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The observed phase transitions in Tetrathiafulvalene—Tetracyanoquino-
dimethane (TTF—TCNQ) are discussed using a simple model for the inter-
chain coupling of charge density waves. Estimates based on Coulomb
energies show that for 38 K < T < 49K the components g, = m/a + g
and g, of the wave vector associated with the charge density wave satisfy
4,¢/q.a==0.1, with g'.a ~ (T, — T)!’? and T, = 49 K. A possible mech-
anism for the first order transition at 38 K is proposed. The results are
compared with neutron and X-ray scattering and with isotope shifts of the

transition temperatures.

THE PHASE TRANSITIONS occuring in TTF—TCNQ
have been studied extensively in recent years. The
various phases are characterized by the wavevector q of
a charge density wave (CDW). At T; = 54K [1-3] a
second order Peierls transition occurs with q = (0.54*,
0.295b", 0), involving CDW’s on one type of chains [4,
5] (probably on the TCNQ [5]). The component g, =
0.295b" is usually identified as 2k, twice the Fermi
momentum. As pointed out by Bak and Emery [4]
another transition is expected to take place at a tempera-
ture T, < T, in which the other set of chains orders.
Below T, the g, component of the CDW is expected

to satisfy ¢, = 0.5¢* + \,(T, — T)'/%. A careful
analysis of the original experimental data and further
measurements performed with higher precision support
these predictions with [4] T, = 49K. Finally, as was
first observed by Jerome, Muller and Weger [6] a first
order transition takes place at T3 = 38K [2, 3, 6]
below which the wave vector q is locked at q = (0.25¢%,
0.2956%, 0). Recently [7] symmetry considerations
have been used to analyze the T, transition. It has been
shown that owing to a coupling between the g, and q,
components in the Landau—Ginzburg free energy, the
g, component of the CDW is expected to be non-zero
for T3 < T< T, with q, = A\, (T, — T)'/2. This behavior
of the component g, has not yet been observed
experimentally. The observability of this effect depends
on the value of the parameter A.. This value cannot be
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determined by symmetry considerations alone; a more
detailed microscopic model is needed.

In the present note we consider a simple model for
possible interaction energies between CDW’s on differ-
ent chains. Taking into account Coulomb energies we
find that A./A, = 0.1 which together with the exper-
imental value [4] A, = 0.4 yields A, = 0.04. Our model
certainly does not represent a complete microscopic
description of TTF—TCNQ. The numerical results should
therefore be considered only as a guide to the order of
magnitude of various quantities.

The model also suggests a possible mechanism for
the first order transition at T3 = 38 K.

A detailed study of the various lattice modes and
their interchain couplings was made by Weger and
Friedel {8]. They emphasize mainly the interchain .
couplings within the (g, b) plane where TTF and TCNQ
chains alternate. In the present work we look for
additional effects which may arise due to interchain
couplings in the ¢ direction.

Suppose that the CDW’s are localized on chains
along the b axis, and let Ry; be the vector in the (a, ¢)
plane which connects the ith and jth chains. We assume
that the charge density along the chain takes the form
pi cos 2k py + ¢;) where p; = pg on a TCNQ chain and
p; = pp on a TTF chain. The Coulomb interaction
between the ith and jth chains then takes the form {9]

ES = pp; cos (¢; — ¢;)Ko(2kpRy), )
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Fig. 1. A cross-section of the chain system in the (a, ¢)
plane. The chain direction b is perpendicular to the 2
and c axis. A full circle is a TCNQ chain and an open
circle is a TTF chain.a =12.2 A, ¢ = 18.3 A and the
(a, c) angle B is 104.5°.

where
Ko(x) = I @@ +x*)"V2 cos t dt

is the modified Bessel function of the third kind. A
cross-section of the chain system in the (g, ¢) plane is
shown in Fig. 1. For the parameters [1, 10] of TTF—
TCNQ 2kpa = 6 and ke =2 4.5. Since Ko(x) ~
e~*/\/x for x 2 2 the Coulomb energy is dominated by
the nearer neighbor terms, and the interchain couplings
of the 4k instability (3, 11] (or those of higher
harmonics) can be neglected. The Coulomb interaction
(1) between two chains favours a phase difference

¢; — ¢; = 7. The hopping term also favours a phase dif-
ference of n since a density maximum on one chain
tends to be close to a density minimum on the other
chain. More explicitly, it has been shown [12] that
within a single band approximation and to lowest order
in the interchain coupling, the hopping term takes the
same form as the Coulomb term, namely

Ej™® = pipytl; cos (6~ ). @

We therefore assume that the interaction between chains
is given by

€)]

t + Ko(RkrRy). @)

Since the interaction energy falls off quite rapidly
with distance we consider only interaction between
chains which are not too far apart. Define now the
following interaction parameters (see Fig. 1):

Ej;; = pipsty cos (¢; — ¢7)
with

]
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= t1,4>
8 = ¥(t1,s +116), &)
€ =15 16

Here we assume that the hopping term tf',, like the
Coulomb term, depends only on the distance between
the chains / and j and therefore we take ¢; 10 = #4,7 and
t1,2 =14,5. We also assume that for the ground state
#; — #; = q.- Ry, except for an additional phase differ-
ence ¢ between the TTF and TCNQ sublattices. Indeed
higher harmonics were seen only below T'; with
relatively low intensity [3]. The free energy of the
system, now, has the form:

f@yx,q;) = acosq.a+pcos 4q,c + u cos gy cos 4q.a
+ 258 cos 3q,c cos 4q..a + € sin 3q,c sin }g..a) ®)

where u = 2pppo/(p} + p2Q). This expression is mini-
mized by ¢ = 7 or ¢ = 0. We can choose ¢ = m, while
@ = 0 yields equivalent solutions with ¢, replaced by
qy + 2nfa.

If 4 = 0 the absolute minimum of (6) is at ¢, =
n/a, q, = 2n/c. Note that neighbouring CDW’s in the
¢ direction are out of phase. This maintains the original
lattice periodicity, since there are two TCNQ chains per
unit cell in the ¢ direction. This configuration describes
TTF—TCNQ for T, < T< T, . Below T, the ratiou
grows linearly [4] with (T, — T)"2/po(T), and po(T)
depends weakly on temperature. To first order in u the
minimum of (6) is given by

sindqra = p(y — 28)/4a
sindqye = upe/B

where ¢, = —q, +n/a.q, = —q, + 2ajc. Thus g, and
q. are both nonzero for T < T, and their ratio,

g = 4ae .
z 3(7_28) X

(M

®

is temperature independent. This behaviour has been
predicted by Mukamel [7] using symmetry consider-
ations. The parameter €, which measures the deviation
of the unit cell from being orthorombic is responsible
for the variation of g, . If the Coulomb terms dominate
in (4) then afy 22 0.04, 8/y = 0.2, 6/y =0.1,e/y =0.1,
and ¢}¢ =0.1¢"a. From the known values [4] of g%a
we obtain 0.13 2 ¢,¢ >0 for T3 <T<T,,and the
periodicity in the ¢ direction deviates by up to
0.13/2m =2 2%. This should be a lower bound since the
transfer integral between molecules 1 and 4 is zero [10]
(Fig. 1) while hopping does contribute to other ¢;;
terms [12].

The postulated free energy (6) suggests a possible
mechanism for the first order transition at 38 K. The
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solution (7) is associated with one minimum of
f(q.,q;). As the temperature is lowered, the parameter
u grows and another minimum of f(q,, q,) may yield a
lower energy, thus giving rise to a first order transition.
Let us study the minima of the expression (6), assuming
for simplicity € = 0. The extrema are

cos g.a = u(y +28)/4a, cosdq,c = +1, (9)

sin4q.a = 0, costg,c = 1, (10)

And the previous solution (7)
cosdq.a = u(y —28)/4a, costq.c = —1. (11)
The first derivatives of equation (6) vanish also for

cos}q.c = off(ud)* —7/28.
(12)
Checking the second derivatives it is easy to verify that
the solution (12) is not a local minimum for any value
of the parameters a, 3, v, § and u, and therefore need
not be considered. Hence, the solution (9) is the only
one which could account for the first order transition
to q* =(0.254%, 0.295b*, 0). For (9) to be the absolute
minimum one needs:

u(y +28)4a < 1, (13)
208 < 128, (14)

Thus when g becomes large enough to satisfy (14),
and (13) is also satisfied, a first order transition takes
place in which the CDW’s are described by (9), instead
of (7). If the parameters then satisfy q, ~ gy = n/2a
and q, 2 q; = 0 (when € # 0) umklapp terms [4, 13]
would pin the CDW at q = q*. Thus it is sufficient to
have weak Umklapp terms since the phase transition
itself is driven by other forces.

It has been suggested that the phase transition at
T, is due entirely to umklapp terms {4, 13] which are
of fourth order in the order parameters. The solution
(9) illustrates an alternative mechanism — the transition
is driven by second order terms in the order parameter,
but involves higher order terms in the wavevectors
Qs 4z

Taking into account only the Coulomb contribu-
tions to (5) one finds that (13) and (14) cannot be
simultaneously satisfied. However a solution is possible
if the hopping contributions and the e term is included.
In fact even the original form (6) may not be sufficiently
realistic. It should certainly be modified to allow for
CDW’s which are not localized on linear chains, by
adding more complicated hopping terms [12] and other
types of interchain couplings [8, 12]. However, the
correct f(q., q.) can still develop a minimum, distinct
from the solution for T3 < T, which for large u would
cause a first order transition.

cos kq.a = Bj2us,

and
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Thus we expect, rather generally, that the transition
temperature T is the solution of

Pr(T)/pg(T) = const.

The constant is determined by interchain couplings,
which can be taken as temperature independent in the
relevant temperature range.

An interesting feature of the solution (9) is that the
relative phase of neighbouring CDW’s in the ¢ direction
Ad, = q.c/2 jumps from close to 7 for T> T3
[equation (7)] to zero for T'< T’5. This can be under-
stood easily if § ~ 8 €. For small u(T'> T3) the chain
1 (Fig. 1) is coupled strongly only with the chains 2 and
3, hence A¢, = 7. For larger u, the ¥ term favours
nearest TTF and TCNQ to be out of phase. Also the
interactions between the chain 1 and the chains 2, 3, 5,
6, 8,9 become comparable. If A¢, = 7 then only two
of these interactions are attractive, while if A¢, =0
then four of them are attractive. The condition
B ~ & € v seems reasonable in view of the shape and
orientation of the various molecules [10] and is indeed
satisfied for the Coulomb terms in (4). Thus for large
enough u a transition from A¢, ~x to A¢, =0 s
possible.

We discuss now the available neutron and X ray
scattering data. The scattering intensity associated with
the orderings given by (7) and by (9) can be estimated
if the structure factor of each molecule is slowly varying
within one zone [3, 14]. Since we are interested in the
q, component of the CDW consider the measured
scattering intensity at q, = (ha* * q,, kb* £ q,,Ic*),
where q,, q, are the x, ¥y components of the CDW wave-
vector. Thus we eliminate complications due to the
relative phases in the (x, y) directions. The scattering
intensity is then given by

S(@1) = 1by + by(—) elo2? (
= (b —bz)2 +2b, b, [1 "(_)' Cos 54;6‘]-

Here the scattering amplitudes by(h, k, ) = ¢ + bf =
b; corresponds to the TCNQ molecules 1, 2(b? ,b§ )and
the TTF molecules-4, 5(b%, b}) of Fig. 1. The factor
exp [iq,¢/2] accounts for the relative phases on these
chains (b; can be taken as positive numbers).
Experimentally it is found (see Fig. 4 of reference
[2]) that for T, < T< T, no scattering intensity is
observable for (h, k, ) = (1, 3, 0) while one finds
S(@y) ~(T1 —T) for (h, k, 1) = (0, 1, 3). Below T, the
(1, 3, 0) scattering grows like (T, — T') while the
(0, 1, 3) scattering exhibits a weak dependence on
temperature. Theoretically we expect for T> T, g, =
—q, +2mnjc =0and b7 = 0 (i.e. no order on the TTF
chains), and so 8(q;) = [b§ — (-)'b21%. Hence exper-
iment implies b® (I = 0) = b$ (I = 0). If the 2k mode

(1%

16)
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polarized in the ¢* direction [3] then b@(I = 0)=0.
The growth of order on the TCNQ chains is described
by S(g1) = (b9 +bF)* ~p4 ~ T, — T, and cor-
responds to the / = 3 data. Below T, a temperature
dependence associated both with b and ¢, # 0 may
appear. The factors b; are dominated by b so that b,
and S(q,) for odd [ are expected to depend weakly on
temperature if T< T’,. This is consistent with the / =3
data. For [ = 0 the experiment is consistent with the
increase of the first term in equation (16) (if b7 #

b% #0and b® = bF)since (BF) ~pt ~T, — T.1tis
also congistent with the second term of equation (16),
since (q3)* ~ T, — T from equation (7). If b, = b} for
all 7, 8(g,) is expected to have the same pattern for all
even [, namely S(gq, ) is zero for T> T, and grows
linearly with T, — T for T < T,. If b} # b} # 0 for

[ # 0 then this pattern will be smeared. X-ray data for
{=0and /= 12 seem to be consistent with this pattern,
aithough not as nicely as the / = 0 neutron scattering
data. Thus the predicted g, # 0 for T3 < T< T, does
not contradict the available experimental data. These
conclusions do not depend on the details of the model
(6), since they can be derived from a Landau—Ginzburg
expansion {4, 7].

At the transition T3, S(q,) increases by [2] ~20%
for I = 3 and by ~ 60% for I = 0. A quantitative analysis
of this increase depends on the actual values of b;. How-
ever, the large difference in the increase of the / = 0 and
I = 3 intensities suggests a change in the order within the
unit cell, in addition to the growth of the amplitudes b;.
In the model proposed here, cos $¢;c¢ is close to + 1 for
T > T; [equation (7)) and jumps to — 1 for T< T,
[equation (9)] . Thus the last term of (16) causes a larger
increase in scattering with even / than with odd /, in
agreement with the neutron scattering data [2]. The
X-ray data [3] shows a different pattern: the /=0
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intensity increases very slightly at T3, while / = 1 and

1 = 12 intensities increase by a factor of two. The dif-
ference between the X-ray and neutron scattering data
is probably due to the higher sensitivity of X-ray scatter-
ing from the sulfur atoms in the TTF chains. Thus

(bF — b%)? in the first term of (16) is larger and the
effect of the second term in (16) is smaller.

Finally, we comment on the recently measured
isotope shifts [15] of Ty and T3. Deuteration of TCNQ
increases T, while T is decreased. On the otherhand
deuteration of TTF instead of TCNQ does not affect T,
while T is increased. These results imply a Peierls
instability on the TCNQ chains at T, . The positive
isotope shift is in agreement with theory [16] and its
magnitude determines the electron—phonon coupling of
the C—H mode. Deuteration of TCNQ increases 7y, and
pq(T), so that the solution T3 of equation (15) is indeed
decreased. Since T, corresponds to a Peierls instability
on the TTF chain, the same theory [16] predicts that
deuteration of TTF would increase T,. Thus, for a given
T pr(T) is larger and T; from (15) is increased. There-
fore, the relation (15) which determines T is in good
agreement with the isotope shift measurements.

In conclusion, a simple model for the interchain
coupling is able to account for the phase transitions in
TTF—TCNQ. It yields previous results concerning the
second order phase transition and suggests a novel mech-
anism for the first order phase transition at T3 = 38 K.
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