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The equations of motion for the order parameters of a coupled linear 
chain system in a condensed Peierls phase are derived from a microscopic 
Hamiltonian. These results now provide the correct non-linear terms 
which are needed to discuss solitary wave excitation modes. The 
computation reported here is a mean field result, at T = 0, and with 
interchain electron backscattering. Amplitude solitary waves are energetic- 
ally disallowed, but phase solitons (@-particles) with small associated 
amplitude variation are possible. 

THE EXISTENCE of solitary waves as an elementary motion for the electron Green’s function and the order 
excitation of the order parameter in a Peierls condens- parameter in real space time to handle non-linearity 
ate was suggested by Rice et al. [l] . These non-linear directly rather than by cumbersome Fourier analysis; 
modes describe localized charge excitations (v- we consider T + 0 and that Peierls condensation occurs 
particles”) and may account for the non-linear transport at some high temperature (comparedto Debye fre- 
in TTF-TCNQ [2]. quency), therefore we use the mean field approximation 

The one-dimensional (1D) problem was first treated [6] ; in this letter we report only results for T = 0, but 
by Lee, Rice and Anderson [3] (LRA) for small the formalism applies to T # 0; the Hamiltonian 
oscillations (i.e. linear) in the order parameter, leading includes on-chain electron-phonon coupling plus inter- 
to phase and amplitude phonons. In the absence of a chain coupling which produces on-chain backscattering; 
pinning potential the phase may make large excursions, we assume that interchain electron transfer is negligible. 
so that non-linear effects need consideration. When we Long-range Coulomb coupling can be included., but for 
consider excitations of the low temperature condensed isolated (solitary) excitations is not qualitatively 
Peierls phase, either commensurability or interchain important, in contrast to the plasma frequency correc- 
coupling lead to periodic potentials in the phase [3] , and tion to extended phase waves [7,8]. Also, the long- 
non-linear solitary wave solutions [4] . 

In fact, until now the effective Lagrangian for the 
non-linear problem has only been inferred from the 
small oscillation theory of LRA [ 1 ] , or phenomeno- 
logically [5] ; a microscopic basis for the non-linear 
equations was missing. When dealing with intrinsically 
non-linear excitations a plausible Lagrangian is not 
sufficient; in particular, phase and amplitude motions 
of the order parameter are coupled, and it is very 
lml &ant that the correct behavior is known in order 
to obtain stable solitary (non-linear) solutions. 

Thus the main results reported in the letter are: 
microscopically derived non-linear equations for the 
amplitude and phase of the order parameter, demon- 
stration that phase solitons can indeed exist when the 
correct amplitude dependence is considered, and 
comments on the determination of theoretical para- 
meters from experiment. In the small amplitude regime 
our results reduce to the linear LRA modes. 

The main features of the computation, its assump- 
tions, or restrictions are: we compute the equations of 

range Coulomb interactions between the structures 
obtained can be introduced at the last stage [8]. 

The electron wave function on the Ith chain is 
written in the form 

u’(x) = u\(x) eikFx + u\(x) esikFx (1) 
where kF is the Fermi momentum and urr ,&) are 
assumed to be slowly varying functions, essentially 
assuming linear dispersion near the Fermi level [3]. 
Using the spinor field $;(x) = [u:(x)*, u:(x)*] and 
neglecting second derivatives in u(x) the Hamiltonian 
for the bare electrons is 

where oi are the Pauli matrices, VF = k,/m and m iS the 
electron mass. The electron phonon interaction with a 
coupling constant g is then 
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J J 
where @r(x), Rr(x) are the phase and amplitude phonon 
fields [3,6]. The interchain coupling which corresponds 

to - 2kF momentum transfer (short-range interaction) 
between electrons on neighbouring chains has the form 

+ (01 + o*>>. (4) 

The y index sums on neighbouring chains with coupling 
constant &. 

The equations of motion for the electron Green’s 

function G(xt, x’t’) were obtained from the MF 
diagrams [6] . Exchange terms only renormalize the 
electron dispersion (coefficients of 1, u3 in the Green’s 
function) and therefore can be neglected for evaluating 
the off diagonal elements (coefficients of ur , u2). The 

equation of motion has the form 

a - vFPu3 - A:(x, t)ui - A:(x, t)u2 

+ivF03;+i$ 

1 

G,(‘d,p,x,t) = 1 (5) 

where w and p are Fourier transforms of t - t’ and 
x - x’ respectively. The coefficients Ari ,2 (x, t) are 
identified as the two degrees of freedom of the order 
parameter, and are determined by the self consistency 
condition 

A’,(x, t) = $ Tr [u,G,(xt, xt)] - se&(x, t) 

a0 -- 2s 2 (6) 
Y 

where K = 1,2, and w. is the bare phonon frequency 
around 2kF. Equations (5) and (6) give our final gap 
equations which are valid to second order in derivatives 
and first order in the interchain coupling. Transforming 

the gap functions to amplitude and phase variables 

A:@, t) = A,@, t) cos qr(x, Q 

A\(x, t) = - A,(x, t) sin cp,(x, t) 
(7) 

we obtain (all A,, pz are function of x, t) 

2E, 1 . . 
A, = A$ In - + ;;“. (A& - A,) 

AI 

- & @id2 - &A,A;’ - A: + A,&) 
1 

N(0) c -- 

2x Y 
&A,+, cos (qr - VI+r) (8) 

0 = $ (2&h + 43;1> - & (&d - i-i> 
1 

N(o) c &AI+~ sin (VI - PI+~) -- 
2h Y 

(9) 

where g2 = Xwo/N(0), N(0) is the electron density of 
states at the Fermi level and E, is an electronic cut-off 

energy (A, <EC). 
Equations (8) and (9) can be derived from a 

Lagrangian density of the form 

A: +M,@I) -2 

vr 18 + 
MA @I) -- 

2h m 
- i\ f /24A; 

m 

N(0) -$(&2 + A;2/3A;)-s 

x c i?yW~+r ~0s CA -(PI+~) . (10) 
Y 

The first term in (10) is the local condensation energy 
-J [(e2 + A2)1’2 - e] de. The electronic kinetic mass 
is renormalized due to the coupling to the lattice: 

M,/m = 1 + 4A21Xw~ 

l&/m = 1 + 12A2/Xw:. 
(11) 

These masses and the Al2 coefficient depend on 
A,(x, t); thus the effective masses and the amplitude 
coherence length depend on the local value of the 
amplitude - A,(x, t). This result is new, and of essential 

importance in the non-linear behavior. 
The Lagrangian (10) can also be derived directly 

by evaluating the free energy of the system, as was done 
for the static 1D problem [9]. Thus the free energy 
functional leads to the correct equations of motion 

equations (8) and (9) - a result also known for the 
non-equilibrium state of superconductors [lo] . 

The solutions for cpl(x, t) determine the charge and 
current distributions, which are the expectation values 

of the operators 1 and vF03. To first order in the 
derivatives these are found from the same analysis to be 

Q(x, t) = no]1 + Ip;(& t)/2k,] 

iz(x, 0 = -no&(x, 0 
(12) 

where no = 2kF/n is the mean electron density. Of 
course the density has an additional term - no Al x 
cos (2kFx + ql)/hvFkF which is the charge density wave 
(CDW) itself. However, the results (12) are consistent 
with (2) both describing slow variations on top of 2kF 
oscillations, and also with the phenomenological 
theory [S, 71. 
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We now look for solutions of equations (8) and (9). 

The ground state is cd* M 
A&t) = zi 1+--8---@ 

[ 1 4A2 m (13) 

where A = 2E, exp (- l/A) and 

Wr * = ,,o,$;; w; = -w?,cos(qJ~-q~+y); 
P 

(14) 

The ground state phases satisfy Xr &. sin (gr - $I+~) = 0, 
i.e. for two or four interacting neighbours $r - +l+r = II. 
For a general case w: > 0 but the solution is more 
complicated [ 1 l] . 

For small oscillations in the amplitude or the phase 

we obtain the LRA phonons with dispersions 

where q, q7 are momenta along and perpendicular to the 

chains and MA, Mp are evaluated at A. 
Next we look for non-linear solutions, particularly 

those with low excitation energy. The degeneracy of the 
Lagrangian (10) for f Ar suggest a possible amplitude 
solitary wave interpolating between + ii [ 121. However, 
the explicit dependence in equation (10) of (A:/Af ), 
(A;’ /A:) on the local value of A, resists the passage of 
I A, I through zero; indeed a simple calculation shows the 
energy to diverge for a pure amplitude kink. By contrast 
a phenomenological Ginzburg-Landau Lagrangian 
would have allowed a pure amplitude solitary wave. 

The amplitude couples the CDW to various pinning 
forces such as impurities [8], the lattice (in a commen- 
surate case [3] ) or other chains [equation (lo)] . Thus a 
decrease in the amplitude leads to weaker pinning forces 
and to higher conductivity. Koehler and Lee [ 131 
suggested that for impurity pinning, the condensate can 
conduct via a phase slippage mode, i.e. the amplitude 
vanishes at the impurity site so that the phase can jump 
by 2n and the current will pass. For low temperatures 
(T << A) the activation energy is much larger than the 
previous estimate [ 131 since the amplitude coherence 
length increases near the phase slippage point, and even 
diverges there if T = 0. 

These examples illustrate the need for the proper 
microscopic calculation which we report. 

On the other hand we can find solutions with large 
phase variation, but minimal variation in the amplitude. 

To lowest order in (p and g” 

(17) 

where cz = z$m/M, and Mp = M,+,(a). Equation (16) 
has solitary wave solutions where the relative phase 
fi - pl+r has a total variation of 271. We have already 

shown [4] that this type of equation has localized 
solutions where cpl is a solitary wave on the chain I = 0, 
while qz+o remains constant to order g”. To this order in 

g”, ~pr=~(x, t) satisfies 

i-c;;+ w,‘sincp = 0. (18) 

This is the sine-Gordon equation with well known 

solitary waves, for which the “q particle” phase 
solitons were proposed earlier [l] . The coupled ampli- 
tude variation is given by equation (17). 

Equation (18) is valid provided the ‘?p particle” 
travels with a low velocity ZI and that its rest energy Ee 
is small compared to the gap. 

In the region of the solitary wave, the amplitude (17) is 
reduced slightly. This reduction is smaller for a moving 
wave due to the centrifugal force - the last term in (17). 

For the case of a few solitary waves on different 

chains the long-range Coulomb interaction between the 
charges (12) should also be included. This interaction 
can lead to a “p” and “anti9” bound state [ 141, and if 

it is too strong it leads to an instability [4] and higher 
order derivatives of the order parameter must be 
considered. 

It is important to note that the frequency w, in 

equation (18) in general is not the pinning frequency 
wF observed in infra-red (IR) measurements. In fact, in 

a pure system of identical chains with an incommen- 
surate CDW the interchain coupling does not lead to 
pinning and wF = 0; impurities lead to pinning OF # 0, 
but this WF is not related to w,. Indeed in a charge 
transfer salt with inverted band on one type of chains 
(such as TTF-TCNQ) the charges (12) have opposite 
signs on the two types of chains, Q and F. Hence theIR 
active mode of (15) is pQ - pF with frequency wg = 
- 2 Z’ w$ cos (I& - c~r+~) and the sum involves only 
Q-F neighbours. The factor 2, the different summations 
and the particular ground state $r of TTF-TCNQ [ 111 
lead to different WF and w,. This may account for the 
difference in the predicted solitary wave energy [l] and 
the observed non-linear excitation of 12 K [2] . If 
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E@ = 12K andM& = 100 [l] then (19) implies the CDWs are commensurate with respect to the Br 

w, N 1 K. Experimentally wF is estimated to be sublattice, and measurements of non-linear transport in 
3-10 K [151. Note also that for these parameters KCP under high pressure may show the existence of 

equation (19) is very well satisfied. solitary waves. 
The frequencies w, and wF are directly related 

only for a strong commensurability potential [ 1,3] , so 
that impurity and interchain coupling can be neglected. 
Rather interestingly, KCP [ 1.51 may be a relevant Acknowledgements - We are grateful for numerous 

system. The disorder in the Br ions seems to suppress the discussions with A.R. Bishop, G. Eilenberger, M.J. Rice, 

phase transition at ambient pressure [S] . However at 
T.M. Rice and S.E. Trullinger. Work supported in part 

high pressure [ 171 there is a well defined phase tran- 
by the National Science Foundation through Grant No. 
DMR76-81083; through the Materials Science Center, 

sition, and the Br ions probably become ordered. If so, Technical Report No. 2870. 
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