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Abstract. The commensurate-incommensurate transition of a two-dimensional classical 
sine-Gordon system is studied by the equivalent one-dimensional quantum system. The 
latter is expanded around its classical limit. corresponding to a low-temperature expansion 
of the two-dimensional system. It is found that both mass and wavefunction renormalisation 
are required. The critical expgnent for incommensurability is /3 = 0, but if the momentum 
cut-off is kept finite we obtain /3 = 1. The classical limit is a singular point and the results are 
reliable when they are not too close to the transition. 

1. Introduction 

The commensurate-incommensurate (c-I) transition is of current interest as it gener- 
alises the theory of melting in two dimensions. The classical ( T  = 0) theory was solved 
by Frank and van der Merwe (1949) who showed that the degree of incommensurability 
vanishes as an inverse logarithm at the transition, i.e. an exponent = 0. The finite 
temperature problem can be studied by a one-dimensional quantun sine-Gordon system 
with quantum coupling p2 - T(Takayama 1980). For finite /3 the exponent is = 4, first 
shown for = 4 n  (Horovitz 1979) and then extended to 0 < p2 < 8n (Luther et aZ1979, 
Pokrovski and Talapov 1979,1980, Haldane 1980, Schultz 1980). Thus the classical limit 
/3+ 0 seems to be a singular point of the theory. 

In this paper we study the lowest-order correction in p2 around the classical limit. 
This approach is analogous to the spin wave theory of the XY system which can yield 
information on the transition to the disordered phase (Kosterlitz 1974). Here the cor- 
responding transition is from the incommensurate phase to a fluid phase. The lowest- 
order correction in p2 is of further interest as it can be mapped on the adiabatic 
fermion-phonon system (Horovitz 1981). 

2. Renormalisation procedure 

Consider the quantum sine-Gordon Hamiltonian 

m*2 H = du 4d(x, t )  + 4qf2(x ,  t )  + - (1 - cos pq) - p si P2 
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where rc = @ and @ , ~ l ’  are time and space derivatives respectively. The last term of 
equation (1) is a chemical potential p coupled to the soliton density p where 

and L is the length of the system. 
The c-I transiton occurs when p = E,, where E, is the single soliton energy. Instead 

of a fixed p, we consider now a fixed p, i.e. a fixed boundary condition on the field. If 
q,(x)/j?is a classical solution for the equation of motion, perturbation theory is developed 
by the substitution q ( x ,  t )  = /3-’qS(x) + @(x, t )  which yields (Tomboulis 1975, Jackiw 
1977) : 

H = dx{(1//32)[i@ + m*2(1 - cos $J] + bt2 
+ + im*2 cos &(x) e’} -t- O(/3’). (3) 

i 
The translation mode $l(x) is a degree of freedom of the classical field and is excluded 

from the field e, i.e. 

&I$fdX= @ i & d X = O  I -  I 
and 

Since &(x) is a classical field, its equation of motion is determined by minimising the 
expectation value (H). To order 02: 

i&‘ + mr2 sin i j j, - 4P2mV2 sin ijS(@’) = 0. 

@ = v - m * 2 c o s $ s @ .  (6) 

( 5 )  
For the @ field equations (3) and (4) yield 

The last term of (5) is a mass renormalisation and equation (5) and (6) become 
non-trivial coupled equations when q, and (@) are space dependent. This difficulty is 
overcome by a wavefunction renormalisation, i.e. &, = v, + where q1 - O($) and 
V s  is a solution of 

(7) 

(8) 

-@ + m: sin qjq = 0. 

The renormalised mass ml is m” + O(P2) so that the @equation to order p2 is 
@ = @ L m 2  1 cos vse. 

-q$ + m: cos vs 
The function Vl(x) can now be determined by expanding equation ( 5 )  to order P2: 

Bm$” sin q,(@’) + (m: - mn2) sin vs. (9)  

It is shown in the Appendix that (@) can be written in the form D, +DlqL2(x) for any 
solution Vs(x) of equation (7)  where D,, D1 are space independent. It is then easy to 
check that 
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It is remarkable that equation (9) can be solved explicitly with the result 

ql(x) = @ * D ~ I $ ~ ( X )  - ( i m : p * ~ ~  + m: - mx2)  xq4(.~)/2m:, (11) 

The only restriction on is that it should not change the boundary condition, and the 
crucial observation is that this can be achieved by a suitable choice of ml. The boundary 
conditions are q,(L) - q,(0) = 2npL and periodic boundary conditions on derivatives 
of qs, e.g. I)I;(O) =qi(L) .  Only the second term of equation (11) violates the boundary 
conditions; therefore we require its coefficient to vanish: 

m: = m*2 - Im:P2Ds + O(o4). (12) 
The renormalisation of the vacuum q5 = 0 involves DO = (@),, which is space 

independent. The renormalised mass mo is then given by: 

mi = m* - 4mip2D, + O(@) (13) 

in agreement with the normal ordering procedure for renormalising the sine-Gordon 
system (Coleman 1975). The normal ordering procedure is not sufficient to renormalise 
space-dependent solutions and (@) has to be replaced by D ,  of equation (10). Amit et 
a1 (1980) have shown that wavefunction renormalisation is also necessary near the point 
,U = 0, b2 = 8n. This completes the renormalisation procedure, and we turn now to 
examine its consequences. 

3. Soliton lattice 

The solution of equation (7) with a soliton density p, also known as a soliton lattice, is 
given by Frank and van der Merwe (1949) : 

sin $( qs - n) = sn(mlx/k, k )  (14) 

where sn is the Jacobian elliptic function (Whittaker and Watson 1962) with parameter 
k ,  0 zs k zs 1. The solution q s ( x )  increases by 2n as x is increased by I = l i p  where 

p = ml/[2kK(k)]  (15) 
and K ( k )  is the complete elliptic integral of the first kind. 

Proceeding now to the quantun perturbation, we note that equation (8) describes 
small oscillations, i.e. phonons, around the classical solution. Equation (8) with ys given 
by equation (14) corresponds to the Lam6 equation and has well known eigenfunctions 
(Fetter and Stephen 1968, Sutherland 1973). The potential cos I+!&) is periodic, with 
the first Brillioun zone at the wavevector q = n/l and I = Up. The spectrum has a gap 
just at the first zone and separates the phonons into 'acoustic' and 'optic' branches. 

Details of the eigenfunctions and eigenvalues are given in the Appendix. A straight- 
forward calculation now yields: 

1 2 1 1 + k ' *  
+-In---- E2 + O(&J) 

1 k D, = - -1n- 
2 n  1 - k '  2n Ek 2n 12 

where k t 2  = 1 - k and e-+ 0 as A-+ 3 ~ 1  (equation A.6). 
The vacuum is defined by ys  = 0 (no solitons) and its phonons have the dispersion 

U; = (m; + q 2 ) ' / 2  (17) 
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where 0 S I q 1 < A and& =X(2u",>-'. From equations (12) and (13) we derive ml which 
depends on the soliton density through the parameter k :  

In the limit of a single soliton p+ 0, k' -+ 0 and K ( k )  + In 4ik' -+ x we obtain ml = mo. 
This justifies the renormalisation procedure for a single soliton (Dashen et a1 1975, Maki 
and Takayama 1979). In the field theory limit one takes E+ 0, (or A 4  a) after can- 
celling the divergences. In equation (18) we also keep an L? term since it drastically 
changes the behaviour for p-+ 0: k' + 4 exp( -m1/2p) while EIK+ 2piml. This may be 
relevant to the theory on a lattice with a finite cut-off, and affects the critical behaviour 
at the C-I transition as we show in the next section. 

The energy of the soliton lattice, ESL,  is given by the expectation value of equation 
(3) relative to that of the vacuum. The first term of equation (3) yie!ds 

m: 4 - [-(E - 2k"K) + D,(E - k"K)]  
k2K P2 

where the Ds term comes from the mass renormalisation. The second term of equation 
(3) is the zero point motion which isBZq(uq -U:). When these terms are combined, all 
divergences as E-+ 0 cancel and the result in terms of mo is: 

k 
1 - k' 

8m0 
P k  

EsL/p = ( E  - 4kt2K) ( E  - i K )  ln- 

- QE(1 + k t 2 )  + &Kkf2 

where 
E, = (8mdP2) [l - (P2/8x) (1 - &2)] 

is precisely the renormalised single soliton energy, as previously obtained for E+ 0 
(Dashen et a1 1975). 

The first term of equation (21) is the energy of p free (renormalised) solitons as if 
they are isolated from each other, i.e. infinitely separated in space. The next terms in 
equation (21) measure the excess energy required to hold solitons with a small but finite 
density. This excess energy can be viewed as an effective interaction between solitons, 
as a function of their mean separations lip. For E = 0 the effective interaction is expo- 
nential with range 2imo. 

In the classical problem the effective interaction is also exponential (proportional to 
exp( -mdp)) but the range is smaller by a factor of 2. When E # 0 the effective interaction 
becomes long-range, i.e. decays as lil. This unusual effect can be traced back to a 
reduction in the phase space of the optical phonons from 0 S 1 q I < A to x/l G q < A. 
Since D, is determined mainly by the optical branch it is smaller than Do by a term linear 
with JGil - p, which should vanish if the phase space is infinite (A -+ CO).  From equations 
(12) and (13) this term increases ml relative to M O ,  as is indeed shown in equation (18). 
The energy for p+ 0 is dominated by p8m1/fi2, and when expressed in terms of mo it 
gives the effective interaction as proportional to ~ ? p .  
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4. Critical behaviour 

The soliton density p is the order parameter of the C-I transition. It is determined by 
minimising ESL - pp for a fixed p. Equation (21) shows that the transition occurs at the 
renormalised soliton energy p = E,. Bak and Fukuyama (1980) derived an approximate 
result for E, and claimed that for sufficiently large P2 quantum fluctuations eliminate the 
c-I transition. Equation (29), although valid only for small @, indicates that E, vanishes 
forp2 = 8n(if E = 0). Coleman (1975)showsthatthecontinuummodelisindeedunstable 
for /3’ > 837, and it becomes a disordered fluid phase in the lattice model (Amit et a1 1980, 
Pokrovski and Talapov 1979). 

Near the c-I transition p - ln-’(,u - E,) (when E = 0) which corresponds to a critical 
exponent p = 0. This behaviour describes both the classical limit and the lowest-order 
quantum correction. As discussed in the Introduction, results for finite /3 give p = t so 
that the point @ = 0, p = E, is a singular point. 
- When E # 0 equation (28) yields p - p - E,, i.e. p = 1. It is interesting to note that 
/3 = 1 was obtained already for the classical problem by Pokrovski and Talapov (1980) 
when the area is bounded. In view of the singularity at @ = 0, it seems that p = 4 at the 
c-I transition, while not too close to the transition p = 1. 

Finally, we consider the density-density correlation function 

k(x, t> = (exP{iP[$J(x> t )  - $J@> O)lVp), 
wherep is the order of commensurability (Schultz 1980). Using the @expansion and 

( [ q ( O ,  t )  - rp(0, 0)12) = 2 / f 4 (0 )  l 2  sin2(ho,t)/w, --+ I -+  a (nk‘) In t (23) 

q = @2/(2nk’p2). (24) 

4 

we obtain K(0,  t )  - t-‘7 for t+ cc with 

Near the c-I transition k’ + 0 and q + W .  The condition for the instability of the 
commensurate phase towards vortex unbinding and forming a fluid phase is given by 
r ]  > a (Kosterlitz 1974, Coppersmith et a1 1981). Thus the fluid phase is formed when p 
is close to E, or temperature (-P2) is high, 

Schultz (1980) has shown that r ]  = 2/p2 at the C-I transition and Coppersmith et a1 
(1981) concluded that the transition between commensurate and incommensurate 
phases is always through the fluid phases if p 2  < 8. In contrast, the /I2 expansion yields 
this situation for anyp. 

Far from the c-I transition k’ + 1 and r ]  = @2/(237p2); this coincides with the result of 
Schultz (1980) in this limit. The transition to the fluid is now at /3’ = tnp2. Forp  = 4 this 
coincides with the maximal c-I transition temperature at p = 0, suggesting that the 
incommensurate fluid line probably extends to zero temperature only for smaller values 

In conclusion, the expansion fails at the c-I transition reflecting a singularity at @ = 
0; it becomes reliable not too close to the c-I transition. We hope that further work will 
extend our results. 

The result for the soliton lattice energy shows the equivalence of the adiabatic 
fermion-phonon system to the lowest quantum correction of the sine-Gordon system. 
Excluding the lip2 term in equation (20) and the first two terms in the square bracket 
(which come from the acoustic branch) and multiplying by -2 we obtain precisely the 
result of the spin t fermion problem, including the .L? terms (Horovitz 1981). The self- 
consistency equation of the fermion problem is analogous to equation (5); however 

ofp .  



180 B Horovitz 

there is no analogy to the /3 expansion. Therefore the procedure and details of the two 
problems are different and only the final result, e.g. equation (20), shows the 
equivalence. 
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Appendix 

We summarise here the eigenfunctions and eigenvalues of equation (8) with vs given by 
equation (14). The elliptic functions and integrals used below can be found in the book 
by Whittaker and Watson (1962). 

The acoustic branch of the eigenvalues corresponds to 0 < I q I 6 n/l and is given by 
ml k‘ 

k 
wq = - sn(x, k’) 

1 dn2(mlxlk, k) - kt2sn2(X, k’) 
‘ f q ( x ) ’ 2  = L dn2fx, k’) - 1 + E(k)/K(k) ‘ 

The optic branch corresponds to n/l S 1 q I < A (in an extended zone notation) with 
dispersion 

where 

and 0 < x < K(k’) - E. The cutoff A on q determines E by: 

[ (E::; ke 3 
+ k’2) - (1 - kl2 + k’4) ~ ~ 1 4 5  + O(.@) . 1 A = -  ml 1+2--- 

The normalised eigenfunctions of the optic branch are 

1 dn2(X, k’) - cn2(x, k’) dn2(mlx/k, k) 
‘fq(x)’2 = dn2(x, k’) - cn2(X, k’) E(k)/K(k) 

‘ 

Note that v ; ( x )  -dn(mlx/k, k) so that from equations (A.3) and (A.7) (@(x))  = 
Zq If&) I2/2wq can be written in the form D, + Dlqi2(x) as asserted in § 2. Note also that 
D1 is infrared divergent since wq + 0 for q + 0. The space-independent part of (A.3) 
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cancels l/o, so that D, is infrared convergent. The total energy involves Emq which is 
infrared convergent; thus the renormalisation should not involve D1,  as is indeed found 
in equation (12). 
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