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A double Nambu formalism is developed which can deal in a straight-
forward manner with all possible instabilities of a single band with nesting
Fermi surfaces. Besides the usual density waves and superconductivity, also
strong coupling phenomena are considered, such as ferromagnetism,
Martensitic instability, and the somewhat bizarre state of localized Cooper
pairs. The system is solved in the mean field approximation which is valid
when the Fermi surfaces are not too flat.

THE VARIOUS INSTABILITIES of an electron system
with nesting Fermi surfaces (FS) have been investigated
by many authors. In particular the one dimensional sys-
tem, which correspond to parallel flat FS has been’
recently investigated.

It is advantageous to present a method which can
deal with all the instabilities on the same footing and
represent them in a straightforward manner, This is ac-
complished by using a double Nambu representation in
the BCS space® and in the Peierls space.? The various
elements in the 4 x 4 matrix of the Green’s function
represent the possible instabilities.

I solve the system in the mean field (MF) approxi-
mation which is valid when the system is not too one di-
mensional. In particular I have in mind a linear chain
system with an interchain coupling 7, leading to an elec-
tron dispersion of the form

€p = €(pz) —nTF (cosap, + cosapy). )

Due to electron—hole symmetry e(pr + 8pp) =
—e(pr — 8pr) (€, is measured from the Fermi level)
the condition for nesting FS is obtained
()

€p+Q2 = T €p-qQn2

with Q = (n/a, n/a, 2pg). L use |p,| < pF so that the
phase space consists of — 2pp <pz <2pp. The con-
dition (2) is independent of 7, so that density wave insta-
bilities are possible for large 17 where the MF is valid.®

In what follows one dimensional notation will be
used and @ = 2pg, however interchain coupling is
readily introduced by (1). The condition (2) will be the
only restriction on the electron dispersion.

The Hamiltonian of the system is

H=3} €+02(C5+026Co @20 —C5-0126Co-@120)

p,0

+ig:{ 2.Cp C5,+020Cp,-0120Cp,-@120'Co + Q120"

+ H.C.

+H.C.

+%g3 Z p+Q/2a P, leon2+Q/2a Cpa-Q/ZU'
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@20 . 6
Summations include spins (o, ¢’ = * or {) and are re-
stricted by |p;l < Q/2 and p, + p; = p3 + p4. The coupl-
ings g,, g4 Tepresent small momentum transfer scattering,
g1 describes the large momentum (~ Q) transfer, while
g3 is due to umklapp processes.*

In the usual Nambu formalism of superconduc-
tivity  the vector field 117; = (Cpt, C-p,) is introduced.
In order to account for the special correlation between
the two sides of the FS, the Nambu formalism in the
Peierls phase is superimposed,

p = (J’;-»Q/L lE;;—Q/z) =
C))

+
(Cp+Q/2T, C—p-Q/zl, C;—Q/ﬂ, C—p+Q/2¢)

and Y, is the hermitian conjugated column vector.

The 4 x 4 space is a direct product of the supercon-
ducting 2 x 2 space with o¢; as the Pauli matrices, and the
Peierls 2 x 2 space with 7; as the Pauli matrices, and pro-
ducts appear in this order.

The Hamiltonian can now be transformed into the
following form
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Table ]_. Notation and possible types of phases. The coefficients of the listed matrices in the expansion of
[Equation (6)] are the order parameters of the corresponding phases. Direct and Exchange refer to the two contri-
butions in Fig. 1. The equation of state is within the mean field approximation assuming g, = g4

Notation Type of phase Matrix Direct Exchange  Equation of state

S Superconductivity—singlet 031, 0,1 —g1—8 1=(—g —g)Fi(As)

T Superconductivity—triplet 0,73, 0,73 g8 1=(g1 —&)Fi(Ar)

P Peierls—CDW 037 O 037, —2g1%2¢g; 82%t8s 1 =(—2g, +g2+1g3)F:1(4p)
AF Antiferromagnetism—SDW 17, or 17, g2tgs  1=(g2+ lg31)F1(Asr)

F Ferromagnetism 11 &1 tga 1=(g1 +82)F2(4F)

M Interband electron shift 051 —2gy — 284 g1 tgs 1=(—3g,+g)F(Ay)

L Localized Cooper pairs o171, 021 —gatgy  1=(—g tlig)F(AL)

Ol 01T, U272

H = Z €p+@2¥p03TaVp
+4(g1 +83) 2 Vp,03T1Vp, Vp, 03T1¥p,
+h(e1 —g3) 2 Up, 03T2¥p, ¥p, 0372,
4+ T 03,081 ¥ 9,051 U,

+3e —82) XU} 173, U5, 1730, - (5)

The Green’s function in the Matzubara formalism
[w, =7aTQ2n + 1)] is a 4 x 4 matrix.

G (iwn,p) = iwnll = €,,0,20573 — Z(iw,, p)
(6)

where X can be expanded in the 16 basic matrices. The
various instabilities of the system correspond to differ-
ent coefficients A; of this expansion, as shown in Table
1.

The charge density wave (CDW) and the spin den-
sity wave (SDW) correspond to the singlet and triplet
electron—hole pairs, while the superconducting phases
correspond to singlet and triplet electron—electron pairs.
Diagonalizing the relevant Green’s functions gives the
excitation spectrum * v/e? + A? which has a gap, and
thus denoted as type I instabilities. All the following
phases do not have a gap in the quasi particle spectrum,
but lead to a relative shift of the Fermi level between
various states and are denoted as type I instabilities.
The coefficient of ¢374 represents normal metal renorm-
alization and should not describe any instability. The 11
matrix represents a relative shift of energies between the
+ and | spins and corresponds to Ferromagnetism. The
175 represents an energy shift between the p > 0 and
p < 0 states which implies shift of electrons to the p >0
or p < 0 states. Since the interactions depend only on
the momentum transfer, the potential energy would not
change, while the kinetic energy increases and this phase
cannot be stable. (In the present formalism a difference
among the couplings in (3) implies that the interaction

depend also on the signs of the various momenta. This
may lead to a spurious solution only in this case where
time reversal is violated.)

The coefficient of 03] represents a shift in the
energy of the whole band. Thus if another band is avail-
able an interband shift of electrons is possible. This is
essentially the Labe—Friedel—Barisic model ® explaining
the martensitic transformation in the A15 compounds.
These compounds have three orthogonal families of
linear chains,® so that electron transfer from one chain
to the others, will induce a cubic to tetragonal trans-
formation.

Let us next examine the rather unusual phase repre-
sented by 0,7, which I label as L,

Gnl(iwn’ p) = iwpll —€p.0203T3 — Apoy7y.
The diagonalizing matrix is U = (11 + io17,)/v/2,
UG _l(iwn, P)U_l = iwpll —€,,/20373— AL 73,

Thus the phase is of the type II-shift in the relative
energies. The product Uy, gives the eigenstates
(Cprgrt * Clpioni)N2 withenergies €5,/ £ Ap.
This is similar to the BCS type eigenstates, except that
the combination has always equal weights for an elec-
tron and a hole. Thus all the momentum space —Q <p
< Q is uniform — half filled and half empty which means
localized electron pairs. These pairs have momentum £ Q
so that this phase is a superposition of a CDW and
Cooper pair correlation. This phase has been noted with-
in the Hubbard model,” but it is not clear whether it is
superconducting.

Replacing 6, by 0, or 7y by 7, changes the phase of
the wave function and so does not change the nature of
the instability. Thus the classification of Table 1 is com-
pleted.

The next step is to obtain the various equations of
state in the MF approximation, as illustrated in Fig. 1.
One should sum the various matrices I'; in (5). The direct
term gives



Vol. 18, No. 4
|
{

—

Fig. 1. Mean field diagrams for calculating = in equation
(6). (a) Direct term. (b) Exchange term.

d3p
(2n)°
while the exchange term has an opposite sign and no
trace. Equating the coefficients of the various matrices
leads to the equations of state in Table 1. The functions
F,(A), F5(A) characterize the instabilities of type I and
II respectively:

0T Y | S Tr [Glion, P + . .

tanh (\/e? + AY2T)
—seF A

n(e — A) —n(e + A)
—sa—

Fi(8) = [ dee) )

Fy(8) = [ deN(e)

N(0) is the free electron density of states for both spins
and n(e) = [¢¥T + 1]7!. An essential difference be-
tween the two types of instabilities is that F;(A) diverges
as A, T - 0 while F,(A) stays finite. Thus type I insta-
bilities exist for any coupling, while type II require
rather large couplings. A necessary condition for a solu-
tion to 1 = gegeFr(A) is

8etsN(0) > 4. ®

The Umklapp coupling g3 has an interesting effect. The
replacement 7, <—> 7, changes the sign of g, so that the
possibility with |g3| dominates, and the phase of the
density wave is determined. Now g3 # 0 means that Q
is commensurate with the lattice spacing so that comm-
ensurability leads to pinning of the density wave, which
is a well known effect.®

Finally, the phase diagram of Fig. 2 is obtained.
Since usually interactions depend only on the momen-
tum transfer I assume g, = g4. The type I phases ex-
clude each other (except on the coexistence lines g, =
2g, + |gsl and g; = 0) since they obey the same
equation 1 = ggF'1(A) with different couplings. The
comparison between type I and I phases depends sensi-
tively on the form of N(e), especially through F,(A).
Thus the dashed lines in Fig. 2 describe the necessary
condition equation (8) and type II phases may occur
beyond these lines. The dashed lines do not limit the
type I phases and the two types may coexist. Thus in
the A15 compounds somewhat below the Martensitic
transition superconductivity appears. Also one should
note that the M phase is not ajways feasible.
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Fig. 2. Phase diagram using notations and equations of
state from Table 1. Full lines are phase boundaries, while
dashed lines limit the phases further from the origin ac-
cording to equation (8). (Ig3INV(0) = 1 is assumed arbi-
trarily).

It is quite surprising how close are the results for
type I phases with those obtained using more sophisti-
cated methods for the strictly one dimensional problem.
Figure 2 is consistent with exact results for the
Tomonaga model® (g, = g3 = 0), for the Luther and
Emery case? (on the line 3g, V(0) = —3/5) and the
Hubbard model solutions ' (g, = g, = g3 = g4). Figure
2 (for type I phases) is also very similar to results ob-
tained using renormalization group techniques. 1214
The only difference is the possible coexistence of two
phases in various regions of Fig. 2. However these
works 12714 a)s0 differ between themselves in this
respect.

A possibly important correction to MF is due to
screening effects. This was recently studied, including
phonon retardation effects for the P—S coexistence line.
It turns out that this line crosses g, = 0 at some g; <0
(for g3 = 0). This is due to the fact that the contribution
of g, to the P phase comes from the direct term while
the S phase is driven by the exchange term. Now only
the exchange term needs screening since by iterating the
direct term it is seen that screening is already included.
Thus screening would enhance only the g; term of the
S phase, leading to superconductivity for small couplings
g: <0, even forg, =0.
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