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We study the superconducting transition temperature (Tc) and the Peierls 
instability temperature (Tp) using Eliashberg type equations for both  T c 
and Tp self consistently with finite interchain coupling. We show that 
T c > Tp below a critical e l ec t ron -phonon  coupling constant which de- 
pends on the bare phonon frequency. This determines an upper bound on 
T c so that for higher transition temperatures Tp > T c and superconduc- 
tivity is unlikely. Higher values of  Tc are possible if the interchain coup- 
ling is increased above a critical value where the Peierls instability is sup- 
pressed. 

THE POSSIBILITY of  superconductivity in one-dimen- 
sional ( l d )  systems has been of  interest for quite some 
time. Even before the BCS theory Frohlich I proposed 
a model o f  a l d  metal undergoing a Peierls transition 2 
at a temperature Tp with a propagating lattice distortion. 
More recently this system was shown to possess some 
paraconductivity above Tp. 3 Below Tp the Frohlich 
mode is likely to be pinned down leading to an insulat- 
ing phase. 

In the present work we consider the true pairing 
(BCS) superconductivity (below To) and the Peierls 
phase (below Tp) which are both due to the same 
e l ec t ron -phonon  interaction. 

Experimentally only few relevant systems are 
known up to date. K2Pt(CN)4Bro.33HzO(KCP) 4 shows 
a Peierls instability at Tp "" 100°K with no trace of  
superconductivity,  while (SN)x is a superconductor 5 
below T c = 0.25°K. Tetrathiofulvalene tetracyano- 
quinodimethan ( T T F - T C N Q )  shows perhaps paracon- 
ductivity, 3 but  below 53°K it is an insulator in the 
Peierls phase. 6 Also relevant are the intermetallic A-15 
compounds,  whose quasi ld  nature was proposed to 
contribute to their high T c.7 The martensitic trans- 
formation possible in these compounds was associated 
with a Peierls transition. 7'8 

Theoretically it was shown 9 that within logarithmic 
accuracy (Parquet approximation) the Peierls phase and 
superconductivity occur together in pure ld  systems. 
More advanced calculations show that the nature of  the 
ground state 1°A1 depends on the important  couplings 
describing momentum transfer of  2pF or zero along the 
chain direction Z, where PF is the Fermi wavevector. 
For the electron phonon couplinggq we define 
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2 • 2N(0)/~Oo sl = gqz~  2pF 
(1) 

s2 = g ~ z  - o .  2N(0)/~o 

where N(0) is the electron density of  states for both  
spins at the Fermi surface and COo is the bare phonon 
frequency. 

For the strictly l d  system the ordered phases exist 
only at T = 0 and may appear simultaneously in a region 
of the Sl, s2 plane. However, once an interchain coupling 
is introduced, one of  the phases would have a higher 
transition temperature and we expect  just a line of 
coexistence in the Sl, s2 plane on which T c = Tp. 

In an a t tempt  to describe real systems we wish to 
improve upon these works 9-11 in two respects. (a) 
Introduce an interchain coupling so that a finite tran- 
sition temperature is possible. (b) Attractive interactions 
(sl ,  s2 > 0) are due to phonons, therefore retardation 
effects as well as the soft phonon effect should be 
included. 12 

The  interchain couplip,g can be introduced from the 
weak coupling limit, 13 or assume it is large enough so 

that the mean field (MF) theory is valid. Thus it was 
shown 14 for a non-retarded interaction that sl = 2s2 is 
the coexistence line. Retardation and soft phonon 
effects have also been investigated lr'--17 (with no inter- 
chain coupling) showing that the coexistence line has 
sl ~ 0  even for s2 = 0. 

We show here that these works  15---17 are qualitat- 
ively correct by accoL!nting for both  interchain coupling 
(assuming it is not too small) and retardation effects. 

The interchain coupling 7? is introduced by the 
electronic dispersion 

ep = e(pz) -- ~Tv(cos apx + cos apy) (2) 

where a is the distance between the chains and TF is the 
Fermi temperature.  The Peierls instability for such a 
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(b) (c) 

Fig. 1. The screened phonon propagator (a) and electron 
self mass corrections: The direct term (b) and the ex- 
change term (c). 

system was recently investigated TM showing that the 
instability with the wavevector qo = (n/a, n/a, 2pF ) 
exists even for large values of  rb The Peierls instability is 
effectively described by a ld  theory for 

77 >~ 4T/TF. (3) 

The lower bound on r/is such that fluctuations reduce 
Tp by less than 20%. If e(pz) has electron-hole sym- 
metry e(p v + 6pz  ) = -- e(p F -- 6pz  ) then Tp is inde- 
pendent of r/. (Electron energy is measured from the 
Fermi level.) In this case there is no upper bound on 77 
due to the perfect nesting of  the opposite Fermi sur- 
faces, which leads to the "effective" one dimensionality. 
We first assume that electron-hole symmetry exists. 

The interaction is represented by the screened 
phonon propagator D(q, iv,,) and for the important 
momenta we obtain (u n = 2rrTn) 

1 2 u," 2 T + a ( n  
Q,(n) =- l s lO(qo,  iUn) = 5 + In ~;p- 

1 1}l - -  + Q2(n) - ~s2D(O, iUn) = 4s2  

a(n) = j [{nn~2 dx. (4) 
° x [ ~ - )  + x  

Ql(n) is obtained TM from Fig. l(a) and the singularity at 
n = O, T = Tp is due to the soft phonon at the Peierls 
instability. The expression for a(n) is exact within MF 
[Fig. l(a)] and reduces to the usual form a a ( i P  n = P)  = 

--i lru/8T for u/T ~ O. Q2(n) corresponds to the bare 
phonon propagator and screening effects which are 
concentrated near qz = 2pF are neglected for qz ~ O. 
Equation (4) assumes that coo is independent of q, 
which is reasonable for an optical phonon. However 
even a 3-dimensional acoustic phonon with qz ~- 0 con- 
tributes mainly with its large q~, qy momenta (higher 
density of states), hence a constant COo is reasonable 
even in this case. 19 

We evaluate Tc (for a zero Peierls gap) using the 
linearized Eliashberg equations for the BCS gap function 

~n(p), 20 

+.(p)  = 

& ( p )  = 

x . ( p )  = 
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[win = nT('2m + 1)1 

1 

-- T E [comZm(p')]  2 + [ep' + Xrn (P ' ) ]  2 pt, m 

x gZp_ p'D(p -- p', iu,_ m)Om (P') (5) 

T comZm(P') 

1 . . . .  Z [comZm(P,)l = + [%, + Xm(p')]~ (,O1,l p,, m 

X g2 _p 'O(p  -- p', ip n _ m)  (6)  

ep, + Xm(P') 

Tp'~mX~ [~mZm(P ' ) ]  z + [ep' + ×~(p,) ]2  

× gZp-p'D(P --P',  iUn- m)" (7) 

These equations are derived within the Nambu 
notation 21 from the exchange term, Fig. l(c). (The 
direct term, Fig. 1 (b) does not contribute to supercon- 
ductivity.) 

The Nambu notation can also be used in the Peierls 
space 22 and an analogous equation for the Peierls gap 
k ( p )  is obtained 

zXm(p') 
& ( p )  = - T Z 

o ' ,=  [COmZm(P )] 2 + [%' + Xm(P')]2 

2 ~gqD(q, iu n_ m)] (8) x [gqoDo(qo, O) -- I 2 

with qz = IP, I -- IP'zl -~ 0 and the same renormalizing 
functions of  equations (6) and (7). Discussion of  
equation (8) and the effects of retardation on the Peierls 
gap are presented elsewhere. 23 The first term in equa- 
tion (8) is due to the direct term, Fig. l(b), and by 
iteration it is seen that screening is already included. 
Thus the bare phonon propagator Do(qo, 0) = -- 2/coo 
appears in this term. The second term in equation (8) is 
due to the exchange term, Fig. 1 (c) and involves only 
small momentum transfer. By iterating the exchange 
term on the direct term it is seen that vertex corrections 
of  the ladder type are included, and these indeed involve 
only qz ~ 0 momenta. 24 An instability in the ladder 
summation is responsible for superconductivity 25 so 
that these vertex corrections represent the effect of  Tc 
on T o, analogous to the effect of  Tp on Tc by screening 
the exchange term [equations (4) and (5)]. This demon- 
strates the self consistency of equations (5) and (8) which 
both correspond to Fig. 1 in their respective Nambu 
spaces. However the screened interaction is not fully 
consistent since Ql(n) [equation (4)] does not include 
vertex and mass corrections. We account for the main 
renormalizing effect by using for Tp in Qffn)  the actual 
solution of  equation (8). As for other vertex corrections, 
we note the success of  the Eliashberg equations in 
describing well known superconductors. Thus we expect 
the present formalism to be valid, at least for not too 
small 77. [equation (3)].  
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We proceed to evaluate rhe renormalizing functions, 

equations (6) and (7). The terms with n = m are singular 
at p - p '  = q0 for T ~  Tp, thus we substitute %, = 
ep_ qo = -- ep and use 18 

<A2) = --  g~vF T E D(q, 0). (9) 
q 

(A 2) is the fluctuation average of  the Peierls gap. For the 
terms n ¢ m in (4), it can be shown that the momentum 
dependence o f D ( q  ~--qo, iv, 4= 0) is strongly reduced 
and since these are not singular we neglect this depen- 
dence. These terms give a small correction qn to Z n and 
vanish in the equation for X,, 

Zn(p)(dx 2) 
Zn(p)  = 1 + [conZ,(p)] 2 + [e, + X n ( p ) ]  2 }- qn 

ep + X.(P) ~62). (10) 
Xn(P) = [co .Z . (p ) ]2  + [% + Xn(p)]2 

The renormalized electron dispersion is ~p = 
[% + X . ( p ) ] / Z . ( p )  = %/(1 + q,,) so that the possibly 
divergent terms with (2x 2) cancel and ep is only slightly 
modified. The Fermi velocity is reduced by this effect 
and we assume that the q,, are effectively absorbed in 
the definition of  VF [or N(0) ] .  Thus the renormalizing 
function Xn(P), which is usually neglected, 21'22 is 
important  in this case due to the singular behaviour of  
D(q, 0). 

Thus we obtain from (10) 

ep + Xn(P) = Z.ep  

Z,, = ½[1 + ( 1  +4(A2)/con~) 1/2] (11) 

and the momentum dependence of  Z,, is negligible for 
ep <~ rrT. In the range (3) we have is 

(A2~ ~_ (27rT2/vTF)~ (12) 

so that for r~ ~> 4T/TF, and qn = O, Z .  are indeed close 
to 1 and the MF approximation is valid. 

In equation (5) for the BCS gap we treat the n = m 
terms as above using equation (9), while in the n 4 = m 
terms the momentum integration involves mainly the 
electronic factor and the phonon part reduces to Q(n) = 
Ql(n)  + Q2(n). Since ~ ( -  co,,,) = ¢(COm) we obtain for 
the coefficients of ~n = ¢ , J Z ~ n +  1 the symmetric 
matrix (n, m ~> 0) 

= [ (A2)+ Q(2n + 1) Z2]gn, m 
2,,  + 1 

Q(n - m) + Q(n + m + l ) 
+ [ ( 2 n + l ) ( 2 m + l ) ] l / 2  (1 - -6n ,  m). (13) 

T c is the solution for det (A) = 0. From equation (8) the 
the Peierls gap satisfies 

93 

2 ~ A m E c 
An = - -  Z-"oZ~'2m -,= mt + l ) t a n - 1  71" com 

x [sl - Q 2 ( n - m ) - Q 2 ( n  + m  + 1)]. (14) 

Since the sl term is not retarded the electronic cut- 
off energy Ec has to be kept. In the limit coo/T ~ 0% 
Q2(n) -* s2/4 and for Z ,  = 1 the MF result la'z3 T~p = 
1.13E c exp [-- 4/(2s t - -  sz)] is obtained. We use 
Ee = 4TF which corresponds to the free electron dis- 
persion for e(p~). TM By iterating equation (14) a faster 
converging series is obtained, 23 and T o is the tempera- 
ture for which the determinant of  the coefficients 
vanishes. 

The renormalization Z ,  is important  as we move 
out of  the MF range (3). Although the present formalism 
is not sufficient in this case, we can make some qualitat- 
ive remarks. For r / ~  0 for the fluctuations (A 2) diverge, 
but this is cancelled by a similar divergence of  Z~ in 
equation (13). Thus the solution for Tc/T p depends 
weakly on 7/. However from (14) Tp is reduced i f Z ,  
diverges so that both  Te and Tp are reduced due to 
renormalization at small 7. 

We solve equations (13) and (14) for Te and Tp and 
plot the coexistence line (Te = Tp) for r / =  0.1 in Fig. 2. 
The dependence of  the phase diagram on r/is weak in the 
the range (3), and as mentioned above, is expected to 
remain weak even for small r/. The main feature of  the 
results is that for small coupling s . ,  Tc > Tp while for 
larger sl, T o > To. Thus for any coo and s2 there is an 
upper bound on Te. For 3sz --  s j > 4 the system is 
unstable at q = 014'24 so that we limit the phase 
diagram to 0 ~< sz < 1. In this range the maximal Te is 
roughly given by max (Te/coo) = 0.002 + 0.045s2, so 
that for s2 = 1 the maximal Tc is roughly coo/20. The 
dimension of  the determinants in the calculation has to 
be larger than COo/2rrTc, thus dimensions in the range 
10 -100  were used. 

Comparison with the dashed line, s~ = 2s2, in Fig. 2 
shows the effect of  screening and retardation. For large 
couplings retardation effects are important  reducing 
T¢ and enhancing Tp, so that the coexistence curve has 
sl < 2s2. For small couplings (low T/coo), retardation is 
not important ,  while screening enhances T e but not Tp, 
so that the coexistence curve has Sl > 2s2. If  screening 
would not be included the coexistence curve would have 
joined the line sl = 2s2 at low couplings. 

In Fig. 3 we plot T~ and Tp along the line sl = s2 
for r / =  0.1. Of course only the higher transition tem- 
perature is valid in our description. (The gap created at 
the higher transition temperature will possibly eliminate 
the other phase at lower temperatures.) 7'z5 As coo de- 
creases Tp increases, and the soft phonons which 
become available at figher temperatures enhance T~. 
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Fig. 2. Phase diagram for • = 0.1. The dashed line 
Sl = 2s2 is the coexistence line for an instantaneous 
interaction. 
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Fig. 3. Tp (full lines) and Tc (dashed lines) for ~ = 0.1. 
The crossing points are marked with a point. 

Let us now extend the calculations to high values 
of r/, above ~?c, where the Peierls instability is suppressed. 
This happens if e(pz) in (2) does not have electron-hole 
symmetry, as for the free electron dispersion. In this 
case the critical r/c is 18"23 

rTc = 8exp  --(2s~-~-~-- s%)" (15) 

For r7 ~> rtc, x/rT~F, we can replace the factor In T/Tp 
in equation (4) by 2 In *?/~c TM which represents the soft 
phonons with finite frequency at ~ > 7? c. We plot in 
Fig. 4 T~ and Tp as functions of  ~7 for sl = s2 = 0.4. 
The main feature is that T c is enhanced as the phonons 
become softer (7? ~ rTc). For small 7? we observe the 
importance of renormalization in reducing Tc and Tp. 

It has been claimed that phonons with frequency 
below 27rTc are not very helpful. This is the case if one 
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Fig. 4. Tp (full lines) and Tc (dashed lines) for sl = 
s2 = 0.4, as functions of  the interchain coupling. 

compares different materials, so that the e lec t ron-  
phonon coupling gq depends on the phonon frequency, 
and the total weight of  the Eliashberg function a2F(co) 
is constant. 26 However for a given material, phonon 
softening due to temperature variation does not change 
go and the relevant constraint is that f o  Co°t2F(Co) dco is 
constant, ls'24 Thus in our case the functional derivative 
~Tc/6a2F(co) has a maximum at co = 0 so that the 
phonon is more helpful for superconductivity as it is 
softer. 27 

In conclusion we have seen that superconductivity 
is limited by the lattice instability to roughly Tc ~< 
COo/20. In order to achieve a higher Tc the Peierls phase 
must be suppressed by distorting the Fermi surface, and 
the soft phonons, which are still present, help to en- 
hance To. The high Tc of  the A15 compounds may be 
due in part to such a mechanism. Distortion of  the 
Fermi surface can be achieved by increasing the inter- 
chain coupling (i.e. by pressure) or by other means, i.e., 
nonmagnetic impurities. 2s 

Our resutts explain why for (SN)x at T = 0.25°K 
T~ is favoured while for KCP at T ~ 100°K the Peierls 
instability is dominant. For T T F - T C N Q  the answer 
depends upon which COo we should use. For the acoustic 
phonon Tp >> T c at 53 °, but for high frequency bond 
vibrations 15'29 Te ~ Tp. 

The possible degeneracy between Tp and Te 8-11 
is lifted by three factors. (a) Independent variation of  
both s,, s2. (b) lnterchain coupling and (c) The retarded 
nature of  the phonon induced interaction. In the present 
work we have demonstrated the practical importance of  
factor (c), 
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