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REFLECTIVITY OF A ONE-DIMENSIONAL ELECTRON-PHONON SYSTEM
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The effect of the giant Kohn anomaly in a one dimensional system on the
optical reflectivity is calculated, for parameters believed to be characteristic
for TTF—TCNQ. It is found that the Kohn anomaly in the optical phonon
branch due to stretching vibrations of the C=N groups, whose unperturbed
frequency is 2100—2200 cm™, produces a minimum in the reflectivity at
1600 cm™ , approximately. This minimum coincides with the minimum
found experimentally by Bright, Garito and Heeger. By this mechanism,
phonons with a wavevector of order 2k affect the reflectivity of photons

with ¢ = 0.

IT WAS suggested in a previous paper that the metal-
to-insulator transition observed in TTF—TCNQ at
~60°K ! may be a Peierls—Frohlich transition due to
the interaction of the one-dimensional electron system
with optical phonons at 2kg, namely, with the
stretching vibrations of C=N or C=C bonds.? Recently,
the reflectivity of TTF—TCNQ was shown by Bright
et al.3 to possess a very broad minimum around

1500 cm™. The overall reflectivity curve, except for
this minimum, was fitted by the authors of reference
3 using the Drude form of the dielectric constant

2
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( ) 0 2 Vi 1/1'

(1)
with a frequency independent 1. The reflectivity is

given by
1 + lel — [2(lel + Re €)]?
1+ lel + [2(lel + Re )]V

R(w) = (2)
In this note we wish to apply a recently developed
formalism? to calculate the effect of the coupling of
the conduction electrons with the bond vibrations on
the reflectivity.

We assume a simple picture of free electrons with
a Fermi surface consisting of two parallel planes,
coupled to phonons. The system is described by an
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effective Fréhlich Hamiltonian
H= %epcj,cp +z wlada, + Z & (ag + al )} qcp,

3)
where g, , ¢, are the phonon and electron.destruction
operators and g, is the electron—phonon coupling
constant. We characterize the coupling strength by a
dimensionless parameter s, defined by

0
g = Lelza @

where w] is the bare phonon energy, E is the Fermi
energy and n is the electron density. In such a one-
dimensional system there is large phase-space volume
available for low-energy electron excitations accom-
panied by the absorption and emission of phonons at
q ~2ky. This leads to a strong coupling with such
phonons and thus to a significant renormalization of
the phonon spectrum in this region, which results in
a Peierls—Frohlich instability at a critical temperature
Tp and a giant Kohn anomaly at 7> T,.

The strong coupling to phonons at 2 kg results in
a frequency dependent life time of an electron state
at the Fermi surface, given by
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1 1
) " n ~Im = (kg,w), (5)

where Z (kg ,w) is the self energy of an electron at
the Fermi surface. The latter is obtained simply from
the “imaginary time” self energy given by

E(sziwn) = -7 Z J(2 )3g2kF+q X

D(sz + q, iwn - lwm)G(_kF -4, iwm), (6)

where 8 = 1/kT, w, = 7(2n + 1)/8, and D, G are the
phonon and electron Green’s functions. For G we
take the free electron Green’s function

1
Gk,ivy,) = ————, @)
fwm =~ (6 — 1)
and write D in its spectral representation

Dk, iwp —iwn) =

2 1 i(w,,—wm)—w' (wy — wp) + W'
I

[

(8)
We assume that the integrand in equation (6)

depends only on the momentum components in the
direction of the linear chains and the integration over
the transversal components introduces a factor 1/a?,
where ¢ is the distance between two chains. Inserting
equations (7) and (8) into equation (6) and summing
over m, we obtain

. 1 ¢ dg Fde’
E(kF’lwn):P 55 'f——gng+qB(2kF+q w")

X
[N(w)+1—n(kF+q)

N(w") + (kg + q) }

iwn — (€kpeq —H) — @' Wy — (€ppeq — M)+ '

9)
where N(w) and n(k) are the Bose—Einstein and
Fermi—Dirac distribution functions. We expect that
the main contribution to the seif-energy comes from
phonons in a narrow region of momenta Ak around
2kg(q = 0) and evaluate the integrand at that point.
To obtain the imaginary part of the “real-time” self
energy, we replace iw,, = w — 6. Then

2
Ak
g S BCke,w) V) + 1 = nlkp)].
(10)
Being interested in frequencies above 1000 cm™ (five
times the room temperature), we approximate

Im = (kg,w) =
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N(w) = 0. Finally, .
&Ak :
ph(e w) = 5 BQkr, w). (11)

The spectral density function B(k, w) was derived
and analyzed in the random phase approximation in
reference 4. It reflects the softening and broadening
of the phonon spectral density around 2 kg, as well as
the instability when T'— T,. It is shown in reference 4
that

8wi sl (w)
BQkg,w)= ,
(2kp.w) [w? — Wi+ 2wisl(W)]? + 4wisiTF(w)
(12)
where wy is the bare phonon frequency, s is the value
of 5, at g = 2kg [see equation (4)] and (for T < Ty)

Ii(w) = é(Z +ln4)—§1;[(y +7)ln(y+r71)

—(—7)nly—rll, (13)
/ _m 1 _ 1 (14
)= glexeCapm 1 expym 1| Y
where
T = T/Tg, Yy = wl4ep.

Let us now turn to the TTF-TCNQ crystal. We
assume that the conduction electrons on the TCNQ-
chains are most strongly coupled to the C=N bonds,
because they occupy mainly the neighbourhood of
these bonds in the TCNQ molecules.® The vibration
frequency of a C=N bond is around 2100-2200 cm™t,
depending on the material. It is observed experimen-
tally by Bright ef al. {Fig. 4, reference 3) at 2150 cm™".
This will be our value of wq. The Fermi energy is
0.25¢V and s = 0.36, as determined by the relation?

» = 2Tp exp [1 —(2/s)], (15)

with T, = 60°K. The function B(2kg, w) for these
parameters and several values of T is plotted in Fig. 1.
It shows a characteristic two-peaked structure which
was discussed in reference 4 (a similar structure of
the phonon spectral density was also found by
Barisic ez al.)® The lower peak grows and moves
downwards when T — T, until it develops a diver-
gence at w = 0 for T'= T,. At the same time the
higher peak is almost independent of 7 down to T},.

We shall now make the phenomenological
assumption that the life-time defined in equation (5),
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FIG. 1. The function B(2kg) (in arbitrary units) for
various temperatures: (a) —300°K, (b) —200°K,
(c) —100°K.

which is determined by the emission and reabsorption
of virtual phonons, contributes to the relaxation time
in the Drude formula to give an effective 7

1 1 1

Tetf To Tph(w) ’

where 7, is determined by the emission and absorption
of real phonons. In our case (T = 300°K, 6p = 90°K,
w = 2000—3000°K) the first term in equation (16)
involves only acoustic phonons, whereas only optical
phonons (molecular vibrations) contribute to the
second term. We have calculated the reflectivity with
7 in equation (1) given by equation (16), and the

(16)
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values € = 2.43, w, = 1.8 X 10"sec™, 7o = 2.83 X
107 sec, suggested by Bright et al.®

The resultant reflectivity is piotted in Fig. 2,
curve (a). The minimum (~1600 cm™) is close to
that observed experimentally by Bright et al.? and it
has the same width and shape. Curve (b) shows the
1atio 7o/7pp(w). There is some uncertainty in the
constant coefficient of B(2kr, w) in equation (11),
which was chosen so as to give a ~5 per cent reduc-
tion in reflectivity at the minimum. Changes in this
constant do not effect the position of the minimum,
its width and shape. Note that the minimum in the
reflectivity is due to the higher peak in the phonon
spectral density. Since the position and shape of this
peak is almost independent of T, we expect that the
minimum in the reflectivity will not change with
temperature.

In principle, the minimum in R(w) at 1500 cm™
may be due to C=C bond vibrations which are
resonant at this frequency, or to C=N bond vibrations
loaded and shifted down in frequency by the conduc-
tion electrons (or a combination of both factors).

The present calculation shows that the second possi-
bility is consistent with experiment; however, the
other one cannot be definitely excluded. While vari-
ation of temperature should not change the reflec-
tivity significantly for wavelength \ < 10 ym, the
application of hydrostatic pressure is expected to
provide a decisive experiment to verify (or refute)
the present model. Chu ef al.® measured the electrical
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FIG. 2. The reflectivity R(A) [curve (a)] and the ratio 7o/7,, [curve (b)].
The dotted curve (¢) corresponds to s = 0.2, Eg = 0.5.
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conductivity of TTF—TCNQ under pressure in the
range 7—20 kbar, and found that the conductivity
falls rapidly while the metal-to-semiconductor tran-
sition temperature rises slowly with pressure. Jerome
et al.” performed a similar measurement in the range
0—6 kbar and obtained in addition to the transition
found by Chu et al..% an indication of a second tran-
sition with a critical temperature decreasing linearly
with pressure (T, = 32°K at 1.5 kbar). An extra-
polation of their results indicates that T, vanishes at
4 kbar. They identified the second transition as the
Peierls transition. In any case the variation of the
conductivity with pressure (found by both groups)
suggests that £ approximately doubles at 8 kbar and
this should roughly reduce s by a factor of 2 [equation
(4)]. Such a value of s gives a negligible T}, in accord
with the interpretation of Jerome et al.” With

Eg ~0.5eVand s ~ 0.2 (curve (¢) in Fig. 2) the
minimum in the reflectivity curve is expected to shift
to ~1900 cm™ if it is due to C=N bonds. For C=C
bonds the shift should be negligible because the ob-
served minimum is already very close to wy.

Note that Bright et al.3 observe the minimum in
polycrystalline samples, in which they also observe a
“normal” line at 2150 cm™ . This unshifted line may
be due to defective material at the surfaces of the
grains of the crushed sample; alternatively, the phonons
with g = 0, which are unshifted in frequency by the
electron—phonon interaction, may give rise to this
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line. Also the possibility of molecular normal modes
of the C=N groups of such a symmetry that they are
not coupled to the electrons must be considered.

We want to point out that the interpretation of
the Peierls transition in TTF—-TCNQ assumed in this
paper is quite different from that proposed by Bright
et al.® These authors consider acoustic phonons and
find a coupling constant A = s/2 = 1.2 which in mean
field theory gives T, ~ 1000°K. This is in agreement
with the model of Lee et al.® who argue that the mean
field value of T}, is much higher than the observed one.
We consider optical phonons and assume that the
observed T}, is close to the mean field value, which
leads to a coupling constant A = 0.18.

One point of criticism which can be raised against
our procedure may be the use of a free electron approxi-
mation, while TTF—TCNQ has a narrow 7-band. How-
ever, if the gap between the 7- and the excited 7*-bands
is small compared with the bandwidth the free-electron
model should be applicable. Bright ef al.3 claim to
observe interband transitions at ~1 eV indicating that
the band gap is smaller than 1 eV and of the same
order of magnitude as the band width. The question
of the free-electron vs the tight-binding model will be
discussed elsewhere.
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Nous calculons ’effet d’anomalie de Kohn sur les propriétés optiques dans
un systéme unidimensionnel, pour le systéme TTF~TCNQ. On trouve que
’anomalie de Kohn des phonons optiques dus aux vibrations des groupes
C=N, qui ont (sans perturbation) la fréquence 2100—2200cm™ , donne un
minimum du pouvoir de réflexion & 1600 cm™ . Ce minimum est le méme
que le minimum trouvé par Bright, Garito et Heeger. Les phonons ayant un
vector d’onde 2k modifient le pouvoir de réflexion des photons ayant un
vector d’onde avec g =~ 0.



