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Results for the influence of electron—phonon interaction on the cyclotron
effective mass and the resonance linewidth in a two-dimensional electron
gas are presented. The temperature and magnetic field dependence is
studied and the existence of quantum oscillations is demonstrated. It is
shown that the relevant phonon frequency in typical MOS inversion layers
is very small so that magneto-transport properties are temperature depen-
dent even at a few degrees Kelvin. Results are consistent with the observed
temperature, magnetic field and frequency dependence in Si(100) inver-

sion layers.

THE AIM OF THIS PAPER is to present some results
and considerations of the influence of electron—phonon
interaction on the magneto-optic properties of two-
dimensional electron gases. Experimental realization
and study [1] of two-dimensional charged gases has
been found mostly in the inversion/accumulation layers
created in the semiconductor at the semiconductor—
oxide interface of a metal—-oxide—semiconductor
(MOS) sandwich. Most such studies are based on inver-
sion layers in silicon, although a few isolated studies on
compound semiconductors have also been reported. It
has been noted that the ability to continuously vary the
carrier density, along with usual parameters like
temperature, applied magnetic field, etc. affords a
rather unique opportunity for the study of basic inter-
action phenomena in two dimensions. However, the
knowledge gained from such studies depends, amongst
other things, upon the use of appropriate theoretical
formulation for the interpretation of the particular
experiment [2]. Of the two basic interactions intrinsic
to such a system, namely electron—electron and
electron—phonon, a considerable emphasis has been
placed upon studies involving only the former, to the
neglect of the latter. To a large extent this has been
motivated by the expected and claimed dominance of
the e—e interaction over the electron—phonon inter-
action in silicon inversion layers, although no definitive
evidence for this has been presented. On the contrary,
extensions of certain well known results of Fermi liquid
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theory from three to two dimensions, when applied [3]
to inversion layers in the appropriate range of their
applicability, prove sufficient reasons to suspect signi-
ficant e—ph contributions. For the compound semi-
conductors it has been argued by one of us that the
polar nature of the materials suggests, a priori, a stronger
electron—phonon coupling in the inversion/accumulation
region. In addition, very low values of 7, indicate insigni-
ficant e—e interaction effects. In either case, a realistic
understanding of the e—ph effects, small or large,
requires a meaningful and realistic investigation of its
influence and distinguishing features.

With this aim, in this paper we consider the simplest
model — a single parabolic 2-dimensional electron band
interacting with bulk phonons in the presence of static
magnetic field applied normal to the plane of the elec-
tron gas. Even for this simplest of all situations, the
results presented here are the first and reveal significant
dependences on temperature, magnetic field, etc. The
particular results obtained are the position of the main
cyclotron resonance peak, as well as its linewidth. The
density, temperature and magnetic field dependence of
both is investigated. In contrast to popular belief, but
consistent with relevant experiments, it is shown that
significant temperature dependence can be present at
very low temperatures since the frequency of relevant
acoustic phonons is of the order of a few degrees Kelvin.
It is also found that in the regime where the intrinsic
Landau level width is dominated by short ranged
impurity scatters, the cyclotron resonance linewidth due
to such phonons has a temperature dependent com-
ponent which shows a +/H dependence on the magnetic
field. This remarkably unexpected result further
strengthens our suggestions regarding the relevance of
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electron—phonon interactions in inversion layers by pro-
viding both, temperature and magnetic field dependence
of the linewidth in conformity with relevant data.

The effective mass appearing in the main cyclotron
resonance is found to have a leading order enhancement
given by a dimensionless electron—phonon coupling
strength, confirming an earlier suggestion [3] made by
one of us on the basis of the analogy with the result of
Fermi liquid theory in three dimensions. However, of
equal significance is the appearance of quantum oscil-
lations caused by the Fermi energy passing through
various Landau levels as the magnetic field is varied.
Finally, the effective mass is found to increase with tem-
perature in agreement with relevant experiments.

We consider a two-dimensional electron gas with a
parabolic band and in a perpendicular magnetic field H
interacting with phonons, the system being characterized
by the Hamiltonian,
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The first term describes free electrons in a magnetic
field with a wavefunction [4] e u, (x + kI?), where
1= ch/eH and u,, is the harmonic oscillator eigenfunc-
tion. The free electron energies are hw.(n + §) where,
wg = (eH/myc), is the bare cyclotron frequency and
my, the band effective mass. The energies are indepen-
dent of k, leading to a degeneracy of (1/nl?). The
second and third terms correspond to bulk phonons and
their interaction with the electrons. For typical inversion
layers the electron wavefunction in the z direction is
spread over many lattice constants; thus we expect the
bulk phonons with small g, momentum to couple
strongly with the electrons. The interacting phonons are
then effectively 2-D with the coupling constant

Lamm = £(Q) f dxup(x) €EH Dy (x—g,1%) (2)

where g(q) is the electron—phonon coupling when elec-
trons are represented by plane waves. For bulk-like
phonons [5], |g41% = ¢ so that we can define a dimen-
sionless coupling A by

_ lg@? _ le@?(m
N = T NEr) = _G,(") 3)

where (m/n) is the density of states for a free 2-D elec-
tron gas. Note that the phase space reduction, restricting
phonons to have small g, yields a smaller A for the same
£(q) than the corresponding A in 3-D systems. Utilizing
the deformation potential of bulk silicon and
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incorporating the finite extension of the electron wave
function in the z direction as discussed in [5], we esti-
mate X to be of order 0.03. Using the Laguerre poly-
nomials, Z 7 (x), the coupling (for n' > n) can be
written as [6]

) Anw, n! . -
|&q,nm i = _m__q_’_zl_'(%qzlz)n "Znm 3PP’

x exp (—3q21%). @)

From this relation we can obtain useful information
about the relevant phonons. For a magnetic field of
H~ 7T, (as in the typical experiment [7-9])7~ 100A.
Thus the exponential factor in equation (4) is extremely
small unless ¢ < (v/2/1). The prefactor in equation (4)
shifts the important g to higher values. This is significant
if n near the Fermi level is high, e.g. in 3-D systems

n ~ 103 and all the phonons must be considered. How-
ever, for typical inversion layers with electron density of
n; ~ 102 cm~2, only a few Landau levels are filled

(~ 2 levels for H~ 7T, my, = 0.2 x electron mass). In
this situation the exponent in equation (4) dominates
and the important phonons have frequency ~ wy, where
wg = V,\/2/1. Typically, therefore the temperature
dependence associated with the excitation of these
phonons should be observable down to temperatures of
a few degrees.

As a specific example of these considerations we
evaluate the cyclotron mass and linewidth to lowest
order in A. A straightforward perturbation theory gives
divergent terms at w = w, and one has to sum infinite
series. Instead, we use the memory function technique
[10] which is equivalent to summation of these infinite
series, although it involves just the lowest order pertur-
bation calculation. The current operator is,

J, = (Jx+i-]y) = i\/(zmwc) Z \/(n + l)c;ﬂ.kcn,k,

nk

%)
and J. = J. The conductivity, which is related to the
J_,J, correlation function, is written in the form
2iNe? 1
—m— w—w,+M_(w,HT)

o_fw,H,T) = (6)
For w # w, one can expand with respect to M and
identify it to a given order in perturbation theory.
However the form (6) has the correct resonance struc-
ture even at w, provided M is a well behaved function at
w,. Therefore if M_,(w) from low order perturbation
theory is well behaved at w = w,, one can assume
analytic continuation and use M_,(w,) in equation (6).
We proceed to evaluate M_,(w) to first order in A by
using the equation of motion procedure [10]. We
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obtain

M_(w,HT) = EYV:n_w [¢p_s(@)—d_(w =0)] (7)

where
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f(n) is the Fermi function at energy tw,(n + 1/2), and
N(wyg) is the Bose function.

In general the renormalized cyclotron frequency
we is given by the pole of equation (6). However if the
frequency dependent M_.(w) is used to solve for the
pole, w; will include higher order terms in A which are
beyond the validity of our approximations. Consequently
we evaluate w, = w, — Re M(w,). Note that for
impurity scattering {10—12] the result is similar to
equation (8) except that in the denominator w, is
replaced by zero. In that case M_,(w) is not well
behaved at w = w, and the memorv function technique
is not useful; direct summation of perturbation series is
necessary [11]. The acoustic phonon dispersion provides
a continuum energy variable in equation (8) so that
M_(w,) is well behaved at w,.

We evaluate w: for temperatures wo € T <€ w,, 50
that the Fermi factors are temperature independent,
while N(wg) = (T/w,) since the important phonons
have wg < wy. Also, since typically w, ~ 10 to 40K and
wq ~ 25K, the assumed range of temperatures covers
most of the relevant experimental temperatures.
Neglecting terms with (wq/w,) € 1, we obtain,

mey\ _ _ fON—F®) , 2T
(m;)—{1+)\[1 Qv+1) » 10 +wc

f(©)
X (l -1 v+f(v))]}

where v is the number of filled Landau levels, and the
Fermi level lies near the (v + 1) level: (the electron den-
sity is N = g,(v + f ()] (mw, /) where g, is the valley
degeneracy). For T < w, the temperature dependence
departs from linearity due to the low temperature
phonon occupation function. At T = 0, the last term in
equation (9) goes to zero.

Consider next the width, T§#', of the cyclotron
resonance. The summation in equation (8) corresponds
to sharp Landau levels. Therefore, when w = w,, the
imaginary part restricts w, to be a non-zero multiple of
w, yielding a very small contribution

®
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[~ exp (— w,/wo)?]. However, if we assume that the
contributions of the electron—phonon and electron-
impurity interactions lead to additive corrections for
M(w) (this is correct [10] to leading order in An;,
where n; is the impurity concentration) then the
impurity contribution to the resonance width is given
by the previous calculations [11], while the electron—
phonon effect includes corrections due to impurities
(leading to a Landau level width of ~ I';) without the
impurity vertex corrections. Therefore we can define a
resonance width due to impurity correction, T ~ V2rg
[11] and use this width in the evaluation of M(c,). The
temperature dependent part of equation (9) does not
change when Iy is introduced (if 'y € w,). The e~ph
contribution to the resonance width for w, > T > wy,
T is then,

TRE = 2AT(w,/To) (10)
so that, the total resonance width is given by
Tres = TRES? + TREL - (1)

Thus the width is a linear function of temperature, down
to very low temperatures of a few degrees (~ w,). For

T < wy, it departs from linear dependence and saturates
at a value governed by the e-impurity scattering (and
e—e, if appropriate).

Equations (9) and (10) provide the density, tem-
perature and magnetic field dependence of the cyclotron
effective mass and resonance linewidth, respectively. The
cyclotron effective mass shows a leading order correc-
tion given by A. In analogy with the well known result of
the Fermi liquid theory in 3-dimensions, such a leading
order correction was predicted by one of us to occur in
two dimensions as well, and employed [3] to place an
upper bound on X via comparison with the observed
mass enhancement. The second and third terms inside
the square brackets reflect the corrections due to mag-
netic field and temperature dependence. These terms
involve the Fermi functions, thus giving rise to an oscil-
latory behavior (see Fig. 1) caused by the Landau levels
sweeping past the Fermi energy as the magnetic field is
varied. This is the analogue of the quantum oscillations
found for short ranged impurity scattering [11]. The
explicit temperature dependence is seen in the third
term and arises from the phonon occupation function.
The linear temperature dependence is a consequence of
the regime wq < T € w,. We note that the mass
enhancement due to phonons increases with temperature,
in conformity with the experiments [10]. It is worth
noting that in the same regime of temperatures, the
electron—impurity and electron—electron interactions
give no temperature dependence [12] while for higher
temperatures, the effective mass is found to decrease
with temperature, both features in contradiction to
relevant experiment [9].
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Fig. 1. The shift in the cyclotron mass in units of A
{equation (10) as a function of magnetic field for
various temperatures]. Note the increase with tempera-
ture, decrease with magnetic field (or external
frequency) and the quantum oscillations.

The magnetic field and temperature dependence of
the mass enhancement is shown in Fig. 1 for n, =
8 x 10'' cm~2, in units of the dimensionless electron—
phonon coupling strength, A. The quantum oscillations
show the largest variation at lower fields and high tem-
perature, the overall behavior being a gradual decrease in
the effective mass with increasing magnetic field at a
fixed temperature. The absolute magnitude of the vari-
ations in the effective mass are difficult to estimate in
the absence of either a reliable first principles model and
estimate of A, or of relevant and uncontroversial data
from which X\ may be extracted. However, the only two
[9, 13] reported data on the temperature dependent
linewidth are in agreement and may be employed to
obtain a first estimate of A.

The linewidth given by equation (11) is consistent
with the linear temperature dependence reported for
Si(100) inversion layers in references 9 and 13. The
total linewidth is found to be of the form w,(4 + BT),
with both 4 and B being essentially the same in both
the reported data for 8 < 7T"<45K. The observed
departure from linear temperature dependence for
T < 8 K is consistent with our estimated value of
wo ~ 6 K. To make a first estimate of A, we identify
the contribution (BT) with equation (10). We note
however that equation (10) involves a resonance width
I’y arising from e-impurity interaction, but without
vertex corrections. Though the resonance width
T'EAg® due to impurities is in general larger than the
resonance width 'y [11], taking the value (w.4)asa
lower bound on Ty, an estimate of A is possible from the
resonance linewidth. From the data, 4 = 0.15 and
B~75x1073%,sothatat n, =5 x 10" cm~2 and
we= 3.71 meV we find A = 0.026. Such a value of \ is
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in close agreement with the estimate based on bulk
deformation potential noted earlier. When employed in
equation (10), it gives a small temperature dependent
enhancement of the mass. This would be consistent
with the data of Kennedy et al., but, at face value,

not with the data of Kiilbeck and Kotthaus. However, a
value of T’y about three times larger would be sufficient
to explain the data of Kiilbeck and Kotthaus, if such a
significant mass enhancement were confirmed exper-
imentally. This could be the case if long range impurity
scattering is important, as is expected at low densities. In
this case T§A2P > Iy [11] and we cannot evaluate T,
from experimental data. However at higher densities

(2 10" cm~?) we expect 22 = I, and then one
can estimate A from both equations (11) and (9), yield-
ing a test on the present theory.

A significant feature of the linewidth expression,
equation (11), is its dependence on the magnetic field.
If ', were independent of the magnetic field, the line-
width contribution due to phonons would be propor-
tional to the magnetic field, H. However, the resonance
width caused by short ranged impurity scattering accord-
ing to Ando, is determined by the Landau level width,
which in turmn is proportional to /H. Hence in this
tegime the linewidth contribution due to phonons shall
also be proportional to v/H. Thus the observation of \/H
dependence of the resonance linewidth is completely
consistent with the phonon scattering in the presence of
short ranged impurity scattering. It is important to note
though that at n, <7 x 10" cm~2, the resonance line-
width shows departures from +/H behavior, thus indicat-
ing that indeed A >0.026 at n, =5 —7 x 10 cm™2.
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