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The unusual x-ray 'diffuse scattering in Zr-Nb alloys is explained in terms of lattice displace-

ments described by "stacking solitons. " These constitute a structural defect in columnar eo-phase

regions embedded in a bcc matrix. %e model this situation as a one-dimensional system in

which a discrepancy between the ao and bcc lattice constants drives the formation of stacking sol-

itons. The density of these solitons depends on composition and temperature; in particular we

suggest a commensurate-incommensurate transition at -17-wt. % Nb, so that the ground state
of the higher-percent Nb alloys contains a static array of stacking solitons along the ao-phase

column. The dynamics of such configurations is consistent with the very narrow (quasielastic)
inelastic scattering observed in these alloys and has the character of a "central peak. "

I. INTRODUCTION

Quasielastic scattering appears as a percursor of
many structural phase transitions. ' This scattering
is of great interest because it arises from the growing
short-range order which eventually produces the
phase transition; insight into the origin of the quasie-
lastic scattering therefore is insight into the micros-
copic processes or mechanisms by which the ordering
takes place.

l3isplacive structural transitions are particularly in-
teresting in Zr-Nb alloys. The'se alloys transform
from a bcc (P) into a hcp structure below -610'C.
However, when alloys with 5-30-wt. % Nb are
quenched from their high-temperature bcc phase into
room temperature, regions of the so-called n~ phase"
appear, imbedded in a bcc matrix. The eo phase is a
trigonal modification obtained from a bcc structure by
adding a displacement modulation with a wave vector
qp = (1, 1, 1) (2n /3 a) (Fig. 1).

The co structure has been studied extensively by
neutron, electron, ' x-ray and Mossbauer tech-
niques. The interesting features of the experimental
data are the following: (a) As Nb concentration in-
creases the co-phase reflections become more diffuse
and tend to elongate perpendicular to one of the
[111]directions. (b) In the 5—15-wt. %-Nb alloys the
te reflections appear at (or very close to) the expected
positions of the ao structure, while in the 20—30-wt. %
Nb the diffuse peaks are shifted away from these po-
sitions. This suggests some kind of transition at
about 17-wt. % Nb. (c) As temperature is lowered to
-5'K the peak position of the 30-wt. % alloy is hard-
ly affected, while the peak shift in the 20-wt. % alloy
becomes somewhat smaller. 9 (d) The diffuse peaks
are elastic within 3 & 10 p eV (at roam temperature). '

The shape of the re-phase reflections [feature (a)]

shows that the e phase appears in rod-shaped clus-
ters" along the [ill] (P) direction. Thus we as-
sume that the re clusters are one-dimensional (1D)
objects which interact with the surrounding P matrix.
We do not use a microscopic theory for the i3-re tran-
sition. Instead we assume that the eo phase prefers a
smaller lattice parameter than that of the P phase. It
will turn out that this information is enough to co'n-

struct an effective Hamiltonian for an appropriate
phase variable in terms of which the scattering can be
explained. This effective Hamiltonian leads to the
well-known nonlinear soliton solutions' "which we
call here stacking solitons. We then show that stack-
ing solitons are stabilized if the discrepancy 8 in the
lattice constants is larger than some S„and then the
ground state is an array of solitons. Thus for 8 & 8,
the P and rp phase are commensurate; while for
8 & 8, they are incommensurate.

The idea of the soliton array or soliton lattice has
been used previously to describe dislocations' and
commensurate-incommensurate transitions of

. charge-density waves. ' The appearance of these soli-
tons is a phase transition in the ground state of the
system. "A study of the thermodynamics of soli-
tons" shows that at finite temperature there is no
sharp transition, as expected in a 1D system.

In general, the interaction of two incommensurate
structures tends to form solitons. ' " In our model
these two structures are the r» and P phases; thus the
model is relevant to the nucleation process, i.e., the
disordered phase above some transition temperature.

We begin in- Sec. II by reviewing in more detail the
experimental data and discussing a (soliton) type of
defect proposed by Boric, Sass, and Andreassen"
(BSA). The BSA defect was given as an ad hoc ex-
planation of the x-ray data, with no physical basis. In
Sec. III we derive the effective Hamiltonian which
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yields diNerent structural defects —the stacking soli-
tons (Fig. 2). In Sec. IV we discuss the correspon-
dence between our theory and the experimental data.
We suggest that the critical discrepancy of lattice con-
stants happens at -17-wt. % Nb, namely, this is the
critical concentration for a commensurate-
incommensurate transition. " In Sec. IV we discuss
the nontrivial eff'ect of finite temperatures" and sug-
gest a few experiments which can prove (or disprove)
the present theory.

II. ro PHASE

In this section, we review the experimental data on
the cv phase and the meaning of the proposed BSA
defect. " Unless otherwise specified, all data
correspond to room temperature.

The cu phase can be described by considering the
(111) planes of the bcc lattice, which form a se-
quence of the type ABCABCA (Fig. 1). The A-

A separation is the nearest-neighbor distance in the
bcc 3a, where a is the nearest (111)-plane distance in
the bcc. The eo~ subvariant" is formed by collapsing
the 8-C planes towards their midplane while the A

planes remain unshifted. The co2 and cuq subvariants
are formed by retaining the 8 or C planes, respective-
ly, and collapsing the other pairs of planes.

The ao structure correspohds to a longitudinal dis-
placement modulation in the [111]direction of the
form u sin(& m n + $), where n indexes the (ill)
planes and P =0, , n, ~

—n for the three possible sub-2 4

variants. In the ideal au phase u = u —= a/v 3 and

pairs of planes are fully collapsed to form an hexago-
nal structure. For a partial collapse u ( u and the
structure is trigonal.

Analysis of the ~ reflection intensities6 shows that
u is close to u for the S-wt. % alloy, decreases to
—2u for the 20-wt. % alloy, and remains ——2u for

1 1

the 30-wt. % alloy. This may be related to the change
of behavior at the -17-wt. % alloy; at this concentra-
tion a sharp anomaly in hardness measurements is
also seen. '

The ao regions can nucleate in four variants along
each of the four equivalent bcc [111]axes; thus, it is
natural to use hexagonal notation6 with the [001] axis
is along say [111](P). For reciprocal-space wave
vectors (0, O, k) (in units of 2m/a) the P peaks are at
(0, 0, 3m) while ao scatters at the additional
(0, 0, 3m + 1) points (m is an integer). The P peaks
are much stronger and sharper than the eo peaks,
hence the ~ phase is formed of clusters imbedded
within a bcc matrix. The scattering regions in re-
ciprocal space tend to elongate perpendicular to the
[001] axis and this tendency is more pronounced as
the Nb concentration is increased; this indicates rod-
shaped eo clusters with their long dimension parallel
to the [001] axis. Indeed the rod-shaped co clusters
have been seen by direct imaging of electron scatter-
ing, even on the S-wt. % alloy. Thus, we concentrate
on the scattering data along (0, O, k) as they contain
most of the relevant information.

The shift in position of the ~ peak from the ex-
pected (0, 0, 3m + 1) points is an extremely important
feature. In the 5—12-wt. % alloys the co reflections

30

A

FIG. 1. bcc structure viewed along its (111]direction. For convenience the [111]axis is expanded by a factor of 3 relative
to the perpendicular axes. The nearest-neighbor distance is 3a. The ~ phase is obtained by collapsing planes B, C, while planes
A are unshifted.
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are at the. expected positions, i.e., commensurate with
the P reference lattice. In the 15-wt. % alloy the
peaks shift very slightly, while in the 20 and 30-wt. %
alloys the diffuse peaks are shifted considerably.
Furthermore, the (0,0,2) and (0,0,5) peaks are shift-
ed to lower wave vectors while the (0,0,1) peak is
shifted to a higher wave vector. Unfortunately, the
(0,0,4) peak is not visible due to the particular value
of u, u =

2
u . The shifts correspond to an increase

of the a& wave vector (or distance from nearest P
point) from q0=2vr/3a to qo+Sk, where
Sk/qo = 4%—6%. Thus Sk measures the incommen-
surability from the P lattice.

Now x-ray studies on the 20- and 30-wt. % alloys9
show that lowering the temperature to -5'K does
not change the general shape of the diffuse scattering
and the P-cu transition remains uncompleted. Furth-
ermore, the peak shift of the 30-wt. % alloy does not
change, while the peak shift of the 20-wt. % alloy is
somewhat reduced but it is definitely present even at
5'K. This indicates that the cause of these peak
shifts must be intrinsic to the T =0 ground state. An
additional clue is provided by the BSA analysis. "
They found that the correct shifts in the diffuse
scattering can be reproduced only if a very particular
sequence of subvariants ~~, co3, co2, coi, exists
along the cu cluster [Fig. 2(a)]. If the positions of the
(111)planes are described by

x„-na + u sin(qona + Q„)

then as n increases the BSA defect sequence implies
that Q„jumps by +

3
m from one subvariant to the

next. Solitons (or kinks) are configurations which in-

terpolate between degenerate ground states. "'
Since subvariants are degenerate ground states a
jump in $„which shifts the displacement pattern may
be thought of as a soliton. ' An antisoliton, which
would vary locally from 0 to —~m is not compatible

with the BSA sequence. In fact, the form (1) implies
immediately that a monotonically increasing function

@„leads to a local wave vector which is larger than

qo, and this leads immediately to the observed shifts
in the diffuse peak positions.

The BSA sequence was developed as an ad hoc ex-
planation for the shifts in the diffuse peaks. This se-
quence, viewed as a soliton, is a proper excitation
mode, however, it is not acceptable here for the fol-
lowing reasons: (a) individual solitons can be ther-.
mally excited but are not a property of the ground
state. This contradicts the experiment. (b) There is

no reason for the system to prefer solitons to antisol-
itons; if present in equal numbers the peaks would
not be shifted. This also contradicts experiment and
the BSA model.

It was suggested by Cook" that the bcc instability
is associated with a phonon mode whose wave vector
q differs from qo, Such a modulation q is incom-

(a) (b)

FIG. 2. Defects in an ~-phase cluster embedded in the
bcc (111)planes. (a) The BSA structure (Ref. 13)
representing a defect in the modulation pattern. (b) The
stacking soliton-the co modulation pattern is maintained but

there is a local-density defect. Note that away from the de-

fects the structures (a) and (b) are in exact registry. Hence
the structure factors of (a) and (b) are very similar.

mensurate with the lattice and solitons could result. '

However, the Mossbauer spectroscopy ' shows that
the inelastic scattering is centered at the exact eo posi-
tions, although the elastic portion is shifted from
these positions. Therefore the phonon intensity is
centered at qo and not at q .

In the present theory we concentrate on static
properties —we are going to assume that the co cluster
tends to have a smaller lattice constant than the P
matrix so that the P-cu interphase interaction stabil-
izes the stacking soliton array [Fig. 2(b)]. Let us
now present some indirect evidence that this assump-
tion is correct.

When the ideal co phase is formed, the nearest-
neighbor distance (within the collapsed planes) be-
comes smaller by a factor of 48/9 =0.94. Therefore
it is plausible that the A-A distance in the co phase
will become smaller too.

Structures with smaller lattice separations are
favored by applying pressure. This is indeed the case
of the co phase: Under high pressure, pure Zr (hcp
phase) transforms into the ru phase. " On release of
pressure the co phase persists at room temperature,
and is denser than the hcp phase.

The Nb atoms are smaller than. the Zr atoms and
therefore act as a pressure source. This explains why
the cu clusters appear only above S-wt. % Nb concen-
tration: a finite pressure is needed to induce the co

phase. This also explains the formation of "aged" ao

phase': Aging of the alloys at -500'C leads to big
eo clusters with a fixed composition of 6—7-wt. % Nb,
while the composition of the P matrix is enriched
with Nb. The effect on the 20.7-wt. % alloy is quite
spectacular —the P phase is enriched up to 80—90-
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wtn% Nb. ' Thus quenched alloys with more than
-7-wt. % Nb have co clusters with excess amount of
Nb. This leads to excess pressure on the ~ cluster
and to a tendency of form a smaller lattice constant.

The effect of additional impurities was studied by
Buck et al. '8 They find that oxygen suppresses the co

formation temperature, while hydrogen raises it.
This is consistent with our theory —H atoms prefer
shorter bonds and help to nucleate the 0J clusters,
while 0 atoms prefer longer bonds, which are not
favored by the 0J phase.

III. STACKING SOLITONS

qoa =q]„a]„,
where

a(„= (x„~))—(x„)

and

qi.c qp+ (0 n+i=0'n)/aloe (3)

In this section we study a model 1D chain with a
natural lattice parameter a —5 nucleated in a matrix
with a lattice parameter a. In addition the chain is
formed from the matrix by a periodic displacement
modulation with a wave vector qp =2wr/a, where r is
a rational number. This is similar to a 1D epitaxy
problem' except that here the very existence of the
chain is due to an instability of the matrix. Thus the
change in the lattice parameter is intrinsic to the
phase transition, and must be described by the dis-
placement field itself-the "order parameter" of this
problem.

The average positions of the atoms in the chain are
specified by a sequence (x,) from which the displace-
ment modulation is defined. The values (x„) are not
necessarily separated by a —8, since the matrix
strains the chain and prefers values of (x„) separated
by a. The actual positions of the atoms are
x„= (x„)+ u„sin(qp (x„)+$„), and in general u„and
$„are position-dependent amplitude and phase of
the order parameter. Variations in the amplitude re-
quire usually more energy than phase variations, '

and therefore we now consider the simpler case
u„=const = u. In Sec. V we discuss the effects of
amplitude modulation,

The important physics is that variations in $„are
coupled to variations in the density. This is derived
from the identification of the local wave-vector with
the local lattice constant by the relationship

(x„)= na —qh„/qp,

ai-=a —(4.+i —4.)/qp .

(4)

The relation (5) between variations in the phase and
the local density in a continuum limit is well known
for charge density wave systems. ""From Eq. (4)
we obtain the following equivalent relations:

x„=na +u sin(qp(x„) +$„)—Q„/qp,

x„=na+u sin(2nrn) —P„/qp .

(6)

(7)

V(„k = cop'[I —cos(P„/r)] (8)

This form can also be obtained from a Landau free
energy expansion' with umklapp coupling to the sur-
rounding matrix; e.g., for r =

3 the order parameter

u exp(i (x„)2n/3a +i $„) to the third power is cou-
pled to the matrix potential with wave vector 2rr/a
and leads to an energy term -cos(3$„).

The competing phase dependent energy is the elas-
tic energy of the form
—,C[(x„+i)—(x„)—(a —8)]'/a'. Tlius we are led to

the following phase-dependent Hamiltonian

These results are diff'erent from the form (1). In
particular, a solution for P„which varies from 0 to
qpa leads to the BSA defect in Eq. (1) while in Eq.
(7) there is no defect in the modulation pattern; it is
the density which is modified locally (Fig. 2). This
demonstrates the physics behind Eq. (2): The phase
is locked to its own lattice, i.e., the chain, but may be
unlocked relative to the surrounding matrix. There-
fore, the BSA-type solitons are not allowed in this
scheme, but instead we can obtain "stacking solitons, "

that is, solitons in the phase of the chain relative to
the surrounding matrix.

If the transformed chain were free to have its own
lattice constant a —8, then Eq. (4) yields @„=qpn8
and x„=n (a —8) +u sin(2am). However, the sur-
rounding matrix tries to lock the chain into the lattice
periodicity a so that $„=aqpE = const, where E is an
integer. %e proceed now to show that the comprom-
ise between these competing forces is a soliton array,
as illustrated in Fig. 3(a).

The locking energy V~„k is a periodic function of
the shift (x„)—na with periodicity a. (The additional
shift u is omitted here since it contributes to the u

dependent energies. ) A simple form is

—cos[2 w((x„) —na)/a]

so that

Note that the modulation pattern is defined by r (for
the co phase r =—), and is independent of (x„).
Equation (2) means that this pattern on the chain is
indeed locked into its own lattice, in spite of possible
shifts in the positions (x„). Equations (2) and (3)
lead to

2 (P„+i —P„)'+cup (1 —cosp„)
N

C s
(AN 4 N)—

2m a
(9)
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(a)

(d)

FIG. 3. Soliton solutions for Eq. (10) where O„=3@„, (a) The soliton array in the continuum model. (b) The approxi-
mate potential of Eq. (11). (c) The actual positions which correspond to a stacking soliton, as described by Eqs. (7), (13), or

(17). The modulation pattern fu sin(3 mn)] is maintained but there is a local density increase fas in Fig. 2(b)3. (d) The locking

potential of the surrounding matrix as felt by the atoms in the chain (c).

where g„=$„/r. The eifects of time dependence are
discussed later.

In the last term of Eq. (9), P~ —P ~ is the phase
difference of the first and last atom in the chain and
measures the length change [Eq. (4)]. Therefore 8 is
identified as the pressure on the chain, and positive
pressure (S & 0) favors increasing solutions P„and
length contraction.

The Hamiltonian [Eq. (9)] can be derived directly
from Eq. (11) without identifying @„asa phase.
This actually has been done' and the resulting struc-
tures have beeri identified as dislocations. Our ap-
proach shows that changes in the lattice constant are
coupled intrinsically to the phase of a complex order
parameter and therefore the solutions of Eq. (9) ap-

pear in the nucleation process of a phase transition.
The equation of equilibrium for the phase field P is

4,+t + Q„-t —20„=(4tr rap/C) sing„. (10)

The continuum limit of this equation is the sine-
Gordon equation which has been extensively stu-
died io-&2, &5 The single soliton or antisoliton solu-
tions are P(x) =4tan '[exp(+x/I)], I =aJC/2trtpp,
and their variations from 0 to +2m are localized
around x =0 with a width of -2I. The energy of a
soliton (for 5=0) is 4rppJC/w, but the pressure
term reduces this energy by CS/a. Therefore, if 8 is
large enough, 8 & 8, where 8,/a =2a/m'I, solitons
appear in the ground state. Since solitons repel each
other the ground state is an infinite lattice of soli-
tons. 'p " (Clearly, if 8 (—5, an array of antisolitons

will appear. ) Thus we obtain a transition in the
ground-state properties of the chain. For ~8( & S,
there are no solitons and the phase is locked
P(X) =const, while for 8 & 5, a soliton lattice ap-
pears. As 8 grows the soliton density increases, until
for 8/8, ~~ the solitons merge into a line
g(X) =2m Sx/a' which is the free chain with its lat-
tice constant a —8.

The lock-in transition concept has been used to
describe transitions of charge-density waves from in-
commensurate to commensurate waves relative to the
lattice. " The wave vector of the density wave, ag
determined by the soliton density, approaches the lat-
tice wave vector as )8~ approaches 5, from above; at
8- 8, the solitons disappear and the density wave is
locked in.

In the case of charge-density waves a continuum
description is appropriate for the electron gas, while
here we have a discrete lattice for which the solution
is, in general, much more diScult. However, an ex-
plicit solution is available if the locking potential is
taken to be a periodic array of parabolas [Fig. 3(b)]

V~,a = 2 takeo r[tir„/2m —p, (g„)]

where p, (g„) =Int(g„/2tr+ —,) and Int(x) is the in-

teger nearest to x. The equation of motion is now

y„+t +y„,—2y„= (4w'rpp'/C) [y„—2rr p, (y„)]

(12)
The single-soliton solution has the form
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1 —lt /(I+X), n & np

/(I+A. ), n ~np
(13)

where h. & 1 solves X/(I —h.) 2 = C/(2n cop)
i

T. his
solution describes an increase of P„by 2n localized
near np In. terms of the positions (x„) the soliton
describes a contraction of the chain by one lattice
spacing a, the density increase is localized near np

[Fig. 3(c)]. The soliton energy (for 5 =0) is

E, = —,'C(I-))/(I+i) . (14)

IV. STACKING SOI.ITONS IN THK o) PHASE

As discussed in Sec. II, we consider the small Nb
atoms as the source of the pressure term in Eq. (9).
We assume that the randomly distributed Nb atoms
.lead to a homogeneous pressure which implies that
the eo cluster tends to have a smaller lattice constant.
As shown in Sec. III, above some critical pressure
stacking solitons exist in the ground state of the sys-
tem. The critical pressure corresponds to about 17-
wt. % Nb and explains the transition as Nb concentra-
tion is changed [feature (b)].

In the continuum limit, C && cop ol A, ~1, the sol-
iton is wide and the discontinuity in the derivative of
the potential Eq. (11) is felt more strongly. Howev-

er, even in this limit E, differs from the exact result
of the cosp„potential just by a factor of 8/n'; hence
the potential Eq. (11) is a good approximation for the
potential Eq. (8), at least for static solutions.

The pressure term in Eq. (9) reduces the soliton
energy by C5/a so that the soliton lattice is the
ground state of the chain for

5/a &-,'(I-i)/(I+i) =-5,/a .

Until now we discussed only static solutions. If we
add a term -(BP„/Bt)i to Eq. (9), in the continuum
limit the solitons can move with velocities up to the
sound velocity. This implies that the translation
mode has zero frequency and the oscillations of the
soliton lattice form a band with frequencies ~0."
This band is narrow if the density of solitons is low,
namely, 5(&5,) is close to 5,.

The solitons of the discrete problem (with a well-

behaved potential) are free to move only if C/cop2 is
not too small, and solitons which are too narrow re-
lative to the lattice spacing are locked and their trans-
lation requires a finite energy. Hence the excitation
spectrum begins at some finite frequency.

In Sec. IV, we show that the solitons in the co

phase are very narrow and therefore they form. a stat-
ic configuration. This is consistent with the experi-
mental feature (d): the extreme narrowness of the
quasielastic peak.

(O'N 4—N) ~

3C5
27K 0

(16)

For the potential Eq. (11) the single-soliton solu-
tion is

3@ I Ai /(1+X(), n & np+1
3+Ifp N (17)

/(I + Xt), n ~ np+ I

where X~ & 1 solves Xt'/(I —Xi') ~ = C/(6e ~p)'. This
solution is shown in Fig. 3(c). The energy of Eq.
(17) is

6
C(1 —, A&')/(I + h. ~') and therefore the condi-

tion for solitons in the ground state is

5/a & —,
' (I —X)')/(I+ X)') =5,/a (18)

The scattering intensity is given by

s(k) = Xe n Xekna 2

tf n

(19)

where the summation is on the planes in the cu clus-
ter and x„ is given by Eqs. (7) and (17). The last
term of Eq. (19) is the missing bcc scattering, and
the remainder —the ideal bcc scattering —is not
relevant to the.diffuse scattering. The solitons are as-
sumed to be far apart compared to their width

(5 = 5,) so that the many-soliton solution consists of
the single-soliton solutions [Eq. (17)] at the appropri-
ate positions. Equation (19) is plotted in Figs. 4 and

5 for A, l =0.2, u =
2 u, and M =0, 1, 2 solitons in an.

co cluster with 40 planes.
Since the phase appears in Eq. (6) in two places

there are two types of peak shifts. For a soliton (in-
creasing function @„)the local wave vector [Eq. (3)]

We proceed now to evaluate the diffuse scattering
from the high-percent Nb alloys. In order to apply
the theory of Sec. III we make some additional ap-
proximations: (a) the ~ cluster is long enough com-
pared with the lattice constant and the soliton width.
Therefore, the effects of the end atoms on the ampli-
tude u and the soliton solution can be neglected. The
parameters which we obtain below [in Figs. 4 and 5]
justify this approximation. (b) Each plane within the
co cluster consists of a small and equal number of
atoms so that the locking potential is constant within
this plane and has the periodicity a [Fig. 3(d)]. This
is consistent with the observed rod-shaped co clus-
ter. The main elastic energy for atomic shifts along
the cluster is'between "third-nearest" planes since
these planes contain nearest-neighbor atoms along
the chain; (e.g. , see the A planes in Fig. 1). The
Hamiltonian Eq. (9) is then modified to

H =X,(y„„—y„)'+ V...„(34„)r ~
Se2
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90

60

30

0.88 0.94 l.06 I.l2 I. I8 ~k
FIG. 4. Scattering intensity of the (001) peak [Eq. (19)l. k is in units of qs 2rr/3=a, kt =0.2, u -—u~. The full curves

correspond to M =0, 1,2 solitops in a 40-plane ~ cluster. For M =1 the soliton is at the center of the. cluster and for M -2 the

soliton are at -4 and -4 of the cluster. The dashed line is an average with 25% M =0, 50% M=1, and 25'Yo M 2. The
1 3

side peaks are due to second harmonics and are noticeable due to the weak intensity of this reflection.

is larger than qp and the eo peak shifts away from the
nearest bcc reflection ("phase-shifted" peak). The
second effect leads to a locally smaller lattice constant
[Eq. (5)] and a shift of the te peaks away from the
origin in reciprocal space ("density-shifted" peaks).
For the (0,0,1) peak both shifts are in the same
direction and we expect a single peak as in Fig. 4.
Note that this peak is much weaker than the (002)
peak and side peaks due to second harmonics are no-
ticeable on this scale. For the (0,0,2) peak the two
effects lead to shifts in opposite directions as in Fig.
S. The soliton with A, ~

=0.2 is very narrow so that
the density change is limited to a small region; hence
the phase-shifted peak dominates in Fig. S. As X~ in-
creases the solitons become wider; the intensity of
the density-shifted peak grows while the phase-
shifted peak is diminished. In the limit X~ ~1
(rse2/C 0) the solution $„2rrn 5/3a describes a
free co cluster with density-shifted peaks at
2m n/3(a —8) and no phase-shifted peaks.

Experimentally the (0,0,2) peak is shifted down
which implies that the phase-shifted peak dominates
and the soliton is narrow. Also the experimental
peak is slightly asymmetric but there are no addition-
al peaks. Therefore, we assume that. the various co

clusters (for a given % Nb alloy) contain different
number of solitons. As shown by the dashed curve
in Fig. S the phase-shifted peaks add up while the

density-shifted peaks are smeared and the net result
is an asymmetric peak. Further reduction in the
value of A. ~ reduces the amount of asymmetry.

Our results for the diffuse peaks at the bcc
reflection points (0, 0, 3n) with )tt -0.2 give a sym-
metric peak centered around the exact bcc point. For
these reflections there is no phase shifting while the
density-shifted peak is very small for A. ~ 0.2. For a
larger value of A.~ the solitons are wider and a density
shifted peak appears above the bcc reflection points.

The shift in the (002) peak can also be explained
by antisolitons which appear in the ground state for
S &—S,. Then a wide antisoliton, which tends to
have a lattice parameter a + ~5(, yields a dominant
density-shifted peak in the right direction. This
seems to be a feature of another proposed defect of
the co cluster. s t3 However, in this case the (001)
peak would also shift down and an additional peak
below the bcc reflections ~ould appear. Both of
these features do not agree with the experimental
data.

In conclusion the main features of the x-ray diffuse
scattering are explained by a narro~ soliton structure.
In fact, this structure is almost the same as the BSA
defect except for one additional plane (see Fig. 2).
This difference has a small effect on the scattering in-
tensity and therefore both structures yield similarly
good fits to the experimental data.
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FIG. 5. Same as Fig. 4 for the (002) peak. The peaks to the left are "phase shifted, " while those to the right are "density

shifted. " For a smaller A.
&

the density-shifted peaks become even smaller compared to the phase-shifted peaks. The average

dashed curve shows that the average cluster behavior in a given alloy can lead to a single asymmetric peak.

V. DISCUSSION

The theory presented in this work is able to ac-
count for the experimental features of the co phase,
as presented in Sec. I, in terms of stacking solitons.
The low-'lo Nb alloys have rather long rod shaped eo

clusters so that parallel clusters can be correlated
by clusters of other (111) (P) variants and the
scattering appears to be three-dimensional (3D). As
the Nb concentration increases the clusters become
shorter, ' although their diameter hardly changes. '
Hence the clusters become less correlated and the
scattering appears to be more 1D—elongated perpen-
dicular to the [111](P) axis. The rod-shaped ao clus-
ters, which exist in all the quenched alloys, are the
basis for our 1D theory.

The theory assumes that the m clusters tend to
have a smaller lattice constant than that of the P ma-
trix. If the difference 8 in the lattice constants is too
small the cu cluster is completely locked into the P
matrix and there are no solitons. This corresponds to
the low-percent Nb alloys. If 5 is large enough soli-
tons appear in the ground state, partially unlocking
the co cluster from the P matrix. This corresponds to
the high-percent Nb alloys and explains their shifted
cu peaks. Thus we view the transition of -17-wt. %
Nb as a commensurate-incommensurate transition. '

The critical value g, /a from Eq. (18) with h.
&
=0.2

is -16%. This is an overestimate since we did not
consider variations in the displacement amplitude u
and the soliton transverse shifts (three-dimensional
(3D) effects). These are additional degrees of free-
dom which by readjusting lead to a lower soliton en-
ergy and therefore a lower critical 5,. For example,
the locking energy ——u'cos3$ is minimized at u )0
and 3$ =2nK, where lt is an integer. As $ = $„de-
viates from this minimum in the soliton region, the
increase in the locking energy is reduced by a smaller
u. Thus the soliton involves a phase change and a lo-
cal reduction in the amplitude. This is a general
feature of the coupled phase-amplitude problem. "

The phase-amplitude coupling affects the modulat-
ed planes (planes B,C in Fig. 1) so that most of the
soliton energy involves the unmodulated planes
(planes A in Fig. 1). Therefore, the soliton energy
may be reduced by a factor of —

—, and we estimate1

the critical difference in lattice constants to be
g, /a =5%.

A quantitative theory should be a 3D theory of a
coupled amplitude-phase problem. However, the
results for the diffuse scattering are insensitive to the
details of the soliton shape. Using Eq. (13) or the
continuum solution instead of Eq. (17) yields similar
scattering intensities. Therefore, the theory is quali-
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tatively correct, and enables us to account for the
shift in the diffuse scattering.

The stacking solitons are presented in Sec. III as a
ground-state property of the system. In order to
study the finite temperature behavior we assume that
the amplitude u depends weakly on temperature,
which is consistent. with experiment. 9 Therefore, the
coefficients in the effective Hamiltonian Eq. (9) are
assumed to be constants, and the main temperature
dependence comes from the 1/T factor in the parti-
tion function. (This is quite different from the tem-
perature dependence in Ref. 12; there the T =0 solu-
tion is used with the parameter 5/E, changing with
temperature. )

In general, we expect the soliton density to be a
sensitive function of temperature for 5 —8,. In this
case the interaction between solitons is weak and the
net energy for creation or annihilation of a soliton is
close to zero. This temperature dependence has been
evaluated for the continuum model. " At T =O'K
the soliton density p(5) jumps from p =0 at 5 = 5,
with infinite slope, while for T A 0'K, p increases
from 5 =0 and is analytic for all 5. This reflects the
fact that there are no sharp transitions in 1D systems
for T WO'K.

The temperature effect can explain why the transi-
tion as Nb concentration changes is not sharp, and
we expect it to sharpen up at low temperatures. Thus
we expect that the slight peak shift of the 1S-wt. % al-

loy will disappear at low temperatures. The alloy with
-17-wt. % should be the most-sensitive to tempera-
ture changes. The 20-wt. % alloy has 5 close to 5,
and therefore its peak shift changes with temperature.
The 30-+t. % alloy has 8 far from 8, and its peak
shift should depend weakly on temperature. These
results for' the 20 and 30-wt. % alloys were indeed
seen in a recent experiment.

The'proposed solitons are very narrow and then
the discrete'ness of the problem lead's to a static
configuration. o This explains the last of the experi-
mental features, as presented in Sec. I.

In order to prove our assumption about the lattice
constant of the co cluster one should find a direct p-m
transition. This transition occurs upon aging, as dis-
cussed in Sec. II, but this"process involves Nb
diffusion from the m phase into the P phase. The ex.
cess Nb atoms in the co clusters of the quenched al-

loys is the source of the pressure and the tendency to
form a smaller lattice constant. Therefore, one
should look for a P ru transiti-on without changes in
the ~ phase composition.

We therefore suggest the following experiment:
Apply high pressure on the quenched Zr-Nb alloys at
room temperature and then release the pressure. As
in the pure Zr case, ' the alloy should transform into
a 3D eo phase, and this phase should be retained after
the pressure release. In this experiment the Nb dis-
tribution does not change. Therefore, we predict that

the resulting co phase will have a smaller lattice con-
stant in its [001] direction than the previous bcc lat-

tice in its [ill] direction. The change 5 in the lattice
constant should increase with Nb concentration and
the critical 5, at -17-wt. % Nb can be determined.
This experiment, if successful, will confirm our
theory and solve the puzzle of the co phase.

Finally we suggest that stacking solitons are
relevant to the general problem of the central peak.
Evidently we look for transitions which involve a
change iri the lattice constant, but this is probably
true for all displacive transitions. Also one should
study the appearance of stacking solitons on a surface
of 3D clusters. '4

The central peak is the peak in the scattering
S(qo, ~) around frequency co =0, at temperatures
above a displacive phase transition; it is usually asso-
ciated with the dynamics of domains which are
separated by solitons or kinks. ' ' These kinks con-
nect degenerate states within a nucleating phase [e.g. ,
the BSA defect —Fig. 2(a)]. The stacking solitons are
very different from these kinks —they result from the
interaction between one nucleating domain and the
untransformed matrix. Furthermore, stacking soli-
tons are favored by the interphase interaction and for
~5~ ) 5, they are formed spontaneously.

The models for the central peak2' consider 1D
systems, and it is still not understood why domains in
3D systems are so stable and quasistatic. These
domains can either move around (phase fluctuations)
or disappear (amplitude fluctuations). Both
phenomena can be seen by computer simulations, "
and they tend to broaden S(qo, &o). Consider now
the effect of stacking solitons: If the soliton is not
too wide compared with the lattice spacing, transla-
tion requires finite energy'0 and phase fluctuations
are suppressed; this can happen in a discrete model
also without stacking solitons. In addition however,
the stacking soliton suppresses also amplitude fluc-
tuations, since by taking the amplitude to zero the
density defect is not removed [Fig. 2(b)]. Thus there
is an energy barrier against motion or decay of
domains, and then the central peak becomes nar-
rower. Experimentally stacking solitons are seen by a
shift of the peak in S(qo, ~) away from qo, and we

suggest that this shift correlates with increasing nar-
rowness of the peak around co=0.

A well known example are the A-15 compounds
Nb3Sn and V3Si, ' which transform from cubic to
tetragonal at 45 and 21'K, respectively. Evidently,
this transition involves changes in the lattice constant
and stacking solitons are favored. In fact, the central
peak was found to exist also away from q =0 which
is analogous to the shift in the co reflection peaks.
Various properties of this transition were explained
by postulating the existence of defects. Stacking sol-
itons are natural and intrinsic structures which can
represents these defects.
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