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A simple expression is derived for the exchange term of the electron gas at any temperature T. 
For T+ 0 we get for the specific heat: C, N Tin T + 0(T). Using a screened potential, the 
result can be corrected to: C, N T Iln TI + 0(T). 

The system of an electron gas with positive background has been thoroughly 
investigated by many authorsl). 

Usually the ground state or high-temperature properties were evaluated, neg- 
lecting the wide intermediate region of finite temperatures. The first-order correc- 
tion due to Coulomb interaction comes from the exchange term. Recently there 
has been an increased interest in the evaluation of the exchange term for finite 
temperatures2s3). These and previous works4*5) deal mainly with an expansion 
near T = 0. Even so the different works disagree as to the behaviour of the spe- 
cific heat as T + 0. 

In the present work a simple expression for the exchange term at any tempera- 
ture is derived and the implications on the specific heat at T --f 0 are studied. 

Let Qn, (z, V, T) be the exchange contribution to the thermodynamic potential 
Q (z, V, T) = - PV, where z is the fugacity of the system in volume V and pres- 
sure P. In the configuration space we have: 

9, (z, V, T) = - js d3r d3r’ e2 - IG (r - r’)12, 
[r - r’l 

co 

G(x) = d3p q, e 
I 

-1p.x I 
= - 

cw3 2X2X s 
n,p sin px dp , 

0 

(1) 

(2) 
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where nP = (z- 18p’i2m -t 1)-l, /? = l/kT, P = IpI, x = Ix/. 9, (z, V, T) can be 
more easily recognized if we transform to momentum space: 

d3p d3p' 
4xe2 

(p - p’)’ vb’ (3) 

which is the form given in ref. 4. Let us first evaluate the derivative with respect 
to z. Let us define: 

m 

g(x) = s cos qx 
dq. 

z -1p=m + 1 

0 

Then, by using eqs. (1) and (2): 

a.Q (z, V, T) = V 2me2 

s 

dg (x) - az 7QZ 

g(x) dx dx = - 

0 

By using the well-known functionf312(z)6): 

f3,2(z) = $jz_le$+ 1 dx 

0 

we obtain: 

Q,(z, V,T) = -V2e’ ~4 s [-& (01’ tdt, 

0 

(4) 

v- me2 g2(0). 
X”/lZ 

(5) 

(6) 

(7) 

where il = (2$/m)4 
The lower limit of integration is determined by direct calculation of eq. (1) in 

the limit z + 0: 

e2z2 
lim Qn, (z, V, T) = - lim V - = 0. 
Z-t0 Z-r0 A4 

(This is the limit where the Boltzmann distribution is valid.) 
Eq. (7) gives a simple expression for Q, (z, V, T) as a single integral of a well- 

known function. The exchange contribution can then be found at any temperature 
by a simple numerical integration. Evaluation of other thermodynamic quantities 
can be made with the free energy, which is given up to first order in e2, by’): 

F(T,V,N)=~OF,(T,V,N)+~,(~O,V,T), (8) 
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N is the number of particles and z0 is the interaction free fugacity, which is a 
function of T, V, N ") : 

(The factor 2 comes for the spin states.) r;b (T, V, N) is the free energy for fer- 
mions with no interaction. 

We now proceed to evaluate eq. (7) in the limit of z. + co, which corresponds 
to T + 0. We use the expansio@: 

f3,2 (z) = 4 
3Jn [ 

(In z)~‘~ + f (In z)+ + 0 ((ln z)-“~) 1 . 
This is an expansion for large z, and is valid above some zl. Thus the primitive 

function of z [i3f3,2(z)/cYz]2 has the expansion: 

J(z) = 2 In2 z - 
IC 

flnlnz + 0(Inz)-2. 

The integral of eq. (7) up to z1 is some finite constant, since f3,2(z) is a well- 
behaved function. Thus we obtain: 

dt + F(z) - Hz,) = F(z) + 6, 

0 0 

where 6 is a constant independent of z: 

6 = jf[$f3,.(,)l.dt - F(z,). 

0 

From eq. (7) we get: 

2 Ql (zo, V,T) = -V$- z ln2 z 
1 

0 
x 

- ~lnlnz, + 8+0 - 
( >I In z. 

* (11) 

Using eqs. (9) and (10) we have: 

In z. = $[l -$(z>‘+ B(T4)], (12) 
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where .sF is the Fermi energy eF = (3&~)~~~/2rn. Substituting in eq. (11) we obtain : 

91 (T, V, N) = - V* 
[ 
2 & - (kT)2 

2x2 x ( 
f + t In $ - 6 

> 
+ Q(T4)l. 

It is now clear that the logarithmic term gives a dominant contribution 
specific heat at T + 0 since: 

c = 

” - 

Ta2F(T, K JO = _Ve2m2k2 Tin &F 

aT2 3x 
yg + @CT). 

Since the existence of such a logarithmic term has been doubted2), we repeat 

to the 

(14) 

the calculation for T --) 0 directly from expression (3) (see appendix) and 
we obtain exactly the form of eq. (14). Other results2*4*5) are found in the litera- 
ture, except for one case3), where eq. (14) is implicitly obtained by some lengthy 
calculations. 

However, the calculation of Wohlfarth5), which is quoted in ref. 4, does not 
correspond exactly to what we are calculating. Wohlfarth obtains C, N T/in T, by 
using an inclined step function as the distribution function n,, with parameters 
01, B to be determined by the total number of particles and by minimizing the free 
energy: (aF/&x)T = 0. This condition determines the distribution function in 
terms of e2 self-consistently, and should therefore correspond to summation of 
some higher-order terms in perturbation expansion. But then we do not know if 
Wohlfarth’s trial function for IZ~ is a reasonable choice. On the other hand, 9, 
is a well-defined term in perturbation theory, and can therefore be treated inde- 
pendently. Our calculations correspond to such an exact treatment of the ex- 
change term Qn, . 

Eq. (14) poses a few problems. Firstly the assumption that the elementary ex- 
citations of a fermion gas at T -+ 0 behave like fermions. This assumption leads 

to C” - Tsvg) as T + 0, which is not correct, at least for the exchange term. 
The second problem is even more serious. From eq. (14) we see that C, is nega- 

tive below some finite temperature. This is unreasonable, and therefore the ex- 
change term must be corrected by other terms which contain a T In T factor. Thus 
the exchange term cannot be dominant, at least for low temperatures. 

Such a correction can take place by considering a screened Coulomb potential: 
(e”/[rl) e-“‘. We are interested in the screening which is due to the temperature 
increase. Therefore we assume that q = y2xmkT/PF, where PF = (2m+)’ and y 
is a dimensionless constant. Such a screening factor, ewrlr, was obtainedlO) with 
7 = 1 by summation of ring diagrams. In real systems such a screening may oc- 
cur also from interactions not included in the electron-gas model. Instead of 
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eq. (5) we now obtain: 

aD1 (z, v, T) = y 2mez 
i?Z 

me-*“g(x) dg cx) dx 

7t”/!?Z s dx 
0 

= y2me2 z [ -+g2 (0) + “F-‘Q2 (x)dx] (15) 

The first term is the exchange term without screening. Since 17 - T we take in 
the second term: 

g,,,(x) = j cos qx dx = sinp,x/x. 
0 

Therefore 42, , the correction to lowest order in T due to screening, satisfies : 

i3A0, v me2 
- = -q e s --qX sin2 pFx 

- 
az T?j?Z X2 

0 

After some calculations we obtain: 

AL?, (z, V, T) = - y2 
e2m2k2T2 

In 
x 

Therefore we have for the specific heat: 

dx. (16) 

2 + 0(T2). (17) 

C, = V 2 e2m2k2T (y2 - 4) In -$ + O(T). 
x 

(18) 

Ify’>+wehaveC,- T Iln TI for T + 0, so that C, remains positive. Only 
ifY2 = A, C, is linear in T. The screened Coulomb potential represents approxi- 
mately the effect of the higher-order RPA diagrams. However, a more complete 
derivation of these terms at finite temperature is still needed in order to determine 
if the term T In T indeed exists for the electron-gas system, and with what coeffi- 
cient. 

In conclusion, expression (7) is a useful form for the exchange term. For low 
temperatures we have shown that the exchange term cannot be dominant. By 
using a screened potential the exchange term can be corrected and it is possible 
that C, - TIlnTIforT-,O. 
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APPENDIX 

We give a direct calculation of the leading term in T, as 
heat due to the exchange term. 

T --f 0, of the specific 

The change in the occupation function np due to increase in temperature is: 

An, = % - 0 (PF - 141) = $“;E; 1 + R, 

where x = [q2 - pg]/pi. The residue R comes from the difference in the fugaci- 
ties at T # 0 and T = 0 according to eq. (12). If we substitute R in the following 
integral its leading terms are of order T2. 

The leading correction to J2, (z, V, T = 0) is derived from eq. (3), and after 
angular integration we get: 

We can expand the logarithmic term around x = 0 and obtain: 

03 

s xln*x 
$e,x + 1 + + @(T2) = v 

e2m2k2T2 
6x In $ + 0(T2). 

0 

Thus the specific heat is given by eq. (14). 
The term An, An,, neglected above, gives a contribution of order T2. To see this 
explicitely, let us define 

AQ; = $[kdk~qdqln~~An,dn. 

0 0 

where y = (k2 - pi)/pi and x = (q2 - pi)/pi. 



EXCHANGE TERM AND SPECIFIC HEAT OF ELECTRON GAS 105 

We can expand the logarithm around x = y = 0, and extend the integrations 
to - co, which involves an error of order emBe,. Thus: 

co co 

e2 Vpi 
AD; = 8x3 dx dy 

s s 

In I+ (y - x) sign x l sign y 
(eSeFlxl + 1) (ebeFIYI + 1) 

-02 --oo 

dy In I(Y - x)/(Y + x>l 
(ex + 1) (eY -I- 1) * 

0 0 

The last integral is a finite constant so that AQ; is of order T2. 
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