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Soliton Lattice in Polyacetylene, Spin-Peierls Systems,
and Two-Dimensional Sine-Gordon Systems
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An exact solution for the soliton lattice in the half-filled-band Peierls condensate is
found. In the limit of weak coupling (infinite momentum cutoff &) the soliton-soliton inter-
action decays as a repulsive exponential while for finite & it decays as (distance) and is
attractive ~ This yields phase separation in doped polyacetylene or a first-order lock-in
transition of a spin-Peierls system. A mapping into the low-temperature two-dimensional
sine-Gordon system is shown, where a lock-in transition has exponent P = 1 for finite 4~.

PACS numbers: 72.15.Nj, 71.30.+ h

Solitons have become a common feature of al-
most any nontrivial problem in one-dimensional
(1D) physics. ' I consider here soliton solutions
which are common to three systems: a fermion
system, a boson system, and a magnetic system.

The fermion system is that of solitons in poly-
acetylene, ' i.e. , the adiabatic electron-phonon
system in one dimension. There is considerable
evidence that at low doping levels (~0.1%) the ad-
ded charge forms solitons. ' An insulator-to-met-
al transition was observed at -1%doping, ' and

the conductivity increase was associated with ei-
ther metallic particles' or with a soliton liquid. '
The multisoliton solutions, which are derived
here, are essential for the understanding of the
system with these higher doping levels.

The boson system is that of the weak-coupling
1D quantum sine-Gordon system, ""or, equiva-
lently, ' the low-temperature classical sine-Gor-
don system in bvo space dimensions. The critical
behavior of the lock-in transition in this system
is of considerable theoretical interest. " " Here
I show that this problem is equivalent to that of
solitons in polyacetylene, and that the critical be-
havior is very different if the momentum cutoff of
the continuum excitations is infinite or finite.

The magnetic system is that of a 1D spin-pho-
non (or spin-Peierls) system" where a magnetic
field can change a dimerized spin-& antiferromag-
netic chain into an incommensurate structure with
finite magnetization. Experimentally, a first-or-
der transition was observed" in TTF-BDT(cu)
[tetr athiafulvalene-bis -cis - (1,2-perfluor omethyl-
ethylene-l, 2-dithiolato)-copper] at low tempera-
tures; this is explained here in terms of attract-
ing solitons.

In earlier works'"" on the fermion problem,
my collaborators and I have included direct elec-
tron-electron scattering in a Hartree-Fock
scheme, and solved the problem by a derivative

expansion of the Green's function. We have found
that solitons attract each other if the electron-
electron coupling is not too strong, compared
with the electron-phonon coupling. However, the
derivative expansion is not valid when the elec-
tron-electron coupling is too small, and in parti-
cular when it vanishes', this is precisely the case
which I now solve.

I start from the continuum model for coupled
electrons and ion displacement field Ag) in the
adiabatic approximation. '" The electron eigen-
functions u„(x) exp(i'm/2a) —iv„g) exp(- i'm/2a)
are written as a spinor („'g)= (u„*{x),v„*(x))of
right- and left-moving electrons (a is the underly-
ing lattice constant). The momentum cutoff A
= m/2a defines the allowed range (-A,A) of wave
vectors for („(s;). In the half-filled-band system
b,g) acts as a symmetric backscattering potential,
i.e. , the electron energy eigenvalues e„are deter-
mined by'

~,4, (r)=iVF&s
S

+&(lt')&p„(lt),
8(.b)

where o, are the Pauli matrices and vz is the Fer-
mi velocity. The total energy is

8, =Q'e„+ fdic A2(r)/2hmvF, (2)
n

where A. is the dimensionless electron-phonon
coupling constant, and the prime indicates sum-
mation over the occupied states.

The function A(r) minimizes the total energy if
the self- consistency equation

Ag) = —Xwv, Q'u„g)v„(r ) + H.c.
is satisfied. Equations (1) and (3) have both uni-
form displacement and single-soliton solutions. ' '
Also a soliton lattice configuration was found in
an approximate numerical study" and in a phe-
nomenological model.

Following Takayama, Lin-Liu, and Maki, 5 I de-
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fine f„=u„+iv„, andy„=u„—tv„, and reduce Eqs.
(1) to

[e„'+v, ' e'/ax' a—'(x) +v,A'g)]f„g)= 0. (4)

and g,g) is a classical soliton. The soliton has a
translation mode f,g) -g, '(r) with eigenvalue e = 0.
From Eq. (1) I obtain A(x) =-vF(,'Q)/P, 'Q) and,
substituting in Eq. (7), I obtain the classical soli-
ton equation vF'g, "(z)=U'(g, (r)). Thus Eq. (7) is
an important clue in finding the solution.

I next postulate that the potential U(g) is the
sine-Gordon potential U(g) =A, '(1 —cosg). This is
motivated to some extent by the correspondence
between the backscattering electron problem and
the sine-Gordon Hamiltonian. ' " However, the
ultimate proof is by solving Eq. (4) and then veri-
fying Eq. (5).

The general form of g,g) is a soliton lattice
given by'~25

sin-,' (g, m) = sn(r—/k&, k),

where sn is a Jacobian elliptic function with pa-
rameter k and g =vF/A, . The soliton lattice satis-
fies g, (r+E) =(,g)+ 2m, where I =2)kK and K=K(k)
is a complete elliptic integral. When I » g (or
k-1), g, (r) is a sequence of well-separated soli-

g„ is determined by f„ through the first-order Eq.
(1). Equation (3) now becomes

b,(r) = —2Xrv [A(x') + 'vp&—/Bx]g') f„('t)P/2'&„, (5)

with e„=0 states excluded from the sum.
Note now that Eq. (1), which is a Dirac-type

equation, is equivalent to Eq. (4), which is a
Klein-Gordon-type equation. Thus, we consider
a Bose field pg, t), whose basis functions are
f„g), with a Hamiltonian

e, = J'dx [-,'ll'+-.'v, mq "+-,' g'- v,A')q ']

—Jdx b, /4XwvF,

where II =by/Bt. When all e„&0 states in (2) are
occupied 8, = —2(H~); the factor 2 is needed to
cancel the & of the boson zero-point motion. A
variation of Eq. (6) with respect to A(x) yields
precisely Eq. (5), confirming the equivalence of
the fermion and boson systems.

I have found an exact solution to Eqs. (4) and (5)
which is related to soliton solutions of the sine-
Gordon system. To motivate this approach, note
that Eq. (6) has the form of small oscillations'
around classical soliton-bearing systems" with
potential energy U(g) when

tons or antisolitons, each of width $ and at dis-
tance l apart.

The eigenvalue equation (4) contains the period-
ic potential A g) —vFA'(r) =A, cosg, g) with period-
icity /. The complete eigenfunctions of this poten-
tial are well known, and the spectrum contains a
single gap. ' " Howevers since the eigenvalues of
the fermion problem are symmetric around &„=0
[transform (f„,g„)-(f„-g„)],the fermion spec-
trum has two gaps at wave vectors q = +w/I rela-
tive to the half-filled-band position + m /2a. The
valence band lies below & = —A, /k with wave vec-
tors -A &q &- m/l and the conduction band lies
above e =+A, /k with w/I &q &A. In addition there
is a third "midband" at —m/I &q &w/I with energy
levels —k' b,,/k &e, &k' b.,jk, where k' ' = 1 —k~.

It is remarkable that there are no additional
gaps at multiples of m/I; this is a manifestation
of the ref lectionless property of the cosf, poten-
tial." The lattice distortions which create these
gaps have wave vectors w/a+ 2m/I; their sum is a
lattice reciprocal wave vector so that these two

gaps must coexist. Additional gaps displaced by
multiples of 2w/I are indeed not necessary —they
mill increase the lattice elastic energy and wil. l
not lower the electronic energy. The numerical
study" represented b.(x ) as a harmonic expansion
up to the fifth order. This representation be-
comes worse as I/$-~, where spurious gaps
were indeed found.

Consider now this soliton lattice where the mid-
band is charged, i.e. , it is either full with two
spins per state, or empty. In both cases the val-
ence band is full, the conduction band is empty,
and the midband is symmetrically occupied and
does not contribute to Eq. (5). A tedious but
straightforward summation on the valence-band
states shows that Eq. (5) is indeed satisfied with
the amplitude 4, given by

A, =A,[1—(g/K - ,'k")q'/k'+O(q'-)],

where +=vFAg(1+rt /4) is the ground-state uni-
form solution of Eqs. (4) and (5) [Ag) =h,], g =2
&& exp(- 1/2X), and E,K are the complete elliptic
integrals. Equation (9) shows that in the weak-
coupling limit g-0 (implying A ~ for finite +)
the boson "mass" is unchanged, A, =A, .

Consider now the physical consequences of the
solution. The ion displacement oscillates be-
tween +kA~/(1+k'), passing twice through zero
in a single period l. This allows for two charge
states' ' and the charge density (relative to the
half-filled band level) is p =2/t. This is indeed
the excess charge in the midband.
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The gap in the fermion spectrum is (1-0')A~/k. In the incommensurate limit, when p-A or 0- q«1,
this gap becomes -b, ,q =4vFA exp(- 1/X) and is much smaller than the commensurate gap A,.

The energy of the soliton lattice, relative to that of the ground state, is

(10)

The soliton chemical potential p. =&E„/'dp satisfies &„y, (mldband)(p, &c y, (conduction) so that the
charged soliton lattice is energetically the most favorable charged configuration. Addition of charge
to the system proceeds by expanding the midband to accommodate precisely all the additional charge.

In the limit of low soliton density p '- )ln(4/k') (k'- 0), I obtain from Eq. (10) my most significant
resu1. t

E„/p =(2&,/m)[1+4 exp(- 2/p$, ) —~~@'p(, +7!'/6+O(k'4ln4/0', 0'2qm, q4)],

where $ 0
= v ~/b. o.

In the weak-coupling limit g -0, I recover the
single soliton energy E, = 26,gm as found by Ta-
kayama, Lin-Liu, and Makis and an exponentially
weak repulsion between solitons. However, when

g is small but finite the soliton-soliton interac-
tion is drastically changed. It becomes long
range [decays as (1/p} ', where 1/p is the mean
distance between solitons] and attractive. This
result can be understood by noting that the pres-
ence of the midband reduces the phase space of
electron states (of order A) which contribute to
the selt-consistency equation by 2m/I- p. This is
why both L and 8s„are reduced by the terms-p/5A'.

The attractive interaction leads to phase sepa-
ration for p «p*, where the equilibrium soliton
density p minimizes E,„/p. In the limit of Eq.
(11),

4(p*h.) 'exp(- 1/~*&.) =n. (12)

The application of our results to polyacetylene
with2 g = 0.14 yieMs an equilibrium soliton densi-
ty of p * '= 5$,= 35a and corr esponds to a doping
level of 3%. If the interactions with the dopant
ions are neglected, polyacetylene doped to less
than 3% would phase separate into conducting
soliton droplets charged to a 3% level, while the
rest of the system is insulating. Thus the metal-
to-insulator transition at - 1% may be the forma-
tion of these droplets or the 3D percolation be-
tween them. This is consistent with the observed
nonmagnetic conducting phase. o Increasing dis-
order can destroy the dimerization and then the
soliton droplets become normal metallic parti-
cles 8

I turn now to the equivalent boson problem,
where (H~) of Eq. (6) gives the lowest-order quan-
tum correction + " ~ to the energy of the classical
sine-Gordon soliton lattice. This correction is
given by Eq. (10), except for a factor of —2, and

in addition, the energies e„&0 of the rrddband have
to be added, since the canceQation with the c„&0
midband states does not occur in the boson prob-
lem. For a single soliton, the midband consists
of one ~„=0 state and this addition is zero. Thus

the quantum correction of the sine-Gordon soliton
—&,/m ~' corresponds exactly to the single-soliton
energy in the fermion problem +2b,o/m. For the
soliton lattice solution, the addition of the mid-
band states adds another exponentially small re-
pulsive interaction. " For g —0 the exponential
repulsion leads to logarithmic critical behavior
near the lock-in transition, i.e., p- (p, -E,)8 with

P =0. A finite cutoff A generates a long-range
repulsion (recall the —2!}of the form - q~p, and

therefore P =1.
Finally, I consider the spin-Peierls problem,

which can be mapped into my fermion-phonon sys-
tem exactly for X-7 spins, and with fermion-
fermion interaction for Heisenberg spins. ~' If the
latter interaction is averaged in a Hartree-Fock
scheme a renormalized fermion-phonon system
is obtained~' (otherwise the approach of Refs. 18
and 19 is relevant). Since these fermions are
spinless, "each soliton corresponds to the addi-
tion of + ~ fermion, i.e., ~ ~~ spin in the original
system. Equations (10) and (11) are now smaller
by a factor of 2, X- X/2, and the single-soliton
energy becomes 6,/m.

An important conclusion from the results of the
fermion problem is that the lowest-energy exci-
tation is a localized soliton with spin ~, rather
than an extended spin wave with spin 1 as previ-
ously believed. ~e' ' Also, the lock-in transition
in a magnetic field should be first order with a
jump to the equilibrium soliton density p* of
Eq. (12).

Experiments on the spin-Peierls system TTF-
BDT(Cu) show ~ indeed a first order tr-ansition
at a magnetic field of H, - 120 kG. This yields
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E,=8'K and, therefore, &o=25 'K. The available
magnetic susceptibility data above 6 'K has, in-
deed, an activation energy of - 25 'K, while data
at lower temperatures should confirm the soliton
activation energy. The observed hysteresis at
1.5 'K is -1' and implies strong coupling with

g =0.6. The hysteresis should vanish when T=E„
and indeed it vanished above 5.5 'K.~'

Note added. —I wish to thank Dr. S. A. Brazov-
skii for bringing to my attention, after the sub-
mission of this manuscript, his work on the fer-
mion problem. '6 They consider only the fermion
problem in the A- ~ limit; their result agrees
with mine in this limit. I also wish to thank Pro-
fessor J. R. Schrieffer and Dr. E. Domany for
very useful discussions.
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It is observed that a reversible step period rearrangement on clean nickel single-crystal
surfaces occurs in the immediate vicinity of the Curie temperature. Reversible carbon
segregation is observed on the same crystal surfaces below the Curie point. The segre-
gated carbon is carbidic, not graphitic, and indicates a change in the nickel surface elec-
tronic structure occurring at the ferromagnetic transition. Measured carbon coverages
indicate a change greater than 0.2 eV per carbon atom in the heat of segregation at the
Curie point.

PACS numbers: 75.30.Kz, 61.14.Hg, 68.40.+e

Several recent experiments have focused atten-
tion on changes in the chemical properties of
magnetic surfaces at the Curie temperature. ' '
These experiments indicate a direct connection
between the magnetic state of the surface and the

binding energy of adatoms on the surface. ln this
Letter we report strong evidence of a new and
significant phenomenon, a reversible structural
surface phase transition directly coupled to the
ferromagnetic transition of nickel.
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