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AMPLITUDE SOLITONS IN INCOMMENSURATE PEIERLS SYSTEMS: IMPLICATIONS FOR TTF—TCNQ
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Amplitude soliton excitations are described for both dimerized [i.e.
commensurate with 2k; = (n/a)] and incommensurate charge-density-
wave (CDW) ground states. For the dimerized case the soliton excitations
can have charge + e, 0, — e with spin 0, + }, 0'depending on the occupancy
of the localized gap state. For the incommensurate case only the neutral
spin-} soliton exists. Utilizing the results of Takayama, Lin-Liu and Maki,
we show that £, = (2/m)A where 2A is gap for electron—hole excitations
(A; = W exp (— 1/) for the incommensurate case and A, = W exp (— 3\)
for the dimerized case where A is the electron—phonon coupling constant
and W is the bandwidth). We suggest that neutral soliton excitations may
make significant contributions to the magnetic susceptibility of incom-

mensurate CDW systems, and that this may be the origin of observed
differences between the low-temperature magnetic and transport acti-

vation energies in TTF—TCNQ.

RECENTLY there has been significant progress in the
theoretical description of the interacting electron—
phonon system in quasi-1d materials which exhibit
Peierls-charge-density wave (CDW) instabilities. Su,
Schrieffer and Heeger [1] (SSH) and Rice [2] discussed
the formation of solitons in the half-filled band case
[2k; = (n/a)] where the electron concentration is such
that the Fermi vector is exactly commensurate with the
chain periodicity, as is the case for polyacetylene. They
concluded that an amplitude soliton could exist with
order parameter A(n) = A, tanh (na/l), where a is the
lattice constant, [ is the half-width of the soliton, and n
denotes the position along the chain. With the forma-
tion of such a soliton (either as a defect, a thermal
excitation or through doping) there is an associated
electronic bound state at an energy in the middle of the
Peierls gap. Depending on the occupancy, the electronic

state could have charge 0, * e with spin 4, 0 respectively.

The “neutral-spin 4 soliton could contribute to mag-
netic susceptibility, but not to electrical conduction.
The SSH calculation was carried out in detail in a cell-
localized basis set, from which the order parameter and
electronic Green’s functions can be obtained for either

* Permanent address: Dept. of Physics, Cornell Univer-
sity; supported by Army Research Office through
Grant No. DAAG-29-C-0097.

¥ Permanent address: Weizmann Institute of Science,
Rehovat, Israel.

¥ Permanent address: Supported by Army Research
Office through Grant No. DAAG-29-77-G-0089.

the spatially uniformly dimerized system, or for one
with a soliton (antisoliton, or pair).

An alternative approach to this class of problems
has been via the Luttinger double linear-band basis
[3-5], using a two-state  spin or electronic wave function
which slowly modulates the Fermi-level electronic states
in a continuum representation. The coupled ion-
displacement and electron Green’s-function equations
of motion are derived and depend on an order param-
eter A(x) ¢/?*_ In the mean-field approximation for
the electrons, and to leading order in time and space
derivatives, approximate differential equations governing
A and ¢ have been derived and solved [5] (and refer-
ences therein); but these differential equations involve
approximations that are invalid if A-0. Unfortunately,
the amplitude soliton demands just this condition at its
center. Takayama, Lin-Liu, and Maki [6] (TLM), have
recently solved directly the integral equation resulting
from the equations of motion and the self consistency
condition on the electron distribution by methods
analogous to those used for the Bogoliubov—de Gennes
equation [7]. Of central importance in our discussion
here is that: first, TLM find that a neutral-spin 4 gap
soliton with A(x) « tanh (x/I) is indeed a proper
solution (without derivative approximations); second,
upon examination we now conclude that their calcu-
lation is applicable with slight modification to both the
incommensurate and commensurate cases (as we will
discuss below); third, TLM’s computed neutral soliton
energy E, = (2/r)A,; implies a low-temperature para-
magnetic susceptibility with an activation energy of
(2/m)A; where 24, is the energy gap for excitation of
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electron—hole pairs. We suggest this is a possible solution

to the long standing question of the observed differences
between the low temperature magnetic and transport
activation energies in TTF—TCNQ. One of us (B.H.) [8]
has also extended the treatment to include Coulomb
effects in the Hartree—Fock approximation; the results
imply that the gap soliton solution survives in this more
general case and E; = (2/m)A; still applies.

In the continuum limit, the electron field operator
in the two branch basis is written as

Cns = us(n) eF1™® — jv (n) e krma

6y

and the ion displacement field is taken to be a classical
field

F, = A[A*(n) 2% + A(n) e 2rme], ()

In the limit where the spinor ¥ = (u,, v;) and A*, A vary
slowly with site n one replaces na by the continuous
variable x; A is defined by an electron—phonon coupling
parameter a. In this representation the Hamiltonian
written in terms of intersite hopping matrix elements
modulated by ion displacements is transformed to

th=1)
NN L
H = Z f dx {— lvf[us(x) aus(x) — v (x) P Us
+ [AY(x) + nAX)] u; (x)v,(x) + [Alx)
+ A ()] ug (s(x )} + (2mop) ™
x [ax26°0a6) + a2 + a8t @R (3)

In the above, vp is the Fermi velocity and A is the
dimensionless electron—phonon coupling parameter
(4a’a/mvpk), where k is the phonon elastic stiffness. For
the commensurate case, 2k = n/a (e.g. the dimerized
structure of (CH), ) and = 1, while for the incommen-
surate case n = 0. This difference can be traced to the
extra contribution of umklapp terms near the commen-
surate condition. Note that for n = 0 the Hamiltonian is
identical to that studied by TLM.

The equations of motion of the single-particle wave
function (indices: ““I” level, “s”” spin) take the form

I ~
—wrg);uz,s(xH A (), = ey 4(x)

(4a)

.9 ~
zs 5; vl.s(x) + A(x)ul,s = elvl,s(x)

where A(x) = A(x) + 1A% (x), (4b)

Summing on occupied states, the variation of H
with respect of A yields the self-consistency condition

AMPLITUDE SOLITONS IN INCOMMENSURATE PEIERLS SYSTEMS

Vol. 34, No. 12
Z(x) = _Aﬂvf z (u:lk,svl,s + 77“1,37)7,3) . (5)
l,s

Equation (4) is identical in form to that given by TLM
[their equation (7)]; however their consistency condition
[their equation (8)] corresponds to the incommensurate
case with = 0. Thus, the mathematical analysis of TLM
can be taken over exactly to the incommensurate case,
and the amplitude soliton thus found leads to the bound
state

up(x) = ivp(x) = (Aif4v7)"* sech (Apx/vy), (6a)
A(x) = A; tanh (Apx/vy), (6b)
A; = We™ W = A = real. (6¢)

Here W is the nominal band width and A; is the incom-
mensurate case Peierls gap. The excitation energy of this
state relative to the ground state as calculated by TLM is
(2/m)A;, and the consistency condition, equation (5) can
be satisfied with A, real only for the neutral soliton.
That is, if the bound state is singly occupied with either
spin then the sum over band states just cancels the
imaginary term [u}(x)v, (x)]. Multiply occupied, charged,
solitons cannot be described by equations (6) in this
incommensurate case. Instead, A must be complex, con-
sistent with the known result that excess charge density
may be defined by the gradient of the phase of the order
parameter of in an incommensurate Peierls condensate
with | A] = constant.

Consistency in the dimerized commensurate case is
more straightforward;n = 1 in equation (4b) implies
A(x) is manifestly real and the TLM soliton solutions
are valid for occupancies 0, 1, 2 corresponding to charges
+ e, 0, — e and spin 0, 4, O respectively (within the pres-
ent one-electron approximation, which may be quite
good if the soliton state is rather spread out). The (real)
ion displacements are directly proportional to AGY-1)"
[by substitution in equation (2)]; the bound state has
the form A, tanh (x/I) where

a, = we?h, (N
This gap is larger than that of the incommensurate case
by the factor (e'/2*). These results are, of course, just
those of SSH.

Summarizing briefly, we envisage several types of
excitations: charged or neutral gap-solitons in dimerized
commensurate materials, and neutral gap-solitons (mag-
netically active). Charged phase solitons may be in-
duced in an incommensurate Peierls chain by an
additional periodic field [5,9].

The possibility of neutral solitons in dimerized poly-
acetylene has been discussed extensively [10]. However,
the experimental consequences of neutral amplitude
solitons in an incommensurate CDW system such as
TTF—~TCNQ have not yet been explored. The existence
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of such neutral spin 4 excitations would lead to a contri-
bution to the paramagnetic susceptibility of the form

X = Ny(Twh/kT (®)

per chain of unit length where N,(7") is the number of

thermally excited amplitude solitons given by
o 2

N,(T)= —exp (— — A/kT) )
a T

where a is the lattice constant and o is an entropy

factor. Including the number of chains per unit area, the
molar susceptibility is written.

x = NGB/KT) exp [—%(;A-T-)]

where N is Avogadro’s number.

The circumstantial evidence in support of the idea
of neutral paramagnetic solitons in the low temperature
semiconducting phase of TTF—TCNQ is interesting.
Schultz and Craven [11] review the experimental evi-
dence on conductivity and magnetic susceptibility, par-
ticularly in the range 10K < T < 39K where ordering in
the low temperature phase is complete. Studies of (TTF—
TSeF) TNCQ alloys [11—14] have been particularly
useful in establishing that the TTF chains dominate the
low temperature electronic properties. In the low-
temperature regime, the conductivity is activated with
A =4E,=200125K [11]. On the other hand, the
magnetic susceptibility, which is dominated by the TTF
chains, has a smaller activation energy measured by vari-
ous groups to be 125 [13], 140 [15] and 150K [14b].
Taking the view that the conductivity has activation
energy A; and that the magnetic susceptibility is due to
neutral paramagnetic solitons with activation energy
(2/m)4;, one would expect a magnetic activation energy
of 127K, in tempting agreement with experiment. More-
over, the absolute magnitude of the measured suscepti-
bility is in agreement with the prefactor of equation (10).
On the other hand, the susceptibility from band
‘excitations would have a prefactor smaller by a factor
of order (2A/W) ~ 107% for TTF—TCNQ. We note that
the neutral magnetic solitons would have a half-width
of I ~hvp/A ~ 304, and being extended objects might
be quite mobile.

A number of additional theoretical and experimental
factors must be considered to clarify the possible role of
neutral soliton excitations in the incommensurate CDW
states of the quasi-1d charge transfer salts. The model
presented above represents a single chain. While the
amplitude soliton under consideration is both globally
and locally neutral (SSH), the moment of the local charge
distribution changes sign between opposite sides of the
soliton. Thus, interchain effects must be given serious
consideration. Indeed, the need for broader considerations
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is required by the experimental results on

(TTF -, TSeF . XTCNQ) alloys; the experiments show
that in TSeF—TCNQ, Acona = Amag- However, it is also
true that the low-temperature ordering is different
(period of 44 for TTF—TCNQ and 2« for TSeF—TCNQ)
and the local fields therefore must differ [16].

We recognize the need for addressing analytically
such further properties as interchain effects, soliton
interactions, multiple soliton states, and the energetics
of phase vs. amplitude solitons in incommensurate
systems; however, for now we prefer simply to air the
main idea of amplitude solitons in incommensurate
materials.
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NOTE ADDED IN PROOF

Dr. S. Brazowski, (Landau Institute of Theoretical
Physics, USSR) has called our attention to his work on
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this subject. In an earlier paper, JETP Lett. [Sov. Phys.
JETP Lett. 606 (1979)], he discusses tight-binding
polarons in the Peierls state and shows that in the
Frohlich model an amplitude soliton solution, with
zero charge and spin } is obtained; its energy is dif-
ferent from ours, being at the middle of the gap (rather
than 2/m of the gap). In a subsequent paper JETP 78,
677 (1980) he provides extensive further discussion
and addresses interchain effects. He addresses the
consequences for optical, electrical, and magnetic
properties. In the main his views coincide with ours, and
we are happy to acknowledge his prior work on this
problem.



