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Abstract. The one-dimensional quantum sine-Gordon Hamiltonian with a density ps of 
solitons is studied. pi@) is the order parameter for the lock-in transition, which happens 
when the chemical potential p equals the single soliton energy and temperature is T = 0. 
The soliton density p,(,u, T )  and the critical behaviour at 7‘ = 0 are studied in the classical 
limit (quantumcouplingP-, 0) andin thequantumsystemwithp’ = 4n; thecriticalexponent 
for ps is 0 and 4 respectively. An important application of these results is the temperature 
dependence of an incommensurate charge transfer pe in one-dimensional conductors due to 
Umklapp scattering. p,(T) can be determined by the function ps(p,  r).  

1. Introduction 

Incommensurate periodicities have recently been observed in many physical systems 
and have become the subject of considerable theoretical interest. Examples of such 
systems are: (i) charge density waves (CDW) incommensurate with the underlying lattice 
(Friend 1978); (ii) exotic crystals with incommensurate sublattices, such as some TTF 
based salts (Wudl eta1 1977), some superionic conductors (Beyeler 1976) and Hg2,86AsF6 
(Pouget et a1 1978); (iii) some ferroelectric crystals (Ishibashi 1978); (iv) in the process 
of some martensitic phase transitions the nucleating clusters are incommensurate with 
the surrounding matrix; e.g. the w phase problem (Lin et a1 1976, Horovitz et a1 1978); 
(v) vortex lines in superconducting film pinned by thickness modulation (Daldini et a1 
1974); (vi) thin films which are incommensurate with the substrate (Stephens et a1 1979 
and references therein). 

The lock-in transition, also known as the commensurate-incommensurate transition, 
determines when the interaction between two incommensurate structures can overcome 
their rigidity and lock them into one common periodicity. 

The theory of the lock-in transition has been discussed in the context of dislocation 
theory (Frank and van der Merwe 1949), theory of CDW (McMillan 1976, Bak 1978, 
Jackson et a1 1978, Ohmi and Yamamoto 1977, Horovitz 1980), the incommensurate 
lattice problem (Ying 1971, Theodorou and Rice 1977), a two-dimensional problem 
(Pokrovski and Talapov 1979, Bak et a1 1979), a magnetic system (von Boehm and Bak 
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1979) and the general problem of incommensurate periodicities (Bruce and Cowley 
1978, Bruce 1980, Aubry 1978, Sokoloff et a1 1978, Okwamoto et a1 1979, Batistic and 
Barisic 1979). A related problem is that of the infinite vortex lattice in a Josephson 
junction (Kulik 1967, Lebwohl and Stephen 1976, Fetter and Stephen 1968): the phases 
of the two superconductors are ‘incommensurate’, i.e. the phase difference is never 
asymptotically zero (mod 2 4 .  

In most of the physical systems the problem has been reduced to a solution of the 
one-dimensional (1D) sine-Gordon Hamiltonian. The level of incommensurability is 
measured by a soliton density ps(p, T )  where p is a chemical potential which is propor- 
tional to the discrepancy in the periodicities when the interaction is absent and Tis the 
temperature. The lock-in transition is a transition in the ground-state properties ( T  = 
0) and happens at p = E,, where E, is the single soliton energy. For p < E, ps = 0 and 
the system is locked, while for p > E, p, # 0 and the structures are incommensurate. 
The details of this approach are discussed in § 2. 

In the present paper we examine the critical behaviour of the lock-in transition and 
extend both classical and quantum theories to finite temperatures. In § 3 we evaluate 
p,(p, T )  for the classical theory by using results of the transfer matrix theory. In Q 4 we 
consider the quantum theory with a particular coupling which can be solved by a 
fermion-boson transformation. The critical exponent of the lock-in transition is p = 0 
for the classical case and p = 3 in the quantum case. 

In § 5 we show that an incommensurate charge transfer pe in 1D conductors is 
temperature dependent when Umklapp scattering is present. The method is based on 
the fermion-boson transformation (Luther and Emery 1974, Emery et a1 1976, Gut- 
freund and Klemm 1976) and we show how pe( T )  is related to p,(p, 7). The result is 
applied to TTF-TCNQ in its 1D regime, i.e. above its CDW instability. In this regime the 
CDW is a fluctuation effect, and it is not obvious a priori that an Umklapp process can 
couple and shift the electron density pe. Further applications of the temperature-depen- 
dent ps are considered in § 6. 

2. Themodel 

In this work we consider the sine-Gordon Hamiltonian, which is written in terms of a 
boson field q ( x ,  t )  with bare mass m* and coupling constant /3 (in the classical problem 
p can be scaled out and is not relevant): 

where n = @ , and I$, q‘ are time and space derivatives respectively. 
The derivation of this Hamiltonian for the physical systems mentioned in the Intro- 

duction has been done by various methods: phenomenological arguments (Frank and 
van der Menve 1949), Landau type expansions (McMillan 1976), perturbation theory 
on a microscopic Hamiltonian (Ohmi and Yamamoto 1977, Horovitz 1980) or by the 
fermion-boson transformation for the 1D fermion problem (Emery et a1 1976) (see also 
0 6). In order to discuss the basic ingredients of the theory, we present here the simplest 
‘classical’ derivation. 

Assume that the interaction between two incommensurate structures is dominated 
by a single pair of reciprocal wavevectors Gi ( i  = 1,2) such that GI - Gz = 4 is small, 
141 e Gi. The relevant Fourier component of each structure is proportional to 
exp(Gix + qi) and a space dependence of the phase qi represents deviation from exact 
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periodicity. The interaction between these structures is - cos(ql - M + qx) while the 
elastic and kinetic energies are q/2 and Energy is gained from this interaction if the 
phases are space dependent, and this compensates the loss from the elastic energies. 
Usually one of the structures is much more rigid than the other and then the problem 
involves a single field. In addition the coefficient of the cosine interaction may also 
depend on space (the coupled phase-amplitude problem (Jackson et a1 1978, Horovitz 
1980)) which is important in some cases. Here we consider just the basic problem of a 
single scalar field cp1 and cp2 = 0. Define now 

pq = q1+ qx (2) 

so that the total Hamiltonian has the form (p - 4) 

Thus, except for the boundary term, the problem is essentially that of solving equation 

The sine-Gordon Hamiltonian has been extensively studied in recent years including 
classical solutions (Scott eta1 1973), classical statistical mechanics (Gupta and Sutherland 
1976, Currie et a1 1980) and the corresponding quantum theory (Dashen et a1 1975a, b, 
Coleman 1977, Jackiw 1977, Maki and Takayama 1979). The basic nonlinear solution 
is the soliton whose boundary conditions require a change of 27din the field p q ( x ,  t ) .  The 
soliton is a localised, stable and finite-energy object. The classical solution for two 
solitons (Scott et a1 1973) shows that they repel each other and the solution must be time 
dependent; the same is true for any finite number of solitons. However, an infinite 
number of solitons form a periodic static solution which may be called the ‘soliton lattice’ 
solution (Frank and van der Merwe 1949, Gupta and Sutherland 1976). The soliton 
density ps is determined by the boundary condition, i.e. 

(1). 

l d x  
p, = - 1 - P q ’  27d L (4) 

where L is the length of the system. 
Since p, is a thermodynamic variable, the parameter p in equation ( 3 )  is the corre- 

sponding chemical potential and equation (3) is the grand canonical sine-Gordon Ham- 
iltonian. In our problem of the incommensurate structures pis aconstant which measures 
the discrepancy q of the two periodicities. If E, is the energy of a single soliton in equation 
(1) (in either a classical or quantum theory) then its energy in equation (3) is E, - p. 
Thus for p < E, the ground state has p, = 0, while for p > E, ps f 0. This is the basic 
feature of the lock-in transition: if the discrepancy in periodicities is large enough to 
overcome the soliton energy, the ground state is a soliton lattice and the structures are 
incommensurate, otherwise the ground state has no solitons and the structures are 
locked. The soliton density ps is the order parameter of the lock-in transition. 

Before presenting the theory, we note that its application may not be as direct as 
mentioned above. The parameter p is not necessarily a constant for all the relevant 
physical systems. In particular in the CDW system the periodicity is determined by the 
Fermi wavevector, which in turn is determined by the electronic chemical potential pe. 
Therefore p - pe and ps measures the electron density relative to the density in the 
commensurate situation (Horovitz 1980). If there is an infinite electron reservoir at the 
energy then the electron density is p, (,U =. constant, 7“) and is temperature dependent. 
However in actual systems the ‘reservoir’ is another band and the total charge is con- 
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served rather than the chemical potential. This point should be considered if a theoretical 
comparison with actual systems is attempted. In D 6 we consider this point in the case of 
afluctuating CDW, i.e. in the 1D fermion problem. 

3. Classical limit 

The classical ground state is determined by the solutions of the sine-Gordon equation 

-P + Y = m2 sin Y ( 5 )  

where Y = PQI and m = m* in this section. The single soliton, or antisoliton, solutions 
Y = 4 tan-’ exp(+mx) determine two important parameters: the single soliton width is 
llm and its energy is 

E, = 8m/P2. ( 6 )  

sin i(Ys - n) = sn(mx/k, k )  (7) 

The soliton lattice solution is given by (Frank and van der Merwe 1949) 

where sn is the Jacobian elliptic function (Whittaker and Watson 1962) with parameter 
k, 0 d k d 1. In this solution Y increases by 276 as x is increased by 1 = Ups, and 

ps = mi[2kK(k)]. (8) 
Thus ps is the soliton density and is determined by the parameter k in the range 
O S p , < ~ *  

The energy per unit length is 

where K(k) and E ( k )  are the complete elliptic integrals of the first and second kind and 
k t 2  = 1 - k2. A low-density expansion gives k‘ + 0, ps -+ mi(21n4ik’) and 

The first term represents free solitons, each with energy E,, and the second term is the 
long-range interaction which is exponential with a range lim. 

The lock-in transition is defined by the function ps(p) where p = dEclidp, is the 
chemical potential, NE,  = E(k)/k. Near the transition ( p  = E,)ps - ln-‘(p - Es), cor- 
responding to a critical exponent of p = 0. 

The thermodynamics of the classical grand canonical sine-Gordon system has been 
studied by Gupta and Sutherland (1976). They show by using the transfer matrix method 
that the soliton pressure is determined by the eigenvalue of the Mathieu equation 
ao(v, Q) at the imaginary wavevector v = -iNnT and parameter Q =Efi16T2 . Using 
equation (102) of Gupta and Sutherland (1976) the soliton density is 
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From the large vexpansion (Abramowitz and Stegun 1964) we obtain 

- 3Ef[5(,d~ljd)~ + 12(pT/~ljd)~ - llT4J + O(E,/p)12). 
87( T2 + p2/2)4(4T2 + p2/n?)2 

This expansion has been used as a high T expansion (Gupta and Sutherland 1976) but 
it is also a l /p expansion for all temperatures. 

P Ifs 
Figure 1. Soliton density in the classical limit. The finite temperature curve is from equations 
(12) and (13) and the brokensectionof thecurveis anextrapolation between these equations. 
E, and llm are the energy and width of the single soliton solution: (a)  T = 0; ( b )  T = EJ8;  
(c) T-+ W .  

For small p and low temperatures ( T  4 E, - p) we can use a large Q asymptotic 
expansion of ao( v, Q) (Goldstein 1929) with the result 

ps  = 8m(E,/8~ljdnT)”~ exp(-EJT) sinh(p/T). (13) 
It is well known that solitons are thermally excited at low temperatures (Currie et a1 

1980). The excitation energies for a soliton or an antisoliton are E, - p and E, + p 
respectively. The density ps measures the difference between the soliton and antisoliton 
densities, and equation (13) is indeed proportional to the difference of the appropriate 
Boltzmann factors. 

The results of this section are summarised in figure 1. For T # 0 there is no sharp 
transition, as expected in a 1D system. Note also that for T+ the potential cos VI has 
no effect and ps  is maximal. In the context of § 2, the structures do not feel each other in 
this limit and they have their natural incommensurate periods. 

4. Quantum theory: p2 = 4 n  

The critical exponent of the quantum lock-in transition is p = 4, in sharp contrast with 
the classical exponent a = 0 i.e. logarithmic behaviour. The exponent a = 8 was first 
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derived for the case p2 = 4n(Horovitz 1979), then extended to 4n  < p2 < 8n(Luther et 
al1979, Pokrovski and Talapov 1979,1980) and finally shown for all 0 < p2 < 8z (Hal- 
dane 1980, Schultz 1980). Here we present in detail the generalisation of the fermion- 
boson transformation (Luther and Emery 1974) to the case of variable fermion density 
for p2 = 4n, and derive the soliton density ps(p, r )  as well as the exponent 

Consider a system of ‘left’ and ‘right’ moving spinless fermions in one space dimen- 
sion. The dispersion of these fermions is _+ fiFk, and the kinetic part of the Hamiltonian 
can be written in the form (Mattis and Lieb 1965) 

= i. 

HO = E fiFk[aT(k) al(k) - a:(k)  a2(k)] 
k 

where p i (k )  =C,a:(k + p )  ai@) and U,  (i = 1 ,2 )  are fermion annihilation operators for 
the two branches. Define the boson field, 

2ni 
Q?l(X) = zoz exp(-halkI - ikx) [Pl(k) + P 2 ( 4 l  (15) 

where l /a  is a momentum cutoff. Note that qi(x)/2n is the fermion density operator, 
except for the k = 0 mode. In order to treat a non-zero average fermion density we 
introduce the field 

d x )  = Q?l(X) + CP (16) 

and measure the fermion density pe from a wavevector which is 4q less than the Fermi 
wavevector kF of the original system, i.e. pe = q/2n. The Hamiltonian in terms of y(x) 
is 

Ho = - 8XfiF J” dX[@(x, t )  + O;rp’yx, t)]  (17) 

and a term LfiFq2/8z was added, so that the energy is measured relative to a level which 
is i f i~q  lower than the original Fermi level. This density dependent term is important for 
the generalisation of Luttinger models (Haldane 1979). 

Consider now the Hamiltonian 

H = HO i- A 2 k [U[(k) U z ( k  - 2kF - q )  + HC). (18) 

Using the fermion representation (Luther and Peschel1975) 

L-”~  C exp(ikx) ai(k> E ~ j ( x )  
k 

where +, - correspond to i = 1,2 ,  we obtain 

(20) H = Ho + - COS V(X) dx. 
na “ J ”  

By rescaling q~-+ (4n)”’~? andx +. dFx we obtain the sine-Gordon Hamiltonian (1) with 
m*2 - - 4Allij~iaand coupling constant p2 = 4n. 
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The transformation between the fermion and boson Hamiltonians has been done 
with a constant number of fermions. Also ~ ( x )  has no k = 0 component and so the 
soliton density in the field q ( x )  is (from equation (16)) 

ps = qi2n = pe. (21) 
Equation (18) is easily diagonalised, and gives free fermions with dispersion Ek = 

+(A2 +B$k2)112. The condition (21) means that $2nstates above the gap are occupied 
(at T = 0) and each of these states corresponds to one soliton. A single soliton corre- 
sponds to one state above the gap and its energy is A .  

The chemical potentials of the fermions and solitons are equal (from equation (21)) 
and therefore we can now pass to the grand canonical formalism and evaluate ps(p, 7') 
based on the fermion system with a chemical potential p. 

The Bogoliubov transformation on equation (18) leads to fermions with operators 
ai(k) and dispersion t s g n  k Ek.  Define the operators 

and the Hamiltonian becomes 

H ( p )  = (Ek - ,U) $ ( k )  &i(k) + (Ek + p) &a2. (23) 
k k 

The soliton density is now the difference in the density of the ki fermions 
dk 
g{[exp[(Ek - pYl] + I]-' - [exp[(Ek + p)/Z] + 1]-'}. ps = (24) 

A t T = O  
1 

ps = 7 (p2 - 
n u F  

sgn p e( lpl - A ) .  

Equation (25) shows the lock-in transition which occurs at p = A with a critical 
exponent = 4. This exponent is also related to the effective long-range interaction 
between solitons. For a given soliton density pis determined from equation (25) and the 
energy is (at T = 0) 

Therefore the effective interaction between solitons behaves like p: for low soliton 
density. This interaction is much stronger here than the exponential interaction in the 
classical case. 

For T # 0 the lock-in transition is smeared as in the classical case (figure 1) while at 
T-+ cop,+ p/nB~ and the COST interaction has no effect. For small !U and low 
T(T < A - p) the result (24) is similar to equation (13) corresponding to thermal exci- 
tation of solitons and antisolitons. 

E(p,) = Aps[l + n2$p;i6A2 + O(p:)]. (26) 

5. Charge transfer in 1D fermion systems 

In this section we consider the electronic charge pe in a 1D conductor, and show that it 
is temperature dependent when an Umklapp scattering is considered. This effect may 
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be observed experimentally and is an important application for the results in the previous 
sections. 

The model is identical to that used by Emery et al(1976) or Gutfreund and Klemm 
(1976) except that here we do not restrict the electron band to be half filled. The electrons 
interact through long- and short-range interactions with strengths V and Urespectively. 
A second-order Umklapp process with strength Wl involves a reciprocal lattice wave- 
vector G and scatters two electrons from one side of the Fermi surface to the other side. 
The scattering requires a momentum of 4kF, and we consider the effects of the Umklapp 
process when q = 4 k ~  - G f 0. 

Define a boson field, similar to equation (15), 
1 2K 

d 2  k i o  Lk qi(x) = - 2 - exp(-la/k/  - ikx) [p l (k )  + p z ( k ) ]  

but here pi(k)  =2-1’22p,,a&(k + p )  ai,&) and s is the spin index. The electron density 
(except for the k = 0 mode) is q,i(x)/n. It is interesting to note that the same result holds 
in the ordered phase, where q l ( x )  is the phase of a complex order parameter (Horovitz 
and Krumhansll978). 

In order to describe an electron density of pe = @27c we define the field 

q(x)  = 2qdx) + qx. (28) 

The Hamiltonian for the charge density part (equation (7) of Emery et aZl976) can be 
written in the form 

+ (1 + W~~/~KUF)U;~’* (X,  t )  + ( 8 ~ p i ~ a ? ) W ,  COS q ( ~ ,  t )  (29) 

where Wll =2V - U .  A constant UFq2(1 +Wil/2nu~)/16n was added here, so that the 
energy is measured relative to the level of the half filled band as in equation (17) (Haldane 
1979). 

By rescaling q-, &I and x-+mF[l - (yi/2.?tuF)2]1’2 = cx we obtain the sine- 
Gordon Hamiltonian (1) with m** = 4 u ~ W ~ ( 1  - M 9 / 2 n u ~ ) / d  and 

The transformation to equation (29) is done with a constant number of electrons so 
thatfq)i(x) dx =O . From equation (28) thesoliton densityisp, =q/2n = pe and therefore 
the electron and soliton chemical potentials are equal. As in 0 4, we can now pass to the 
grand canonical formalism but here we evaluate pe(p, T )  from the function ps(p, 7‘). 

In this limit ps = pfi2/4n2c so that the corresponding chemical potential is 
Assume that the charge is known for Wl = 0, or equivalently for T -  as & ‘ 2 ~ .  

/&J = iqOuF(1 + w1//216uF). (31) 
This is the electron chemical potential for W ,  = 0 measured from the half filled band 
level. If this chemical potential is fixed, i.e. if there is an infinite electron reservoir at the 
Fermi level, then the electron density pe is temperature dependent and is given by 
pe(T) = p s ( b ,  7‘). However, in a realistic system the Fermi level is determined by an 
energy balance between two or more bands such that the total number of electrons in 



One-dimensional fermion systems 169 

these bands is conserved. Thus, pe( 7') can be determined if one has a detailed knowledge 
on all the relevant bands. 

As a specific example we consider a charge transfer salt of the TTF-TCNQ type 
(Khanna et a1 1977) where the charge transfer from the TTF chains to the TCNQ chains 
is determined by the crossing of two bands. We assume that both types of chains are 
described by a 1D interacting electron gas with a charge density Hamiltonian of the form 
(29). The TCNQ band has Fermi velocity U $  >O and charge density pz while the TTF 
band has U; <O and charge density p,". The total charge in both bands is two electrons 
per molecule, and since we measure charge from the half filled band level (one electron 
per molecule) charge conservation implies pz +pt = 0 .  

In order to measure the electron chemical potential pe from the same level in both 
bands we shift it to the level where the bands cross when W ,  = 0, i.e. pa,b =pe + ,&' 
where the parameters in equation (31) depend on the chainindex. The chemical potential 
and charge transfer are now determined by solving the equation 

P:(? = p:(pe + pLa, 7') = -d (pe  + A, T )  (32) 
where &'(p, 7') are the soliton density functions with parameters uF,  Wii and WL 
appropriate for the chains a or b. If these parameters happen to be equal on both chains, 
then the solution of (32) is simple. Since q0 = 4: = - 48 we obtain ps(pe + p ~ ,  T )  = 
ps( -b  + p ~ ,  7') and therefore p, = 0 and the charge transfer is p s ( b ,  7'). 

An interesting consequence of equation (32) is that in the absence of Umklapp terms 
(W2b =0) the solution is pe = 0 and pz =q0/2n is temperature independent. Thus the 
interactions V ,  Ucannot change the chemical potential or the degree of charge transfer. 
This conclusion seems to be a consequence of the assumed electron-hole symmetry, i.e. 
the linear electron dispersion, and it may not be valid for systems with non-linear 
dispersion. 

TTF-TCNQ has a CDW instability at 54K, and we are interested here in higher 
temperatures i.e. the region of a 1D fluctuating CDW. There is indeed experimental 
evidence (Khanna et a1 1977, Kagoshima et a1 1976) from the position of 4kF scattering 
that the charge transfer changes from 0.55 electrons per molecule above -200 K to 0.59 
below -160 K. The bands are rather far from being half filled and it is not obvious why 
the second-order Umklapp process should be important. Let us first demonstrate the 
application of the present theory and then discuss its limitation and other experiments 
which may demonstrate pe( T )  more clearly. 

In figure 2 we show the experimental data along with theoretical curves of the classical 
(equation (13)) and p2 = 4n  quantum (equation (24)) cases, assuming that the 
parameters on the TTF and TCNQ chains are equal. The classical fit gives E, n. As usual 
in and p /Es  = 1.2 while the quantum case gives E, = A = 165 K and FIE, = 2.0. Since 
/3 determines WIl/2n7tuF, the result for p implies a certain bandwidth. The classical fit 
(W11/2nu~ = 1) yields uFkF = 700 K while for the quantum case (WiIi2nuF = :) 
uFkF = 250 K. The expected value is 1000-2000 K so that the classical fit seems more 
reasonable. This is also consistent with Emery's explanation (1976) of the strength of 
the 4kF scattering which requires W11/2mF > 3 and U > 0. In both fits W,/216UF - 1, 
assuming a -  l / k ~ .  This value of WL should not be taken too seriously, since the 
fermion-boson transformation requires that the limit a+ 0 be taken. As usual in 
quantum field theory the physical parameter is not the bare-coupling (W,) but rather 
the final mass, i.e. the soliton mass. 

Note that the soliton masses in the two fits are very different. Since we consider a 
system of dense solitons (large incommensurability) the single soliton energy is not 
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0.35 

relevant. The density ps  is determined by the balance between the soliton-soliton 
interaction and the energy gain for creating an isolated soliton, which is p - E,. Thus, 
the characteristic temperature where ps is changing should be T - p - E,. For the fits in 
figure 2, p - E, is 180 K and 165 K-very close numbers in view of the difference in E,. 

I I I I 

The present theory, as applied in figure 2, has a few limitations: 

(i) model assumptions-equal parameters on both chains and the linear dispersion; 
(ii) thermal expansion of the lattice can also affect the amount of charge transfer 

(Tiedje et a1 1977); however pe(7J seems to saturate above 200 K while the thermal 
expansion coefficient is finite and even increasing strongly above 200 K (Schaffer et a1 
1975); 

(iii) the effect is rather small and the experimental error bars are too large to justify 
a detailed theoretical fit. 

Systems with a charge transfer closer to one electron per molecule should be better 
candidates for the present theory. The effect on pe( 7J should be larger and the linear 
dispersion becomes a better approximation. A good candidate is TTF-TCNQ under 
pressure, as we discuss in the next section. 

6. Discussion 

We have studied the soliton density ps(y, T) in both classical and quantum theories. The 
temperature dependence is characterised by three regions: (i) p <.E,, solitons are ther- 
mally excited; (ii) p = E,, the region of the lock-in transition; the temperature depend- 
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ence is strong, smearing the T = 0 transition; (iii) p B E,, weak temperature dependence 
with p, changing slightly around T - p - E,. 

The effects of quantisation are mainly to shift the lock-in transition to the renor- 
malised soliton mass and change the critical exponent p. We obtain p = 0 for the classical 
case, while 

Most of the theoretical applications of the lock-in transition consider a two- or 
three-dimensional phase transition within a mean field ( T  = 0) theory. The coefficients 
of the effective Hamiltonian may depend on temperature and the appropriate order 
parameter is space dependent only in one given direction. Thus in the CDW problem 
(McMillan 1976) both p and E, depend on temperature and the lock-in temperature T, 
is determined from the equation p( T,, = E,( T,). The critical exponent of T - T, is then 
related to p through the dependence of NEs on T.  

The present theory is more directly relevant to systems with an intrinsic 1D temper- 
ature dependence, One possible example is the w phase anomaly which is observed in 
Zr-Nb alloys (Horovitz et a1 1978). Here p corresponds to the discrepancy in lattice 
constants of a rod-shaped w domain and the surrounding BCC matrix. The parameter ,U 

changes with the alloy composition and the lock-in transition appears around 17% Nb. 
Preliminary measurements on the temperature dependence are consistent with the 
general features of p,(p, T )  (D H Bilderback and B W Batterman 1978 private 
communication). 

In § 6 we compared p,(p, T )  with the temperature-dependent charge transfer in 
TTF-TCNQ. The observed effect is small, but we expect the Umklapp scattering to be 
more effective if it is applied to a system with an electron density closer to the commen- 
surate value. 

Recent experiments on TTF-TCNQ under pressure (Adrieux et a1 1979) showed that 
the CDW becomes commensurate at -20 kbar below 71 K. This was deduced from 
resistivity data, while x-ray or neutron scattering data are not yet available. We predict 
that in some range of pressures around 20 kbar, the charge transfer at room temperature 
is not commensurate, but it approaches the commensurate value as temperature is 
reduced, and finally locks-in at the CDW phase transition, i.e. at -71 K. 

It was suggested that TTF-TCNQ near 20 kbar pressure has a Q filled band (Andrieux 
et aZ1979). In that case the theory in 0 6 has to be modified to describe a third-order 
Umklapp process. This process involves the transfer of three electrons across the Fermi 
sea; this involves at least two chains and therefore a weaker effect than the second-order 
Umklapp process. 

In addition to a shift in the charge transfer, the Umklapp process leads to the 
apperance of harmonics at n M 2 k ~ ,  i.e. the soliton lattice. In the case of TTF-TCNQ the 
4kF scattering is clearly seen, but since it is stronger than the 2kF scattering (at high 
temperatures) it is probably due to another mechanism (Emery 1976). There is however 
a weak scattering at 8 k ~  visible in both sets of experimental data (Khanna et a1 1977, 
Kagoshima et a1 1976). All these effects of the Umklapp process are small and within 
experimental error. Further experiments, e.g. on TTF-TCNQ under pressure, will be 
very useful in clarifying these points. 

= 4 for p2 = 4n. 
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