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The Peierls condensate with density p near 1 electron per atom is studied
and an effective phase-amplitude Hamiltonian is derived. It is shown that
a Hartree—Fock theory removes the p — 1 singularity and the phase field
exists even at p = 1. The charge carriers are attracting solitons and the
lock-in transition is of first order. If p is fixed near 1 the condensate will
separate into a commensurate phase (o = 1) and an incommensurate
phase (p # 1). These results can account for the unusual features of

doped polyacetylene.

THE PEIERLS INSTABILITY of a quasi-one-
dimensional electron system and effects of commen-
surability with the lattice have been extensively studied
in recent years [1—5]. However the simplest commen-
surate case, corresponding to density p of 1 electron per
atom, remained as a puzzling special case. It has been
argued that in this case a phase mode does not exist

[1, 2], and that the free energy cannot be expanded
around p = 1 [5].

The case of p near 1 has become particularly
interesting in view of recent experiments on doped
polyacetylene [6—8], where by doping p =1 + 6p
electrons in the conduction band. A dramatic increase
in conductivity around 8p = 0.01 suggests an insulator
to metal transition. Optical absorption indicates [7—9]
that doping leads to an additional absorption below
~ 0.5 eV, but surprisingly, absorption at the gap of
~ 1.6 eV persists all the way through the insulator to
metal transition.

Furthermore, magnetic susceptibility data
indicates that undoped polyacetylene has spin carrying
defects, while the excess charge from the doping ions
does not carry spin [9]. This is consistent with the
theory of Su, Schrieffer and Heeger (SSH) [10] that
neutral soliton defects carry spin, while charged solitons
do no carry spin.

An alternative theory by Rice [11] suggested that
solitons in polyacetylene are amplitude kinks. However,

the Landau—Ginzburg functional used by Rice is singular

for an amplitude kink [12]. The continuum version of
the SSH model, as done by Takayama et al. [13] does
not suffer from that defect and yields an amplitude
soliton,
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These theories for solitons in polyacetylene [10,
11, 13] describe the single soliton formation, applicable
to very dilute doping of 8p < 0.001, where solitons are
isolated from each other. However, the understanding
of the metal to insulator transition requires multi-
soliton solutions and the understanding of the commen-
surate to incommensurate (G—/) transition.

In this work we re-examine the Peierls condensate
near p = 1, and show that the elimination of the phase
mode for p = 1 is a deficiency of the Hartree approxi-
mation, which was used in previous theories [1, 2, 5].
We then derive an effective phase-amplitude Hamiltonian
by using the Hartree—Fock scheme, i.e., including the
exchange term. The charged soliton obtained here, does
not pass through the singular point where the order para-
meter vanishes, and therefore a Ginzburg—Landau
effective Hamiltonian can be used. In the second part
we apply the results to describe the transition near
p = 1. The solitons in the present model can attract each
other, condensing into metallic like regions.

The amplitude A and phase ¢ of the interacting
electron—phonon order parameter A exp (i¢) are usually
electron-phonon order parameter A exp (i¢) are usually
identified by the ion displacement pattern
~ A cos 2kp x + ¢), where kr = np/2a is the Fermi
wavevector and a is the lattice constant. For p = 1 the
ions at x = na are displaced by (—)" cos ¢. The only
ion variable then is the product A cos ¢ and the order
parameter appears to be real [2]. However, including
interactions between electrons, either by virtual
phonon exchange or by Coulomb interaction, can lead
to a complex response, i.e. the order parameter,
defined by this response, is complex.

To make these ideas more explicit, let us consider
a system with 2k = w/a. Write the electron wave-
function [12] as
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u(x) = uy(x) e*FF* +uy(x) e RF (D

and a spinor notation is used Y (x) = [u}(x), u3(x)).
The phonon field is written as ¥(x) exp (inx/a) =
X(x)(—)" forx = na and Y(x), u,(x), u,(x) are slowly
varying functions. Neglecting second derivatives in
u,,2(x) and terms which oscillate fast as (—)", the
Hamiltonian is written as

o= fdx {—ivpyT(x)o; %w(xﬁ Ywox?(x)

+gyT(x)o, Y(x)X(x)

L4
N(0)

where o; are the Pauli matrices, M(0) = 2/nvp is the
density of states at the Fermi level, g is the electron—
phonon coupling, and 7 is the strength of the Coulomb
coupling. The last term in equation (2) describes a
Coulomb interaction with a range longer than g but
shorter than the coherence length ~ vp/A.

The coupling of a phase mode to electrons, present
in the incommensurate problem, is absent in equation
(2). The coupling by the ¢, matrix means that a(+ 2ky)
phonon can transfer electrons from type 2 to type 1
(direct process) and also from type 1 to type 2
(Umklapp process). Note that the Coulomb interaction
does not involve an Umklapp process. This process is
affected by the 4kp component of the interaction
which is neglected here compared to the ¢ ~ 0 com-
ponent. We also assume that the system is charge
neutral on the scale of the coherence length, i.e. the
dopant ions are not too far from their charge on the
polymer chain.

The order parameter is defined by the combined
electron—phonon response [12] (not just the ion
displacement), i.e. the electron off diagonal self mass
correction is A cos ¢oy — A sin ¢g,.

The procedure of a microscopic derivation of an
effective Hamiltonian has been shown in [12]. The new
feature here is that the calculation is extended beyond
the Hartree (or adiabatic) approximation and this leads
to qualitatively new results for the system near p = 1.
More specifically, we use the Hartree—Fock scheme [14]
and assume low frequency phonons (wg <€ A) so that
the exchange term is dominated by the Coulomb inter-
action [14]). We obtain the following effective
amplitude-phase Hamiltonian

I @)} (2)

A 2 2

A?
3

H{a, ¢} = N(O)fdx {——;—N (m 2L, l) + —l—aAz}
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where £, is the electronic cutoff energy, a = 1/(2X + ),

B =AN[y(2X + v)} and X = g2M(0)/w,. The slowly vary-
ing part of the electron density is [12]

p = l+%8¢/8x. (4)

Except for the last term in equation (3), the system
is symmetric in the phase gradient, as required for the
half filled band [15]. The last term in equation (3) is the
electron chemical potential which couples to the elec-
tron density [equation (4)]. This term may induce a
change in the electron density and breaks the symmetry
of the half filled band.

The Hartree approximation corresponds to y > 0
(no exchange term) and then the locking term
$BA%(1 — cos 2¢) diverges for ¢ # 0. (The Coulomb
interaction is not essential for this; phonon exchange
leads to the same effect.) The only finite energy
solution in the Hartree approximation is then ¢ = 0, i.e.
the charge density wave is always locked to the lattice
and from equation (3) p = 1! The expansion near p = 1
is then not possible [5] and there is no phase mode.

Note that for a complex order parameter the form
of equation (3) follows essentially from general sym-
metry arguments [3] and the microscopic derivation
serves mainly to identify the various coefficients.

To first order in ¢ the CDW is changed by
@A sin 2k px which vanishes at the ion positions but nor
otherwise (thus the ions do not couple linearly to phase
oscillations). Since ¢(x, ¢) is defined on a continuum
(manifested by the virtual interactions) a non-adiabatic
theory yields a phase mode, i.e. the order parameter is
complex. Note that the phase mode is not the acoustic
mode [1], since it involves CDW motion relative to the
ions; it is also distinct from the amplitude mode [2]
since the latter does couple linearly with the ions.

We now analyze and apply the resulting equations
of motion in the static limit,

[ +B(1 —cos 2¢)]A = Aln(2E./A)
—(A?—AA"YWE/124°, (5)
48A?sin 2¢ = vk¢’. 6)

In the commensurate ground state ¢ = 0 and
A=A, =2E; exp (— a). (Including time dependence
gives phonon frequencies wy ~ 4, /88 and
wa = Wo(2A + 7)/A/2\.) In the incommensurate limit
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(n/a> q > /3B A;/vr, ¢ = 2u/vF) ¢ is changing rapidly
and the cos 2¢ term in equation (5) contributes just a
small second harmonic correction,

B(x) = do + gx —sin (2gx + 2¢,) BA2 [vE 4 )
A(x) = A;+ 3 cos (2gx + 20)A} v} 4 ®

where 4; = 2E, exp (— o — f8), and ¢, arbitrary,
reflecting the phase degeneracy of this state. For

B 21, A; € A, which demonstrates the strong phase—
amplitude coupling. In general [1, 2, 13] A, €2E, and
y<Asothatf>az 2.

For a constant amplitude equation (6) yields the
well known sine-Gordon phase solitons [12, 16]. A phase
soliton corresponds to a localized change of 7 in the
phase, it contains an energy E,, a charge * e [equation
(4)] and spin zero [12]. The charge and spin of this
soliton is identical to that of SSH, and the difference is
that here we include exchange interaction and a com-
plex order parameter.

The coupled phase—amplitude problem, equations
(5) and (6), also has soliton solutions, although the
explicit solution is not simple. At the soliton center
A(x) has a minimum which can be much smaller than
A(x = £ ) = A_. It can be shown that
E, = INO) [ ax (47— 2)] ©
and a lower bound on £ can be found. Detine
Ey =+/88 A/ (energy of “phase only” soliton with a
constant A = A;) then £,/E; > 4.0 for = 3 and the
lower bound increases rapidly for larger 8.

We now proceed to discuss the situation for many
solitons. This is related to the C—I transition, or “lock
in” transition, which corresponds to p = p, as function
of the chemical potential u. p, is a commensurate value
of the electron density, po = 2N/M where N, M(N <M)
are small integers [1], and M is the order of commen-
surability. For M > 3 this transition was studied and
shown to be continuous [2—5].

In equation (3) the net energy for creating a
soliton is £, — u. Thus for u > E; the system is
unstable against accumulation of solitons [3-5, 17].
This is the C—7 transition described by the soliton
density p — 1 = 8p(u). 8p increases as 4 becomes
larger compared with the locking potential $BA?, i.e.
the coefficient of cos 2¢ in equation (4).

However, the phase-—-amplitude coupling drives an
unusual effect: as §p increases, the amplitude and
hence the locking potential, both decrease. Thus
unlocking becomes easier and the soliton density can
bootstrap itself to higher values without increasing u.
This corresponds to an attractive interaction between
solitons
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Recent numerical studies [18] of the Hamiltonian
(3) confirm that solitons indeed have a long range
attraction, and form static bound states for § > 1.48.

In the incommensurate limit (u > E;) the soliton
lattice is described by equations (8) and (9) with a
density 8p = ga/n (each increment of ¢ by 7 is one
soliton). This limit is a good approximation down to
near u ~ E; (3,4, 14}, i.e. for §p 2 §p, where

(10)

Below 60, the soliton density would decrease very
fast with u, if A = A; (dashed line in Fig. 1), but then
A(x) increases towards A,and u must increase to over-
come the correct soliton energy.

The dependence 8p(u) is shown qualitatively in
Fig. 1. This type of behavior happens at least for § 2 3,
since then we have shown two solutions at u = £: the
commensurate state, and the incommensurate solution
equations (8) and (9), the latter being valid at
WE? =E}E}> 1.

Figure 1 implies that the C—/ transition is of first
order. It is analogous to the density-—pressure depen-
dence in a gas—liquid transition. The equilibrium
solution (vertical line in Fig. 1), describes two separ-
ated phases; a commensurate phase and an incommen-
surate one with density 5p*. For a given §p <8p* the
system will separate into these two phases such that
the incommensurate phase occupies a fraction p/5p*
of the chain length. Comparing the energy of equations
(7) and (8) to the energy of the commensurate phase
gives (for large f) that the equilibrium lines is at

8[)1 = 2E,~a/1rvp .
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Fig. 1. Qualitative behavior of the excess charge density
as a function of the chemical potential. The dashed

line corresponds to the (false) case of a constant
amplitude A = A;. The vertical line is obtained by a
Maxwell construction; it is the equilibrium state for

8p <8p* and corresponds to a linear combination of
two separated phases.
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u=A./2 and
8p* ~ 24.a/mvp . (1n)

This behavior can explain the unusual properties of
doped polyacetylene. At very low doping of ~ 0.1% the
solitons can be localized by the Coulomb potential of
the dopant [8]. As the doping level increases, the
attraction between solitons overcomes the dopant pin-
ning and incommensurate regions appear. This process
is enhanced if the doping ions can move with the
solitons so that the system remains charge neutral on
the scale of the coherence length. The incommensurate
regions have a higher conductivity than the commensur-
ate regions since (a) the CDW pinning is due just to
impurities (no Umklapp scattering), and (b) at finite
temperatures the gap A; (€ A,) is reduced and may
even vanish, leading to metallic conductivity.

The i.r. adsorption below ~ 0.5 eV is now explained
by the appearance of highly conducting incommensur-
ate regions, while the persisting gap at 24, =~ 1.6¢eV is
due to the co-existence of commensurate regions.

The conduction in this system is probably a per-
colation process between metallic particles embedded
in an insulating medium. It was recently noted that a
percolation process is consistent with the temperature
dependence of the conductivity [19]. As shown here,
it is also consistent with the soliton picture for charge
carriers.

The conductivity increases strongly around 8p =~ 1%
which should correspond to the characteristic value
8p; [equation (10)]. Using a transfer integral of v
vp/2a~2eV,E, ~4¢eV and A, =~ 0.8 eV we obtain
E;~02eV,A; ~0.1eV,a=23and §=4.3 (or
A =0.17,v = 0.09). These estimates demonstrate that
4A; €A, the phase—amplitude coupling is strong and
the qualitative behavior of Fig. 1 is appropriate.

The conductivity should saturate when dp > 8p*
since then the whole condensate is incommensurate.
Using equation (11) we obtain §p* ~ 9%, in close
agreement with the experimental data.

In conclusion, we have shown the existence and
significance of a phase field in the electron—phonon
order parameter for a condensed half filled band.
Excess charge corresponds to phase—amplitude solitons.
For low soliton density the interaction between
solitons is attractive and leads to phase separation.
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