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OPTICAL CONDUCTIVITY OF SOLITONS IN POLYACETYLENE 
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The soliton lattice solution of the continuum model for polyacetylene is 
used to derive the frequency dependent conductivity of charged solitons. 
The limit of low soliton density is explicitly evaluated and shown to be 
free of singularities. The conductivity sum rule is proven for the model 
Hamiltonian, and is shown to be satisfied by the explicit solution. 
Implications for polyacetylene and for TTF-TCNQ are discussed. 

THE PROPOSAL that the doping process of polyacety- 
lene is accomplished by forming charged solitons has 
received considerable experimental support [ 1 ]. In 
particular Suzuki et al. [2] have measured an additional 
absorption within the semiconducting gap, which may 
correspond to transitions to the mid-gap state of a 
charged soliton [3]. They have also calculated the 
frequency dependent absorption by using the continuum 
model for polyacetylene [4]. 

However, this calculation seems to give divergent 
results for the interband transitions. As noted by Tinka 
Gammel and Krumhansl [5 ] the difficulty is removed 
by imposing appropriate boundary conditions. Another 
way of removing the divergence, as suggested by Maki 
and Nakahara [6], is to consider the system with a small 
but finite density of solitons. These calculations consider 
a system of uncorrelated solitons and show that there is 
a finite reduction of the interband transitions, propor- 
tional to the soliton density. 

The neglect of correlations between solitons implies 
that these calculations are not exact; in particular the 
conductivity sum rule is not exactly satisfied in any of 
the previous calculations [2, 5, 6]. 

Here I use the exact solution for the soliton lattice 
[7] to calculate the frequency dependent conductivity 
in the limit of low soliton density. The result is qualita- 
tively as in the previous calculations [5, 6], however 
the detailed frequency dependence is different. This 
may be significant for extracting the soliton density 
from the experimental data. I also consider a long- 
standing puzzle in the optical conductivity of T T F -  
TCNQ [8], which may be explained by the existence 
of two gaps in the electron spectrum. 

I first derive the conductivity sum-rule for the con- 
tinuum model. Since the electron spectrum is linearized, 
the conventional derivation [9] does not apply. The 
Hamiltonian is [4] 

\ 

zx(x)[u ;(x)v,(x) + v;(x)u,(x)l } + 
I 

+ (2rrXvF) -1 ~ (Ix A2(x), (1) 

where Us(X), v,(x) are fermion fields representing right 
and left moving electrons. The phonon field A(x) is time 
independent in the adiabatic limit considered here, vF 
is the Fermi velocity and X is the dimensionless electron- 
phonon coupling constant. 

The kinetic part of the Hamiltonian [first term in 
equation (1)] has the spectrum + vFk where k is the 
electron momentum. This spectrum is unbounded and 
therefore the ground state contains an infinite density 
of fermions. This also results in unusual commutation 
rules for the density operators P+-m with momentum q 
of the right (+) and left (--) moving fermions as shown 
by Mattis and Lieb [10] : 

qL 8 , (2) [p+,q, p±,_q']  = -T- "2--~ ~s q,q 

where L is the length of the system and 77 s is the number 
of spin states (r/s = 2 for electrons). If rio is the kinetic 
part of H, it was also shown that [10] 

[Ho,P±,q] = + vFqp±,q. (3) 

Therefore I obtain for p~ = p+,q + p_,q 

[[Ho, po] ,  p -o ]  = -- vFq2rTls/~. (4) 

This commutator for the interaction terms in equation 
(1) vanishes, so that one can replace Ho by H in equa- 
tion (4). In the usual derivation [9] of  the sum rule, the 
commutator (4) is given by --nLq2/m where n is the 
fermion density and m its mass. Here the density n is 
infinite, but the mass m is infinite too - spectrum 
linear in k. The ratio n/m corresponds however to a 
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f'mite quantity, which from equation (4) is vFrl, flr. One 
earl also define formally a Fermi wavevector kF so that 
n = r&kF/~r and then the correspondence in the commu- 
tator (4) is vF ~, kF/m. The derivation of  the sum rule 
proceeds now as in the usual case [9] with the plasma 
frequency given by cop 2 = 4e2ver~, and the results for 
electrons with spin 1 [2 is 

f Re o(~o) dco = e2vF. (5) 
0 

The continuum model seems to have lost the depen- 
dence on the number of electrons. Note however, that 
changing kF while rn is fixed means that we have to 
change vF in the linearized model. Thus the sum rule 
depends on the number of electrons through the choice 
of the parameter VF. 

Consider now the conductivity of the soliton lattice 
solution [7]. The electron eigenfunctions ua(x), vq(x) 
satisfy 

-@ + A (x)--VFX(X) Cq(x) = 

- 2 +  2(x) + v F d ( x )  g , ( x )  = egg,(x) .  (a) 

where fq(x) = uq(x) + ive(x ), gq(x) = uq(x) --ivq(x). 
The solution for &(x) is [7] 

A(x) = Ark sn (x/k~, k) cd (x/k~, k), (7) 

where 2At is the gap in the commensurate case (if~, 
1), ~ = vF[At and sn, cd are Jacobian elliptic integrals 
with parameter k. This parameter determines the soliton 
density p = 2fl with I = 2~kK(k) and K is the complete 
elliptic integral. The eigenvalues % form 3 bands as 
shown in Fig. 1 ; the solution corresponds to the valence 
band (q < --rrfl) being full, the mid-band (Iql < nil) 
being either empty or full (with two spin states) and the 
conduction band (q >rt[l)  is empty. 

The current operator is evF(lu(x) l 2 -- I v(x) 12) and 
leads to the conductivity [5, 6] 

2~re2v~" g g' IMq, q,I 2 ~(6o + eq,--eq),  R e  = ¢ 

( 8 )  

where ~2'(1~") is summation on occupied (empty) states 
and 

1 
= -~ f dr. [fq(x)g~,(x) + f~  ,(x)gq(x)]. (9) M,,,/ 

For low soliton density the valence to midband 
transitions are easily evaluated (for empty midband; if 
full consider midband to conduction transitions). The 
result is the same as for the single soliton calculation 
[2, 5, 61 
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Fig. 1. Electron spectrum in presence of a soliton lattice 
with periodicity l. The extended zone scheme is used 
and the spectrum appears symmetrically to the left of 
the point -- A. 

I 
Re o t (~ )  = "~vF~pe2r¢ 2 

x o( o - (10) 

For the valence to conduction band transitions 
equation (9) can be written as 

+ge(x)A(x)g~'(x) leql I%'1 " 

When k' -+ 0 (p ~ ln- '  4/k'  -~ 0) A2(x) + VFA'(X) --* 
A~ + 0(k '2) except at the minimum points of dn (x/k~, 
k). Thus g~(x) = etqX /x/L + $gq(x) and 8gq(x) can be 
shown to yield corrections of order p2 which are neglec- 
ted. Thus the first term of equation (11) vanishes 
while the second term with a Fourier expansion of A(x) 
yields for the interband transition 

"n'2e2~ z 1 7ri ( 1 
Re o2 (co) = ~ P XQ sh 20rQ~/2) dq leVI 

+ I%-+OI 8 ( c o - I % 1 - - 1 % + o l )  , (12) 

where Q = (2n + 1)- 21r/l and n is an integer. (Note that 
the Fourier components of A(x) are only odd multiples 
of 2~r/t.) 

To first order in p the spectrum is [7] 
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Fig. 2. The contributions to the correction of the inter- 
band transition: (a) Re o~)(co) [equation (15)] ; (b) 
Re o~=~(co) [equation (16)] in units of e2~2p. 

eq = (1 + ~ ) , / 2  + pq-(1 + ~/-2)-an tan-i  ~, (13) 

where ~l = q -- nil. To obtain the correction due to the 
second term of equation (13) use the leading term of 
sh 2 (rrQ/2) as Q ~ 0 and Q ~ 0 in the integral with the 
result Re Oo(co) + Reo~a)(co) where 

Re Oo (co) = e 2 VF (co2 _ 4A~ )-a/= 0 (co -- 2A t ), 

(14) 

Re o~a)(co) = - - 4 A a v  r p co-2 Re Oo(co). (15) 

oo(co) is the conductivity in the absence of solitons, 
while equation (15) gives the leading order correction 
due to the spectrum correction equation (13). This 
correction is dominated by interband transitions q '  -* q 
where Iql and Iq'l  are almost equal. This limit was also 
assumed in the previous calculations [5, 6].  Here how- 
ever it is strictly an expansion in p and in fact there is 
an additional correction which is not dominated by the 
Q ~ 0 terms. To see this use eq = (1 + q=)V2 in equa- 
tion (10) and then the q integration can be done. Next 
choose No ~" 1 but Qo = (2No + 1)" 2~r/l '~ 1. For 
n ~<No expand sh= 0rQ/2) as before and the sum can be 
done. For n > N o  change the sum to an integral and 
integrate by parts the terms which are singular at Q = 0 
and co= = ~ Q =  + 4A~t. This leads to equation (14) with 
an additional correction (here Vv = At = 1) 

~ ' ~  x/co 2 __ Q2 _ 4 
Re a~2)(co)= 8e2pco f ~ - Q - ~ j  

o 

a [ 4co -Q = 

(16) 

This correction is compared with equation (15) in 
Fig. 2; its effect is to moderate the sharpness of the peak 
of equation (15). The total correction to interband 
intensity Re o2 (co) = Re o[l)(co) + Re ot2=)(co) is shown 

- I -  

- 2 -  

-3  

I 
I \ 

I 

m 

595 

I 

in Fig. 3 together with the mid-band contribution equa- 
tion (10). The corrections to the interband transition 
is singular at co = 2A~ and decreases as co-3 at high 
frequencies, approaching --2p/j Re Oo(co). 

The contribution of equation (10) to the sum rule 
is 

T Re ol (co) dco = w e  2.  p~. (2.82 + 0.005). (17) 
0 

The contribution of the interband transitions to the sum 
rule can be found by first integrating equation (12) and 
then following the previous procedure. For p = 0 the 
sum rule is satisfied since 

f Re Oo(co) dco = e2vv (18) 
o 

while the contribution of 02 (co) to the sum rule is found 
to cancel exactly equation (17). [The cancellation is 
analytic, i.e. it does not use the numerical results in 
equation (17).] Thus the sum rule is obeyed also to first 
order in p, which is a useful check on the validity of the 
calculation. 

Consider next the experimental data on polyacety- 
lene [2]. It was noted by Maki and Nakahara [6] that 
comparisons of the ratio of equation (17) in the sum 
rule with the experimental data yields soliton densities 
which are larger than the doping level, e.g. by a factor 

2 at 0.5% doping level. If  so, this supports the possi- 
bility that for very low doping levels the added charge 
forms a bound state of a charged soliton and neutral 
one [11 ]. This state, which does not change the top- 
elegy of the chain, has spin ½ and charge + e, i.e. it is a 
polaron. The optical spectrum of a neutral soliton is 
identical to that of a charged one - the transition from 
the valence band to the singly occupied mid-gap state 
adds up with the transition from the mid-gap state to the 
conduction band to give equation (10). Thus the optical 
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Fig. 3. The corrections to the optical absorption due to 
solitons with low density p. (a) Re ot (co) - transition 
to (or from) the mid-gap states; (b) Re o2 (co) - valence 
to conduction band transitions (in units of e2g2p). 
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intensity of a polaron should be roughly twice that of 
a soliton. 

Conserving the topology at the ends of a chain 
means that an even number of charges will form solitons, 
while an odd number will form one polaron and soli- 
tons. Thus upon doping beyond 0.5% the ratio of 
solitons/polarons on each chain should increase and (for 
p~ "~ 1) the agreement with equation (15) should improve. 

Finally, consider the optical conductivity data of 
TTF-TCNQ [2]. This system has 0.59 electrons per 
TCNQ molecule, and is therefore highly incommensu- 
rate. However, the effects of the second order unklapp 
process should still be there, i.e. the gap appears at the 
Fermi surface and symmetrically above the band center 
at higher energies (see Fig. 1). The absorption peak 
associated with the additional gap appears at the frequ- 
ency of 4t cos kvb + A "~ 2.4t assuming a tight binding 
band with transfer integral t, and a gap A ,~ t. 

Experimentally [8] there is indeed a broad mini- 
mum at ~ 1400 cm -~ followed by a maximum at 

1900 cm-1. A possible explanation of this feature is 
intramolecular phonon modes [12]. However, the 
required electron-phonon coupling seems to be too 
large. If the maximum is due to the additional gap then 
t ~ 0.1 eV in good agreement with other estimates [8]. 
This interpretation implies that the band structure in 
TTF-TCNQ is highly one-dimensional. 

Acknowledgement - I wish to thank N. Rosenberg for 
his help with the numerical integration. 

NOTE ADDED IN PROOF 

After submitting this paper I received a preprint by 
Kivelson et al. [13] in which the boundary conditions 
in presence of a single soliton are carefully studied. 

These authors show that the correct procedure yields an 
optical absorption which indeed satisfies the optical sum 
rule in the continuum limit. The soliton lattice solutions 
used here, have the correct boundary conditions built in 
them. The results of Kivelson et al. coincide with mine 
in the limit of low soliton density, confirming the valid- 
ity of both calculations. 
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