VoLuME 38, NUMBER 14

PHYSICAL REVIEW LETTERS

4 ApriL 1977

independence of the energy ratio (Fig. 3) on sur-
face temperature is also in contradiction with the
AA model (the model predicts a decrease of the
energy ratio with increasing temperature), On
the other hand, the model proposed by Goodman’
is in qualitative agreement with most experi-
mental data reported here: The dotted line in
Fig. 2(a) predicted by Goodman’s model for T,
=1916 K and T,=1143 K reflects correctly the
experimental trend. The constancy of the energy
ratio is, within the limits of the error, not in
contradiction with this theory. The only discrep-
ancy appears when looking at the speed ratio val-
ues: Goodman’s model predicts in all cases S=1
which is in contradiction with all our data for
small 6 in Figs. 1(b), 2(b), and 3(b).

The fact that the results for H,, HD, and D, are
practically identical is probably valid not only in
the particular case of this experiment. It seems
that the detailed features of the desorption proc-
ess (energy distribution, angular dependences,
etc.) are due neither to excitations of rotational
or vibrational states nor to other molecular
mass-dependent phenomena but to the chemisorp-
tion mechanism itself. This general observation
and the peculiarities of the data presented here
might be useful for the construction of more real-
istic models for the associative desorption proc-
ess., Further experiments with monocrystalline
surfaces and variable sulfur coverage are in
progress.

We are much indebted to Karl Veltmann for
technical assistance, to Wulf Erley for his valu-
able help in determining the behavior of sulfur on
the sample surface, and to Miss Degen for per-
forming the computer calculations, Enlightening
discussions with Hans Bonzel, Harald Ibach, and
Howard Saltsburg are gratefully acknowledged.
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The existence of solitons in two or more dimensions is discussed. Solitary-wave solu-
tions are found for a system of discrete chains with a derivative of a periodic coupling
between the chains. Relevance of the model to phase solitons in the Peierls condensate

and in spin systems is discussed.

Recent studies have indicated the possible importance of solitons and solitary waves' in the dynamics
of structural phase transitions®™ and in the low-temperature conductiviy of one-dimensional conduc-
tors.® However, applicability of these ideas to real systems is limited because static soliton solutions
were found only in strictly one-dimensional systems. Moreover, for higher dimensional continuous
media with an elastic coupling (V¢)? it is known that there are no static, finite-energy solitons.”® In
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this Letter, we present two model Lagrangians in two (or more) dimensions which can have soliton so-
lutions and solve them explicitly for a particular potential.

As a first step we consider a system which is continuous in one spatial direction (x) and discrete in
any other—namely a set of chains. Thus the solutions may be discrete in all space directions except
the x direction. Ifz is the chain index, then the field has the form ¢,(x,f). On each chain we assume a
potential®!® V(¢) = V(- ¢) with two or more ground states (say at ¢=x1) so that V(¢1)=0=V’(x1) and
V"(£1)=w,2>0. The potential is such that in the absence of interchain coupling it leads to static soliton
solutions ¢ (x)

—c 2o )+ V' (py) =0, lirzlqos(x)=sgnx. (1)
For the coupled-chain system we look for solutions which have solitons on some of the chains; more
strictly, some of the chains have boundary values which differ at x -« and x -~ — .

A crucial step now is the choice of the interchain coupling. The elastic coupling (¢, —¢,.,)* leads to
infinite energies as the size of the system increases, if the fields on adjacent chains differ by a con-
stant finite amount at the boundaries. Thus we choose the following Lagrangian:

L=3, Jax{3[,0c,)12 =3 e[, (&, 1)]2 = V[0, ,1)] = 20, (x , )Py (¢ , B} (2)

One can think of ¢,’(x, {) as a charge (as for “¢ particles”® or for electric dipoles) and the derivative

coupling in (2) as the interaction between these charges. By completing the squares of terms quadratic
in spatial derivatives we note that the system is stable only for

IM<ze? 3)
The equations of motion are
P a0 ,1) = €20, b, 1) + V' (0,00 ,1)] = M@y (6, 1) +90,.," (¢ ,1)] = 0. )

Two observations can be made here. First, since we look for solutions of finite energy, we must
have lim[¢,(x =+ ,{)]=+1 for alln. Thus, ¢,(+=,t)=0 for any finite ¢, yielding a topological conser-
vation law® for each chain separately. Hence a soliton cannot jump from one chain to another, and
there is no annihilation. Thus the distinction between a soliton and a solitary wave' is not important
here, as long as we consider one or no solitons on each chain. Second, the coupling term in Eq. (2),
which was chosen on physical grounds, breaks the Lorentz invariance of the uncoupled system. How-
ever time-dependent solutions can still be generated from the static solutions ¢,[x;X] using A as a vari-
able. Moving solutions for (4) are ¢,[(x —vt)/v; 1/¥?], wherey?=1-0v%/c 2. Because of the stability
condition (3), v is bounded by vZ<cy?—2[xrl.

We wish to find static, localized, and stable solutions ¢,*[x ;)] of (4). Stability means that perturba-
tions g,(x) e*“* around the solution have frequencies w?>0. The linearized equation for g,(x) is

- €28, )+ V" (@, %0 ]) 2, 0) = N[ £, () +8,,.," ()] = wPg, (x). (5)
Equation (4) is easily solved for an infinite array of solitons, and the stable configuration is
@, () = (= sgnA)p [x /(1 = 2| \| /e ,2)V2]. (6)

The relative signs ensure that neighboring solitons attract each other. The lowest-frequency band of
(5) starts at w?=0 and corresponds to transverse vibrations of the wall of solitons.

We consider now the important question of a single soliton. For a general V(¢), only a perturbation
approach is feasible. This is discussed below. However, for the particular choice!!

V@) =20 (¢l - 1)2, (7
the problem is exactly solvable. Equation (4) takes the form

=€ P, () + W@, () = N[0, () +9,.," ()] = w,? sgne, (). (8)
The eigenfunctions of the left-hand side are exp(ikx +iqn) with frequencies

W, &= W+ (c,2+ 21 cosq)k®. (9)
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We try a solution which satisfies

sgnx, n=0,

seng, () =), " 40, (10)

n’

where 7, can be chosen arbitrarily as +1. Using the Green’s function of the left-hand side of (8), we
find

[1-I,x)]sgnx, n=0,

Qpn(x):j n,-1,(x) sgnx, n#0, (11)

_("dq - Wolxl )
1) _J:w oy COSM €XP [(002 +2Xx cosq)¥2 |’

Equation (11) represents a static solution with one soliton. The solution is analytic in X (if 2|A1<¢?),
so that a perturbation expansion is valid. The energy of this soliton is given by

E =wof"—§g (co2+ 21 cosq) V2. (12)
o 27

Note that E =E (IA1) is a decreasing function of |A| and 2V2/r <E /wc,<1. For the stability analysis
in Eq. (5) we use the same Green’s function method as for Eq. (8). We obtain a single bound state
[£,(0)#0] with w2=0 and the continuum w?= w, o ® for g,(x) = sinkx exp(fqn). This spectrum covers exactly
the same values as the one-dimensional (A =0) solution.

We emphasize that non-negative values of all eigenvalues w? ensure the stability of the assumed soli-
tary structure,

We have also considered the case of solitons on two distinct chains, say, onx#=0 and n=N, Stability
analysis of this solution yields the usual w?=0 translational mode and an additional bound state with w2,
If the condition

sgn@,(x) = (-sgnx)¥ sgne ,(v) (13)

is satisfied, the interaction between the two solitons is attractive and w,?>0, corresponding to a vibra-
tional mode of the bound pair of solitons. If, however, the two solitons repel, w,2<0, corresponding
to breaking of the pair,

For a general V(¢), a single-soliton solution for Eq. (4) cannot be obtained analytically. However,
we expect some general properties of the exact solution presented above to remain valid, Namely, we
expect a single chain soliton solution to exist and be analytic near A =0, Thus a perturbative approach
(in \) seems appropriate, Using Eq. (1) we look for a solution

oo\ ) ox) +fx), n=0
q)n (x)_{nn+fn(x), n#o (14)

with f,(x =+ =) =0, To first order in A, only the n=%1 chains are affected, and

fui() = z—c"o—zjo“’exp( —wex /el @ (x +x) =@, (x " —x)] dx . (15)
For x <w,/c, we obtain f,(x) = -¢ (x)/c.?, folx) =r% @/ (x)/c,?, and ¢ *(x) ~¢ [x/(1 =1%/c,})]. As in the
solution (6), the coupling x tends to form thinner solitons, The leading correction on the nth chain (r
#0) is of order )\I"l; hence the solution decays exponentially as it moves away from the » =0 chain,

Consider now the stability of (14). The translation mode g,(x) = ¢,*'(x) is an eigenfunction of (5) with
w?=0. [This is shown by differentiating Eq. (4).] Since the potential V#(¢,x;r]) is localized, there
are extended wave solutions with w?=w, 2 We now compare this spectrum to the spectrum of (5) with
A=0. On the n#0 chains we have only the continuum with w?=wy?+c,%2, while the »=0 chain has also
a bound state with w?=0 and possibly other discrete levels® with 0 <w?<w,? It is important to note
that there is a single eigenfunction with w?=0. This eigenfunction is the translation mode and, as ||
increases, its frequency stays at w?=0. Also the continuum edge remains at w,?, Analyticity in A im-
plies that for sufficiently small A there is no level crossing so that «w? =0 and the solution (14) is stable,

780



VoLUME 38, NUMBER 14 PHYSICAL REVIEW LETTERS 4 ApriL 1977

As a physical system which can be described by (2) we consider the phases of charge-density waves
(CDW) in a Peierls condensate.® On each chain a phase soliton creates an excess of charge ~ ¢,’(x).
The Coulomb interaction of this charge with the CDW itself can be neglected if the soliton is much
wider than the CDW periodicity. Assuming nearest-neighbor interactions only and neglecting current-
current interactions (~¢,¢,.,), we obtain the nearest-chain local interaction of Eq, (2).

In Ref, 6, V(¢) was assumed to be a commensurability potential. By now we recognize the limita-
tions of this viewpoint and, as we show now, solitons appear also in the incommensurate case because
of an interchain coupling in the condensed CDW phase. This coupling must be periodic in the phase dif-
ferences between chains and should lead to a unique ground state, say ¢,~¢,,,=7. Let us choose

V(@) =3w,H¢-m?2, 0<@<2m, V(¢+2mm)=V(¢), n integer, (16)

and use V(¢,~-¢,.,) instead of V(¢,) in (2). We expect this coupling to lead to an effective periodic po-
tential on each chain so that solitons are possible, The main difference is that now the linearized
equation of motion has the spectrum

Dp & =(co? + 21 cosq)k? + 4wy? sin’q/2, (17)

which starts at zero. The interchain coupling has no pinning effect and the system still has a Goldstone
mode with w=0,
Using the same methods as for Eq. (8), we obtain an exact single-soliton solution

- - m w, sing/2
@ulx) =(=)"1/2 + m(sgnx —1)6, 5 ~1,(x) sgnx, I,(x) =fo dq cosgn exp [——;JZLA—C—OWE |x l] . (18)
Stability analysis yields a continuous spectrum w?=w, 2 and a bound state with w?=0 (the translation
mode).
We have also studied a second type of a Lagrangian which can have soliton solutions

L=, Jax{d@,lx, 12 =Sc0,/(x, ]2 = V(@ =0ns)]}, (19)

where V(¢,-¢,,,) is periodic. For V(¢) given by (16), obviously (18) with » =0 is a single-soliton so-
lution, It has an energy of E = 4nwy,c,. Equation (19) corresponds to a x-y spin system where the con-
tinuum limit was taken in one direction,'® This is consistent with a wide soliton solution, ¢,/w,> 1,

If the continuum limit is taken for all spatial directions, the equations of motion for both Lagrangians
(2) and (19) contain spatial derivatives higher than the second. This feature makes Derrick’s theorem?’
inapplicable and allows for a large range of Lagrangians which can have soliton solutions. We find,
however, the models (2) and (19) to be physically interesting and, in particular, to provide explicit
single-soliton solutions for a chosen potential,
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