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The mean field theory of the Peieds instability is extended to include the 
small momentum transfer interaction, which is shown to be a retarded 
interaction. The Peierls transition temperature is shown to depend 
significantly on the bare phonon frequency. A positive isotope shift 
parameter is predicted, with values in the range 0-0.5.  

It is also argued that the ratio of the zero temperature gap to the 
transition temperature is larger than the BCS value of 3.5. 

RECENT EXPERIMENTS have shown the occurrance 
of a Peierls instability in quasi one-dimensional ( ld)  
conductors. 1'2 The Peierls instability is usually described 
in terms of the electron-phonon interaction with 
momentum transfer of 2p F, where PF is the Fermi 
wavevector. The mean field (MF) theory of this inter- 
action leads to a BCS type equation and has been 
extensively studied, a'4 In particular the region of valid- 
ity of the MF theory, using an interchain coupling, has 
been examined. 4 

In the present work the MF theory is extended to 
include the small momentum transfer interaction which 
is shown to be a retarded interaction. This leads to a 
significant dependence of the Peierls transition tempera- 
ture (Tp) on the bare phonon frequency (r.~o). A posi- 
tive isotope shift is predicted, and may be observed 
experimentally if ~o ~> 2rtTp. 

The present formalism is also able to demonstrate 
that the electronic gap A at temperatures T <  Tp is 
larger than the BCS value. In particular 2A(T = O)/Tr, 
is larger than 3.5, which may account for experimental 
evidence. 6 

The essential property which leads to a Peierls 
instability is the existence of a Fermi surface with two 
opposite sheets and an electron dispersion which satisfies 
for Q = 2pF 4 

ep+Q/2 = - -ep-Q/2 (P : --PF) (1) 

The important electron-phonon couplings gq which 
involve electrons near the Fermi surface correspond to 

s~ = zar(o)~pF/coo;  s2 = 2N(0)~o/O~o (2) 

where N(O) is the electron density of  states at the Fermi 
level for both spins and Wo is the bare phonon fre- 
quency. For an optical phonon or a 3-dimensional 
acoustic phonon e it is reasonable to assume a constant 
~ o  a n d  s l  = s2 .  

It is useful to introduce the Nambu notation 7 in 
+ 

the Peierls space s defined by the field ~kp = ( p+o/2, 
C~_o/2) where C~p is the electron creation operator. 
Using the Pauli matrices r i and equation (1) the Frohlich 
Hamiltonian 8'4 can be written in the form 

I 

: ¢.OOa q aq p q 
t 

• --4p_Q+p_p ) ~kprt dJp' + ½ igQ ~p.(¢Q÷p_¢ . + 
I 

+ ½ ig~ ~ .  (¢~ +p_,,, + ~_ ~ +p_,,,) ~;, i ~  ~,,, 

+ ~ Z~,gp-p,~-p'  ~; i ~ ,  (3) 
P , P  

where epq = aa + a+q and a~ is the phonon creation 
operator. The prime on ~. denotes IPl, Ip'l < P x  and the 
important states have [Pl, [P'I <PF-  The phonon opera- 
tors which multiply the rz, r2 terms are the phase and 
amplitude modes respectively s's with propagators 
D~,eOvn, q) (v,t = 27rTn). These modes are non- 
degenerate only below T n. The last term of (3) involves 
the small momentum phonons with the propagator 
D(ivn, q). 

I proceed in a similar way to the derivation of the 
Elisahberg equations for superconductivity 7A° The 
electron self mass is written in the form s (/6% - ilrT 
(2n + 1)) 

T~ ( i~n,  p) = i ~ .  [1 - z~@)]  1 + x.0~)r3 + A.(p)T~ 
(4) 

and is evaluated using Figs. 1 (a and b). These diagrams 
imply phonon self mass corrections such as those in Figs. 
l ( c -e )  which should be included in the full phonon 
propagators. In particular Fig. l(c) leads to the usual 
description of the Peieds instability as phonon soften- 
ing.S,4 
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The nonretarded limit of the present formalism has 
been treated previously) 1 In this limit it should be 
noted that the Parquet sum 12 leads to different results 
due to inclusion of the Cooper pair instability in the 
Peierls channel [i.e. Fig. 1(0 ] . However the interchain 
coupling has a different effect on various parquet dia- 
grams. For electron hopping between chains the system 
is still effectively ld 4 for diagrams l(c and d), leading 
to singularities (In ~)2 in second order, where g -~ 0 is 
an energy cutoff. However diagram 1 f is less singular, 
leading to In ~ In 7/where r/measures the interchain 
coupling. Also interchain Coulomb interaction may 
give a finite Tp, while the Cooper pair instability stays 
at T = 0. la. Thus the 3-dimensionality of the system 
(Tp is finite) decouples the Cooper and Peierls channels 
to a large extent. Summation of the leading singularities 
reduces the Parquet sum to the present formalism if an 
interchain coupling is introduced. 

(ct) ? (b) 

(c) 

Ce) ( ~  (f) 
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A m (13' + Q/2) 
An(P + Q/2 )=  T , ~  2 2, 

p ,m~rn + e~ +0/2 + A ~ ( p '  + Q/2) 

+ 0 0 0  

Fig. 1. Electron self mass corrections in the Nambu 
space: (a) Direct term, (b) Exchange term. (c, d and e) 
Phonon self mass corrections. (0  A parquet insertion. 

By iterating Figs. l(a and b) it is seen that the 
phonon self mass corrections are already included in 
Fig. 1 (a), so that the direct term involves just the bare 
phonon propagator Do(ivn, q) = --2coo/(v2n + w2o). 

Evaluating Figs. l(a and b) and comparing coe- 
fficients of 1 and r3 with equation (4) gives the re- 
normalizing functions Zn(p), ×,(p), which represent 
normal processes such as in Fig. l(e). These corrections 
involve the soft mode and diverge as T ~  Tp for a 
ld system. In this sense Zn and Xn represent fluctua- 
tion effects which are beyond the MF theory. However 
for large enough interchain coupling these corrections 
become small 14 and I assume Zn = 1, Xn = O. 

Comparing the coefficients of r2 gives the Peierls 
gap equation 

{-2g~Do (0, Q) 

- [gaQDo(iVm - n' Q + p' - P) + [g2oDR (ivm - rl Q + p ' - p )  

+g~oD(ivm-rlp -- p')}. 

For T i> Tp the ¢ and R terms cancel and the ex- 
change term contributes only with small momentum 
phonons. This corresponds to Fig. l(d) where the 
phonons on the ladder cannot have momentum ~Q for 
T ~  Tp. 4 

The phonon renormalizations ar e important mainly 
for phonons with momentum Q,4 so that for small 
momentum phonons the bare propagator may be used. 

The equation for Tp is obtainedby linearizing 
equation (5). Using A(com) = A(-com) and integrating 
% gives 

An = ~ am[Sx - S2bn,m]Am (6) 
m = O  

2 tan-X (Ec/COm ) 
am - zr(2m + 1) 

bn,ra = -- [Do(iVm-n) + Oo(ivra ÷n ÷ a)] "o3o/8 

where E e is the electronic cutoff energy. 
F'~r s2 = 0 the equation is of the BCS type, and 

using (for T ~ Ee) 

o = m ~=o am = ½ In (1.13Ee/T), (7) 

the usual transition temperature a'4 T ° = 1.13E c 
exp ( - 2 / s l )  is obtained. In the limit 6Oo/"T ~ 0 the 
repulsive s2 term is minimal and Tp gets close to T °. 
In this limit bn, m = ¼ ~n,m and for s2 <~ 1 the solution 
is 

T~ ~ T~- exp i-~s . (8) 

In the nonretarded limit Wo ~ ~ ,  b~,m ~ ½ and the 
solution is again of the BCS type 11 

Tg = 1.13E e exp [-2](sa --½ s2)l. (9) 

The actual Tp lies between the two limits of equa- 
tions (8) and (9). Due to the large cutoffE e it is advan- 
tageous to use equation (7). By iterating equation (6) 

a gap equation of the form ~ A n mAre = 0 is o b -  
mffi o ' 

tained, with 

An,m = (~n,m + S2ambn,ra)(1 -- slo) 

+ sls2am ~ akb~,m. (10) 
4 = 0  
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Tp is the solution for det (A) = 0. The results are 
shown in Fig. 2 for sl = s2 = s. The overall change in 
T v is a factor of ~ e x p  (2/s) which is very large ifs  is 
small. The drop in Tp becomes important for Wo ~> 
2~rTp. 

Tp 
300 

I00 

l o -  (b) s--o.4 ~ ' ,  
(c) s:o.5 

I I I I I 
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Fig. 2. Tp for sl = s2 = s. For Wo >>Ec, T v approaches 
the non-retarded value T~ [equations (9) and (11)]. The 
arrows show the transition temperature for sl = s, su = 0. 
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Fig. 3. Isotope shift parameter for sl = s2 = s. For 
COo >> E c the curves approach a = ½/(1 + ~o/Ec). 

The isotope shift parameter is defined by ct = d 
In Tp/d In M where M is the ion mass and COo "~ M -1/2. 
Evidently (~ > 0 and can be rather large for Wo >~ 21rTp, 
as shown in Fig. 3. 

For Wo >~ Ec it is more practical to consider the 
gap equation on the real axis. Using the same procedure 
as for superconductivity x° and asuming a frequency 
independent gap gives 

Tp = T~ (1 + Ec/cOo) ''/(z~* -s,). (11) 

Thus the non-retarded limit is obtained only for COo >> 

Ec. 

Finally the gap Ao at T = 0 is considered. Using 
equation (8) I obtain for small COo 

2Ao/Tp ~- 3.5 exp ~-~s (COo '~ Tv). (12) 

In the nonretarded limit of high t~o the gap has the 
form Ao = 2E e exp [-2/(~1 -~½ s2)] with 

= s ,  1 - _ = - - - _  

(13) 

where we, m R are average phase and amplitude fre- 
quencies. Since 60¢ < con 9 the ratio 2Ao/T ~ in this 
limit can be much larger than 3.5. 

The same effect is demonstrated by equation (5) 
for all termperatures T < Tp. As T/Tp becomes smaller, 
the difference between the phase and amplitude propa- 
gators becomes larger. Since this difference is attractive, 
the gap becomes larger than the gap of the BCS type 
equation. 

It is known experimentally that 2Ao/Tp is in the 
range 8-10 .  5 This is usually ascribed to thermal fluctua- 
tions which reduce Tp but not Ao, However this result 
can be accounted for by either the s2 interaction [equa- 
tion (12)] or by the non-degeneracy of the phase and 
amplitude modes [equation (13)]. Both effects are 
fully consistent with Tp as a solution of equation (6) 
which does not involve fluctuation effects. 

In conclusion, the importance of the small momen- 
tum phonons was shown. Tp is a decreasing function of 
COo and the isotope shift is positive. This general feature 
is a consequence of two factors: (a) The Sl interaction 
is attractive while s: is repulsive. (b) Retardation affects 
only the s2 term. The factor (a) is true also in the 
exactly soluble case of the non-retarded interaction, i s  
The factor (b) is related to the fact that sl couples a 
static deformation with the electrons and this coupling 
should not involve dynamical effects. On the other hand 
s2 couples only virtual phonons ilike in Fig. l(d)] 
which are responsible for the frequency dependence. 
Thus it can be expected that the general feature of the 
results will not change even if higher order terms were 
included. (As needed if the in~erchain coupling is 
too small.) 

Experimentally acoustic photons would show a 
small isotope shift, since then COo ~ Tp.l'2 However 
it was suggested 16 that high frequency bond vibrations 
are responsible for the Peieds inslability in T T F -  
TCNQ. In such a case COo >> 2rrTp and an isotope shift 
measurement may check this suggestion. 
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