. Its intersections with the 
value --  1/(1 --  c~) 0ine a in Fig. 1) determine the fre- 
quencies coon. For r~ < 1, co~ < co o and there is an addi- 
tional solution in each interval o 0 (co,,  co,+1). For a > 1 
there is a solution at co > coo instead of  the solution at 
co < coo. There are always N solutions, i.e. the number 
of  i.r. modes, including the pinned mode, equals the 
number of  coupled bare modes. 

Some properties of  the conductivity equation (12) 
are worth discussing. First note that the information on 
the nature of  the charge, i.e. if it is a soliton, a polaron 
[22],  a soliton lattice [20] or any other configuration, 
is contained in the single parameter M e . In fact, the 
conductivity in the incommensurate limit (or high 
soliton density) has been calculated [13, 18] and it 

(9) coincides with equation (12) when (CO/Ao)2 <~ 1, p is the 
total charge and M e = M r the Frbhlich mass. Thus the 
i.r. frequencies, as well as their relative weights, are 
independent of  the charge configuration, as long as 
(co~/Ao) 2 < 1. The value o f M  c can be derived by com- 
paring the i.r. intensities with the total intensity which 
includes electronic interband transitions. For this com- 
parison one needs the conductivity sum rule [23] 

SORe o(co) dco = e2VF . (14) 
0 

Another possibility for determiningMe is by mea- 
(10) suring the dielectric constant 

e(0) = 1 + 41rpe2/(outfeI2~). (15) 

If  the experimental values for e(0) can be corrected 
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where/i = 2~n ~ , .  The eigenfrequencies of equation (18) 

( o )  

( b }  

] , 1 ~ 1 ,  
2000 2400 2800 

~ t  Crfl-I 

Fig. 1. The function Do(6o) [equation (13)] with the 
parameters of Table 2. The intersections with the value 
- - ) / (1  -- a) = -- 1.26 (line a) give the i.r. frequencies 
6o~n, while the intersections with the v a l u e -  1/(1 -- 
2~,) = -- 1.62 (line b) give the Raman frequencies 6o~. 

for local field effects, the term linear with p should 
yield the value of Me. Note that e(0) does not deter- 
mine a dynamic property such as M e. It is the combined 
information of r42~ from i.r. data with e(0) which 
determines Me. 

Another feature of equation (12)is a "product 
rule" of the frequencies 6o~n. The denominator in 
equation (I 2) can be written as II n (6o 2 -- ~2) [ (co  2 -- 
6o~). By comparing values at 6o = 0 the product rule 
is obtained 

N 

~, (6oe~n/w°)2 = ~,. (16) 
rlffil 

In order to test equation (12) with experimental 
data the frequencies t~°n are needed. Since the available 
calculations of 6oen [24] neglect interchain coupling, I 
use instead another set of data which is directly mea- 
surable, i.e. the Raman frequencies of the dimerized 
(undoped) system. The Raman frequencies correspond 
to amplitudes oscillations around Ao [12, 13]. If 
-- N(0)Ei (A) is the interaction energy of forming a gap 
A = Y.,nAn and N(0) = 2/try F, then the effective 
Lagrangian is 

{n~ 1 [--A2n+ (2X,/6oen) 2] +El(A)} L.ft{A} = N(O) ~ 

(17) 

Ei(A) is independent of 2X since the dynamics are domi- 
nated by the phonon terms. This is the same adiabatic 
principle used above which is valid for 6o ,~ Ao. 

The ground state is Ao = 2XE'(Ao) while small 
oscillations with amplitude 6 n(t) satisfy 

,(t) + ~',(t)/6o~ = 2X,8(t)E['(Ao), (18) 

solve the equation 

Do(w) = -- 1/(l -- 2~), (19) 

where Do(w) was defined in equation (13) and 1 -- 
2~ = 2~,E/'(A0). 

The interaction energy Ei(A) depends on both 
electron-phonon and electron-electron interactions. 
For the Peierls model (no electron-electron inter- 
actions) Ei(A) = ~A 2 + ~A 2 In (2Ee/A) [21] where 
Ee is the electron cutoff energy. Thus Ao = 2Ee exp 
(-- 1/2X) and in equation (19) X = X. This coincides with 
the Raman frequencies in the incommensurate limit 
[13] except that X is replaced by 2~ [11]. 

Equation (19) is identical to the equation for ~n 
except a is replaced by 2~,. Therefore it has N solutions 
for the Raman frequencies wn R ; for 2~ < 1,6o~ < 6o ° 
and there is one additional solution in each interval 

O 0 (con, 6on÷l) (see Fig. 1). 
Following the derivation of equation (16) the 

Raman frequencies 6on R satisfy the product rule 

N 

l '] (6o~/wen)2 = 2~. (20) 
r l=l  

The ratio of equations (16) and (20) gives 

N 

I'I (6o~/6o~)a = a/2~. (21) 
n--I 

The significance of this result is that the left-hand side 
involves measurable data while the fight-hand side is 
isotope independent since r, and ~ involve only elec- 
tronic properties. 

It should be emphasized that the product rule 
equation (21) as well as the conductivity equation (12) 
are of general validity - the effects of electron- 
electron interactions are contained in the parameters 
Mc and ~. 

From the data on (CH) x and (CD)x (see Tables 
1 and 2) the left-hand side of equation (21) is 0.61 for 
(CH) x and 0.55 for (CD)x. In view of the experimental 
uncertainty (60~ has a width of"~ 400 cm -1) these 
numbers are consistent with each other. Considering 
the large frequency shifts between (CH) x and (CD)x 
and the change in the number N of modes the result 
that the product rule remains unchanged is quite 
remarkable. 

Consider now the calculation of Mele and Rice [7] 
on the i.r. activity of solitons. They claim that two 
normal modes are responsible for the observed i.r. 
modes at 900 and 1370 cm -1 , and for a third, as yet 
unobserved pinned mode at lower frequencies. This is 
inconsistent with the conclusion from equation (12) 
that the number of i.r. modes is equal to the number of 

- 2  

- 3  J t 
0 400  800 1200 1600 
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Table 1. Parameters o f  trans (CH) x : i.r. (6one), Raman 
(6OR n ) and bare (coo)frequencies in cm -1 , coupling con- 
stants )`n, ()` = ~ n ) ` n  = 0.19) and relative weight W~ in 
the sum rule [equation (14)] in units o f  p/MeUF 

n 6oo )`,,/)` w,, 6oq~n (*On 
[2 ,5]  [13, 14] 

900 1075 1210 0.08 1.2 
1370 1470 2110 0.92 0.5 

Table 2. Parameters o f  trans (CD)x. Notations as in 
Table 1 

6oo 6o. 6oo )`./)` w.  
[5] [13,15]  

760 850 890 0.04 1.6 
1070 1200 1220 0.007 2.0 
1240 1340 2040 0.953 0.3 

coupled bare modes. A third phonon is not involved in 
their calculation [7] since the lowest bare frequency is 
6o0 ~ 1100 cm -t and there can be only one i.r. solution 
with co < co°. Thus the "- 900 crn -1 mode in their calcu- 
lation should be 6o~', i.e. the pinned mode. The only 
pinning mechanism in their calculation comes from the 
lattice discreteness. This effect corresponds to a binding 
energy o f ~  16 crn -1 [8] and may lead to a rather high 
pinning frequency in view of  the very light soliton mass 
[8]. Thermal and quantum fluctuations however can 
easily overcome the low binding energy of  "~ 16 cm -1 
and the pinning from lattice discreteness is not relevant 
to actual experiments. 

Lattice pinning seems to be the only mechanism 
which may explain the results of  [7]. Thus discrete 
lattice calculations at zero temperature for normal 
modes involving delocalized charge (e.g. a soliton) are 
misleading - they are sensitive to lattice pinning which 
is irrelevant. 

The 900 cm -~ mode must be the pinned mode also 
in view of  the Raman data. Since cop < 6o o and the 
lowest Raman frequency [14, 15] is 1075 cm -x (or the 
very weak line at 1015 cm -~) coo is at a higher frequency 
and 6o~ = 900 cm -l < coo cannot be but the pinned 
mode. 

Consider now the Peieds model ()` = ~); from data 
on Ao/2Ee )` is obtained and the i.r. and Raman fre- 
quencies yield 2N equation for the 2N unknowns co°, 
X,~/)` and ,~. For polyacetylene 2E c = 10 eV, Ao = 
0.7 eV [6] so that )` = 0.19. Note also that in resonance 
Raman scattering the intensity of  phonons which are 
coupled to the extended 7r electrons is strongly en- 
hanced. Thus in (CH)x there are two coupled modes 
while in (CD)x there are three modes [ 1 4 - 1 6 ] .  This 

implies that the coupling of  a CD bending mode with 
the electrons is stronger in (CD) x than that of  the 
corresponding mode in (CH)x [4]. The i.r. data shows 
indeed two 6o~' modes in (CH)x [2] and three w ¢' modes 
in (CD)x [5]. The three modes in (CD)x appear, how- 
ever, only upon doping with Na. Doping (CD)x with 
AsFs or I2 shows [3 -5 ]  only two modes, but the 
higher frequency mode is much wider than 6o~ of (CH)~ 
and should therefore be considered as two overlapping 
i.r. modes. 

Tables 1 and 2 summarize the experimental data; 
the i.r. modes of  (CD) x are those with Na doping [5]. 
Using )` = 0.19 the values of  coo and )`n [)` are obtained, 
as shown in the tables. Also shown are the weights W i 
of  the i.r. modes relative to the conductivity sum rule 
[equation (14)] in units ofp/McvF. The intensity ratio 
is in reasonable agreement with experimental estimate 
[4] Wx/W2 ~ 1.5 for (CI-I)~ and W~/(W2 + W3) ~-- 0.7 
for (CD)x. 

The weight Wn of  a particular mode is affected by 
the coupling of  all higher frequency modes, and not 
just by its own coupling )`n/;k. Thus in (CH)x)`1[)`2 ~- 
0.1 but WI/W~ "" 2.2 while in (CD)x the mode with 
),2 [)` = 0.007 has the strongest intensity. Note also that 
although the pinning force `* is isotope independent, the 
pinned frequency 6o~ is isotope dependent as it is deter- 
mined by  the balance of  all masses in the system. 

The mean frequency of  equation (6) is I2o = 
1960 cm -1 for (CH) x and ~o  = 1880 cm -1 for (CD)x. 
The corresponding soliton masses are MJme = 2.7; 2.9. 

Finally consider derivations of  the mass Me. If  the 
pinning ion is at distance d from the chain it leads to a 
pinning potential V(x) = eol(x ~ + d2) -x/2 . For a unit 
charge localized along a distance of  2~, the value of  
`* = 0.23 yields 

eo~aMc/me "" 8 x 103 (22) 

for ~ ~, d and ~ is measured in A. For eo = 2 - 5  [2, 8] 
and ~ = 5 - 1 0  A [8],  equation (22) yields Mc/me = 
2 - 2 5 .  

Since the distance d can be different for each do- 
pant, there is a distribution of,* values which affects 
mainly the width of  the pinned mode 6o~. This is con- 
sistent with the relatively large width o f "  400 cm -l for 
this mode [2]. 

The most reliable method of  determining M c is from 
the intensity ratio Wn[W T where WTiS the total band 
absorption [equation (14)]. Using [2] I4/2 = ( 2 - 3 )  x 107 
p a c m  -2 and WT= (1--4)x 109cm -2 for (CH)x, the result 
in Table 1 yields Me[me = 15-100 .  This is considerably 
larger than the soliton or polaron masses. It seems that 
effects o f  interchain coupling or e lect ron-elect ron 
interactions are needed to account for the experimental 
data. 
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In conclusion, I have shown that i.r. and Raman 
frequencies can determine the microscopic parameters 
of an electron-phonon system. Further data on the 
weights IV n and the dielectric constant e(O) can deter- 
mine the mass M e of the charge on the polyacetylene 
chain, which in turn can determine the dopant ion pin- 
ning potential. 
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