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Abstract: The phase diagram of a quasi-one-dimensional metal is de-
rived for a system with interchain tumneling. Retarded and nonretard-
ed forward and backward scattering interactions are included. We show
that singly charged acceptor molecules produce a potential along the
conducting chains which leads to a retarded umklapp scattering. This
umklapp scattering depends strongly on the phonon frequency and can
explain the crossover of spin density wave to superconductivity as
function of pressure as observed in (TMTSF)2X compounds .

The recent interest in the instabilities
of quasi-one-dimensional metals was enhanced by
the discovery of the (TMTSF), X (X = PFg, AsFg,
NO3, C104,..... ) '"monochain" compounds in which
only the donor chains of TMISF molecules parti-
cipate in the electron transport.! Five com-
pounds in this family have already been shown
to undergo a superconducting phase transition.
(TMTSF), PFg has at ambient pressure a metal-
insulator transition at 18°K and becomes super-
conducting above 12 Kbar below 0.9°K.2 Both
transition temperatures decrease with pressure.
There is growing evidence that the insulating
phase is a spin-density wave3’"(SDW) rather
than a charge-density wave as in the other or-
ganic conductors. Similar behaviour is obser-

ved for X = AsFg, SbFg, TaFG.5 It was shown re-

cently that the compound (TMTSF),C10, exhibits
superconductivity at ambient pressure. The
explanation of the rich phenomenology of these
compounds imposes severe restrictions on pos-
sible theoretical phase diagrams. We shall
show that the conventional phase-diagram of
one-dimensional metals, based on forward and
backward scattering only is unlikely to account
for the observed behaviour.

The (TMTSF) X class of compounds has sev-
eral novel features of which, we believe, the
most important for the understanding of the
phase transitions is the special role of the
singly charged acceptor molecules. The struc-
ture of the acceptor chains has a glide plane
symmetry so that they do not couple directly to
electrons moving along the donor chains. (The
glide plane symmetry of the whole compound is
only approximate because of the small tilt-
angle of the donor molecules). Thus there is
no gap in the electron spectrum inthe middle of
the band unless there is a transverse component
in the electron motion. The potential from
these chains has a periodicity of 4k_ where kF
is the Fermi wavevector of the % filled band

(2]

on the TMTSF chain. If the glide plane symmetry

is absent, such a potential usually generates
an umklapp scattering with the lowest order
shown in Fig. la. In the presence of glide
plane symmetry this is not allowed and the dom-
inant process becomes the coupling between +2k
and -2k phonons. This provides an umklapp
scattering channel for the electron-electron
interaction as in Fig. lb. The main point is
that this interaction is retarded. depends
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Fig. 1. Umklapp scattering in presence of an
external potential of period 4k..
a) non-retarded process involving
glectron scattering;
b) Fetarded process via two phonons.

strongly on the phonon frequency and is suppres-
sed by pressure. We shall show that this suppres-
sion can result in a crossover from SDW to super-
conducting ordering.

In our previous work on the competition be-
tween the different types of order in quasi-one-
dimensional compounds we adopted a model with
interchain tunneling represented by the electron
dispersion:’

e(P)=VF(|Px|‘PF)‘tl(°°5 be+c°S ch)’ (1

where Vg is the Fermi velocity, b,c are the lat-
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tice constants in the transverse directions and
t, is the overlap integral which measures the
interchain coupling. The interesting range of
values of t, is

L
4TC it <3 (TCTF)Z (2)
where T, if the Fermi temperature and T - the

mean field Peierls transition temperatufe for
t,=0. The lower limit is determined by the ap-
plicability of mean field theory and the upper
limit assures sufficient nesting (i.e.e(q +p) =
-e(-p), for all p(p_<0) near the Fermi surface
and qo=(2kF,n/b, w}c) for the possibility of a

Peierls transition. In this region the Cooper
channel and the Peierls channel are decoupled
and the most divergent set of diagrams reduces
to that of the Hartree-Fock scheme for each of
the possible types of order separately®. This
scheme was studied previously for non-retarded
interactions,® and it was shown that the four
phases occuring for weak coupling (spin den-
sity wave (SDW), charge density wave (CDW),
singlet superconductivity (SS) and triplet
superconductivity (TS) are separated by the
lines g.=2g._+ and =0 (g,,g,> are the
backwaré sggtlgglng, fg%wardg%cg%tg%ing and
umklapp scattering coupling constants, respec-
tively). This phase diagram bears a remarkable
similarity to that obtained in the strictly
one-dimensional case (t;, =0) at T = 0.10

Let us now extend the calculation of ref. 9
to include the retarded interactions. This was
partly done in ref. 8 where the competition be-
tween superconductivity and CDW was discussed in
a model based on the Frohlich Hamiltonian with
electron-phonon coupling constants g, & for
q <2k, and g I 0 phonons, respective?y. Pat
presen% we want to include in the Hamiltonian
also the nonretarded electron-electron forward
(gze) and backward (g, ) interaction, as well as
thé umklapp scattering mentioned above. Let us
define dimensionless coupling constants

éie = 8ie N©)/2, T
A = g> N(O)/w =52 )
i ip o’

where N(0) = 2/mv_ is the density of states and
w_is the phonon §requency.

The gap equations for the different types
of order are obtained in the Hartree-Fock scheme
from the lowest order irreducible self-energy
diagrams.® Retardation effects are due to the
phonon interactions in the exchange part of the
self-energy. The direct part (Hartree term)
which appears in the case of CDW, involves only
an w = 0 interaction line, and therefore even
the phonon lines which contribute to this term
are non-retarded. The gap equations are

E
c A
fdeTz———]-n—— +
E m e2+g2+a2
m m

4
R Ec Am w? “
+1sg [ derT ) o
-E m wl+e4+82  (w_-w )2+2
c m m n " Ym o

where w_ = 2#Tn are the Matsubara frequencies
Ec is the electhn cutoff energy and ghe compo-

site retarded (g ) and non-retarded (g ) coup-
ling constants are given in table 1, with A_=0,
since we have still not taken into account “the
umk lapp process.

Let us now consider the umklapp process spe-
cific to the (TMTSF)ZX compounds. The acceptor
molecule chains produce a static potential along
the conducting donor chains of the form

W = Wo exp (14kFRn) + h.c., (5)

where R are the coordinates of the donor mole-
cules. "Expanding to second order in the mole-
cular displacement we find that this potential
adds to the Hamiltonian a term

2 1 -
HU = w0(4kF) z m‘q’ ¢q¢q+4kF +h. c., (6)
where ¢ =b +bt b ,b+ are the phonon destruc-
tion and cleatdon 8pe%ators). The lowest order

effect of this term involves the coupling be-

TABLE T
N &
S5 “B1e B At
TS éle'QZe Shth,
CDW -zgle+g2€+2xl+2xs “hy=hg
SDW g2€ “Aythg

tween two phonons with momenta * 2k and con-
tributes an umklapp term to the electron self-
energy. The contribution to the non-retarded
direct part of_ﬁhe self-energy affects only the
CDW adding go g (table 1) the coupling constant
2A3, where

2
| 2|w0|4kF (7)
1 M
o
The exchange term involves an umklapp contribu-
tion in the CDW and the SDW channels and adds to
eq. (4) a term

EC A W, 2
gy [ de T — (8)
-E m w2+e?+A2 (0 -w )2+m2
c m m - n o m o]

The two signs in eq. (8) correspond to the two
extreme values of the phase of the density waves
and are chosen so as to give the highest transi-
tion temperature with the reservation that the
contributions to the direct and exchange terms
have opposite signs. This prescription gives
for the CDW a plus sign in the direct term and
a minus sign in the exchange term. In the case
of SDW there is no direct term and eq. (8) is
chosen with a plus sign.

Next, we solve Eq.(4) with the umklapp term
(eq. 8) in the weak coupling limit, g. ,A.<<1
and T << w_ << E . In this case the'faif ef-
fect &f theophonoﬁ propagators in eqs. 4,8 is
to replace the cutoff energy EC by W The
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umklapp term in eq. 8 may be incorporated into
the retarded part of eq. 4 and the latter may
be approximated by a simple BCS equation with
two cutoffs for the transition temperature to
the different types of order

c tgh(e/ZTc)

E
w
JISLLGRRN R O

-£ —
1=3 [ ae Ze

- c
o

where the coupling constants éN, QR for the dif-

ferent phases are given in table 1. The solu-
tion of this equation is
R -N -1
T oy exp{-[hg + F— £ 1 1(10)

N
-y :
1-%g In(E /u )

The effect of the different cutoffs for the re-
tarded and non-retarded interactions is to mod-
ify the coupling constants for the latter exact-
ly in the same way as the Coulomb interaction
parameter y is changed to p* in the usual ex-
pression for the superconducting TC.11

The accuracy of eq. (10) can “be checked
by comparing it with the numerical solution of
eq.4 for the CDW-SS boundary line, derived in
ref. 8 for g. =g, =3, =0. In this case,
eq.10 for T le T 2e yiefds the line
SS CDW

.- 51,1+X1 ln(EC/mo)
2 2 l—Xl ln(Ec/wo) (11)

Comparison with fig. 9 of ref. 8 gives less than
10% deviation for Ai < 0.4, wo/EC < 0.3.

The phase diagram is obtained by comparing
T for the four instabilities. The highest T
détermines the type of order at each point in
the interaction-parameter space. The result is
shown in_Fig. 2, to lowest order in g ln(gc/m ),
in the (g ,gz)—plane, where g1=gle—kl;g2=g26- L
The full “lifies are the coexistefice ~lifies” fof
A,=0. The dotted lines are the boundary lines
o% the regions in which SS and SDW may at all
occur. T for SS is zero on the line a and it
increases “as one moves to the left, while T =0
for SDW on the line B and it increases as one
moves to the right. This phase diagram has a
new feature compared to the case of non-retard-
ed interactions. The degeneracy of the point
at the origin at which all four phases coexist
is lifted and one gets two points, A and B, at
which three phases coexist. This implies that
a S5-SDW co-existence line is now possible (i.e.
the line AB in fig. 2).

Including the umklapp seattering, the den-
sity wave phases are enhanced resulting in the
motion of point B along the TS-SS coexistence
line and the motion of point A until at some

critical Aszls* both coincide at point P, where

* 2 L
= 1 2 -k
Ay = [(A2 + )T 2A1A2] Ayiady (12)
The motion of points A,B is accompanied by a
shift of the line B to the left, while the line
o remains intact. For X >X3 a TS-CIW coexistence
line appears. This comp%etes the theoretical
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Fig. 2. Phase diagram in the (él,éz)-plane.
(8,877 %5 B,=8,."%,) Full lines
aré t%g c%exigte%ge fines for X, = 0.

The dotted lines are the bounda¥y lines
of the regions of existence of SS and
SDW. The co-ordinates of point A, and
of the intersections of the a,B-lines

with the gz-axis are indicated.

analysis of the phase diagram in the presence
of retarded and nonretarded interactions and we
proceed to a discussion of the experimental
data.

We assume that the observed superconduc-
tivity in (TMTSF)2X compounds is of the singlet
pairing type; triplet pairing is unlikely since
it 1s easily suppressed by impurities.12 Thus,
in our picture the change from SDW- to SS- ord-
ering implies the crossing of the AB line from
right to left. This seems to happen in several
of the (TMTSF)ZX compounds under pressure. Let
us first see “if this behaviour can be under-
stood without the umklapp scattering (A, = 0).
We expect that the main effect of pressure is
to increase the phonon frequencies and thereby
to reduce A2, , leaving g ,éz almost unchan--
ged. This “medns that undé% prgssure a point in
the (g ,gz)—plane on the right-hand-side of the
line Ag would move away from this line. But
even if this were not the case and such a point
would move to the left, we would find that T OW
decreases and T, most likely increases (unléss
AB is crossed upwards at a very small angle).
However, experiment shows that both temperatures
decrease under pressure. For these reasons_we
believe that a model with the interactions g. ,
- . X . le
8re7 Al,kz along is unlikely to explain the
ogserved behaviour.

Let us now consider the effect of the um-
klapp scattering parameter As. First note that
from eqs. (2), (7) it follow3 that Azuw % (from
(7) and A aw_ 2, since A =(J%n(e.}/Mi2)’ where
J is an e ecgronic latri% elenent). °Therefore,
this interaction is the most sensitive to pres-
sure. When the pressure is reduced, ), increa-
ses and line AB moves to the left, Th;s be-
haviour explains the experimental results quite
naturally. In this picture the transition from
SDW to SS-ordering is due mainly to the shift
under pressure of the AB line to the right,
rather than to the change of position in the
(gl,gz)-plane. Since Xs appears in the exponent
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of T and not of T_.., while X
exponent of T.. and not of T , and both coup-
ling constants decrease undet pressure13, the
crossover from the SDW to the SS-phase occurs
with T DW and T., decreasing with pressure.
Since § is more sensitive to pressure (e.g.
dlnw/d1fla)2-10, a2, Aaw *, (dlni,/d1nal20,
(dlnks/dlna):40, whére a“is the lattice constant
along the chain), we expect a stronger pressure
dependence of T than of T.., which is again

- . . .'SS
consistent with“experiment:
dTgg/dP=0.087Kbar! 17, ar py/ 4P=1-2K/Kbar. 2

We wish to point out tﬁa¥ the glide plane
symmetry of the acceptor chains plays a key
role. If not for this symmetry, we would have
a gap in the electron spectrum at +2k_, which
would result in a half-filled band and conse-
quently a non-retarded electron-electron um-
klapp scattering g, . The lowest order of such
a process when alldwed by symmetry is shown in

appears in the

Fig. la. Its coupling is agle-w /EF, which can
be of the order of magnitude o&f On,t
It was recently found® that (TMTSF) ,C10,

is guperconductigg at ambient pressure below
1.37K. The C10 ions appear to be disordered®
in this compouné. A possible explanation in

the line of the present model of the supercon-
ductivity in this case, is that the disorder ex-
cludes the possibility of umklapp scattering and
pressure is not necessary to suppress A, in or-
der to recover the favorable conditions™ for
superconductivity. Another explanation is that
the disorder of the acceptor chains acts as im-
purity scattering for electrons, which suppres-
ses the spin-density waves, but has only a small
effect on singlet superconductivity.!? Note
that in HMTSF-TCNQ, lattice disorder destroys
the Peierls state and gives rise to a metallic
state at 0°K!5,

Another possible explanation to the pres-
sure effect in these compounds is that pressure
increases the interchain coupling and thereby
destroys the nesting of the Fermi surface. This
effect was evaluated for Eq.(1) when the linear
dispersion in the x-direction was replaced by a
nonlinear one, e.g. a free electron dispersion.
The result shows that the CDW transition (and
similarly for SDW) is suppressed when t >
S(TCTF)Z (eq-(2) ). In this case superconducg
tiv1t§ may appearle. For (TMTSF)ZPF6,TF:2030 K,
T.~18"K and the above condition i§ t, » 600°K.
T%is number seems to be rather high, especially
judging by the large anisotropy of the electric
conductivity at ambient pressure. This aniso-
tropy seems to be reduced gtrongly bg pressure
reaching a value of ob(4,2 K)/oa(4.2 K)=7 at
10Kbar. However, there is experimental evidence
that in spite of that, the nesting property of
the Fermi surface is not destroyed by pressure.
The authors of ref. 17 find a gap over most of
the Fermi surface, indicating the formation of
density waves. The 'one-dimensional" picture
used here does not depend on the value of t ,
as long as the nesting property is preserved.
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Recently, Kwak et all® observed Shubnikov-
deHaas oscillations at 7.5 kbars in (TMTSF)ZPFG,
indicating electron and hole pockets of equal
cross-sectional areas of less than 1% of the
Brilloin Zone, and an effective mass close to
m_. Such pockets were observed and accounted
£6r!® in the two-chain compound HMTSF-TCNO.
They were also observed below the Peierls tran-
sition in the one-chain system NbSe. by trans-
port methods.2® Such pockets are expected in
general in a two-chain system due_to the devia-
tions from a planar Fermi surface °, and in
monochain systems whenever there are deviations
from perfect nesting of the Fermi surface, and
the nesting vector q_ becomes a reciprocal lat-
tice vector (in presénce of CDW's or SDW's). In
the latter case the two sheets of the Fermi sur-
face are almost equivalent, and shifting one of
them by the nesting vector results in small
electron and hole pockets. It is reasonable to
assume that in (TMTSF) PF_, q =(2k.,n/5,q ) (the

. 2.6 o “U°F :

value of q 1is less certain but irrelevant for
the present argument), and that this vector at
P = 7.5 kbars is still a reciprocal lattice
vector due to the presence of SDW's17. This
results in small banana-shape electron and hole
pockets with a volume of the order of (tl/tu )2
of the Brilloin zone. This explains why the
significant decrease in the resistance anisotro-
py and the appearance of Shubnikov-deHaas oscil-
lations at high pressure are consistent with
each other, and with the suggestion that the
deviation from perfect nesting is small. This
point will be discussed in greater detail else-
where.

Eq. (5) implies_ﬁn_ﬁsotope shift parameter
a = -k dlnTe/dlgm (g ,g are independent of the
ion mass M W which gives

If the couplings éN,éR cancel each other to
a large extent so that T is very low, a can be
very large. Numerical s6lutions of Eq. (4) for
the CDW problem?! have shown that o is reason-
ably large and positive (a ¥ %) even without
such cancellation if w« : 2nT_. Subsequent
measuremeni on TTF—TCNQozzhavg indeed observed
a positive isotope shift in this CDW system.

The model presented in this paper is an
additional example of the possibility to affect
the competition between insulating and super-
conducting phases in quasi-one-dimensional con-
ductors by applying pressure. This was first
suggested by us in the context of the comgeti-
tion between CDW's and superconductivity2 .
What is new here is that the insulating phase
may be a SDW and the special role of the um-
klapp process.
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