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PHONON DISPERSIONIN SYSTEMS WITH A PLANAR FERMI SURFACE
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The effect of a planar Fermi surfaceon the phonon spectrumnear
q = 2pp is investigated.Two branchesof excitations are found in
this region. The reliability of the calculation is examinedby means
of a sum rule for the spectralweight function. The averageand the
spreadof the spectraldistribution are computed.

THIS work is motivatedby the theoretical mdi- Note that a planar Fermi surfacemeansthat
cation, supportedby experimentalevidence,2 the system is one-dimensionalat least in momen-
that the Fermi surfaceof several intermetallic turn space.The coupled one-dimensionalelec-
compoundsof the /1-15 ($-tungsten)crystal tron—phononsystem was studied by Engelsberg
structurecontainsplanarsections. We investigate and Varga4 in the frameworkof the Tomonaga
the effect of such planar portions of the Fermi model. This model cannotbe applied in our case
surfaceon the phonon spectrumin the neighbour- since it excludeselectronexcitations acrossthe
hood of q = 2pp. To this end we adoptan ideal- Fermi surfaceand is valid only for longwave
ized picture of an electron gaswith a Fermi sur- phonons.
face consistingof two parallel planesseparated
by 2p~and limited by the Brillouin-zone bound- We start from an effective Fröhlich Hamiltonian
aries. Such a systemwas studied by Alfanas’ev + ~ + +

and Kagan,3who predict that the phononspectrum H = ~ E~c~c~+ ~wqaqaq ÷ I ~ ÷O._q)Cp-~.gcp,
near2PF differs considerablyfrom the caseof a (1)
sphericalFermi surface. This shows up in a much where ag, cp arethe phonon andelectrondestruc-
strongerKohn singularity. The origin of this ef- tion operatorsand gg is the electron—phonon
fect is the sharpincreasein the phase-space coupling constant.It is assumedthat the long-

volume availablefor low energy electronexci- rangeeffects of theelectron~—electroninteraction
tations accompaniedby the absorptionof phonons are alreadyincluded in �,,, w~and gq. We charac-
with q = 2pp.This leads to a strongcoupling terize the strengthof theelectron—phononcoupling
with suchphononsand, thus, to a significant by a dimensionlessparameterAg definedby
renormalizationof the phononspectrumin this A ~

region. One implication of this strongcoupling is g~= (2)
the breakdownof Migdal’s theorem,which asserts
that the electron—phononvertex is describedcot- where $ = ([dp~dp,

1/p
2p).The parameter~ is related

rectly up to the orderof ~./(m/M) (m — electron mass, to the electrondensity by n = $(pp/2rr)3. We shall
M — ion mass)by the barecoupling constant. assumethat w~andA~do not vary strongly in the
The authorsof reference3 did not calculatethe neighbourhoodof q = 2pp and we shall replace
phonon spectrumexplicitly, them by constantsw

0 and A. To estimateA we
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write g
2 in the form near q = 2p~.Let us denote q’ = q/2 — pp and

2 consider q’} << pp. We continuea~alvticallythe
(3) function fl~(q,~) to the complex~-p1ane, separ-g = 2ii!n~o

ate the real and imaginary parts of equation (9)
where J is the matrix element <k ~Uj k -~- 2pp>. and obtain two coupledequationsfor the real (w)
Semiempiricalvaluesof Fermi surface averages and imaginary (y) partsof the phonorifrequency:
of J2 for various materialswere given McMillan.5
The value of pp may be estimatedfrom positron — = 1 —In2 ,~2 A
annihilation experiments2and ~ from the Debye S

temperature.On thegrounds of suchestimates I[(~.~ 2~-q’)2 ~2][(~_ 2vpq’)2 —

one gets for V
3Si, A 0.1—0.5. (8�~)

4 (10)

All the information aboutthe phonon spectrum
= —— ~0(w—2vp1q’~)is containedin the phortonGreen’sfunction 4

2w~ ____________

(5 = + 0), + arctg 2~’ (11)D(q,w) = — — 2w~H(q,w) + iS (2vpq~2 —

(4) In view of the 0-function we considerseparately
where the phonon self-energyfl(q, w) is given by

the two possibilities: w < 2vp~q’~and c~> 2vp~q’i..
2z ‘ In the first casethe only solution of equation

fl(q,w) = ~ j g~F(p,E~q,~ (11) is wy= 0, namely, either w = 0 or y= 0.

Thereexists formally a solution of equations
Go(p ÷q, � ÷w)Go~,EpdE (5) (10) and (11) with w = 0,y~0, however, we shall

whereF is theelectron—phononvertex function. see later that the weight of this solution in
We havereplacedtheelectron Green’sfunction D(q,.w) is zero. We thereforeare left with y= 0,

6 by the free Green’s function G
0, the argument c~,~ 0. Sucha solution exists outsidean interval

beingthat they differ only in a very small region of width 2q~around q = 2p~.This width depends
of integrationaroundthe Fermi surface. In view on A and is approximatelygiven by

of the planarFermi surface, G~dependsonly on
A

Pz’ As a first stepwe replaceF by gq and solve — ln I — 1 (12)
for the poles of D(q, ai). We thus haveon account 2 jvpq~
of equation(2) This interval increasesandbecomesmore asym-

Ho(q,w) = — ~ f G0(p ± q, � + ~) metric with respectto 2pp as A increases.The
\rn / 87T frequencyw vanishesas q’ approachesthe end

G0(p, �~pd� (6) points of this interval from the outside. In the
secondcase,C~J> 2vpIq’~,onefinds a solution

where theCartesianindex z hasbeensuppressed. with w ~ 0, Y~0, whichexists as long as C~

The real andimaginaryparts of 110(q,w)are exceedsvpql(q/2pp)_ii 2vp(a’~.A typical

Refl0(q, ~) = — Aqw°qE~in (q/
2 + pp)2 — (mct~/q)2I phonorispectrumwith the two branches.is shown

4q (q/2 — p~)2— (mco/q)2~~ in Fig. 1 for A = 0.25andw~/2Ep= 0.01.

(7) So far we havereplacedthe electron—phonon
‘0 vertex in equation (5) by thebare couplingcon-

ImHo(q,c~)= —Aqcuq——— [0(Eq,z+m~,q_ ~‘) stant. This is justified whenMigdal’s theorem
4q

holds. It can be shown in our case3that the first
_O(�q/2_m~/q_ �p)]sgn w, (8) order correction to the electron—phononvertex

where0(x) = 1 for x> 0, and 0(x) = 0 for x < o. divergesand a properrenormalizationis needed.
We are looking for solutions of the equation The simplest renormalizationis that which results

from summingall ladder diagrams.We haverecal-
÷2&~H

0(q,~ (9) culated the phonon spectrumwith the self-energy
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I Let us now analyze our results with the help2~,.
of the spectralweight function B(q,~),which is

2
related to D(q,w) by

\R~)

B(q,w)sgn~= _!ImD(q,~). (13)
7T

that wheneverImH0(q,~)= 0, the spectralweightIt is clear from equation(4) with ll~ replacingH,
B(q,~)is proportional to S(c~i— .uq), where~q is
a root of equation(9) on the real w-axis. It fol-

___________________________________ lows from equation (8) that Im f10(q,w) = 0 for
-.02 -.0! 0 0! 02 0) < 2Vp~q’Iand thereforethe undampedbranch

of the phonon spectrumis representedin the
spectraldistribution by a S-function. We men-

FIG. 1. A typical phonondispersioncurvenear
q = 2pp for A = 0.25and ao/2�p= 0.01. The real tioned before that equations(10) and (11) also
and imaginary partsof thedampedbranch are havea formal solution with o = 0, y~0, however,
indicated. The broken lines correspondto w = 0 is not a root of equation(9) on the real

= ±2vpq’. 0)-axis and this solution doesnot carry anyspec-

tral weight. The other branchof the phonon spec-
~B(g.w) trum occurs in a region where Im110 ~ 0. There
400 I I I

B(q,w) is a continuous function of w. The func-
b uB(q.w) tion wB(q,w) is plotted in Fig. 2 for A = 0.25,
c X ~0.25 ar 0.0!

Q 0)~/2E~= 0.01 and severalvalues of q’. The
~oo - ~. - vertical arrows indicate the S-functioncontri-

(C) x 00025 bution of the undampedlower branch. In case(a)

of the horizontal lines in the upper part of the
200

figure and their lengths showthe valuesof w(q’)
and7(q’) for the dampedsolution. This solution
doesnot exist for case(d).

,11111~(d)x~0.005~d)0.005 the undampedsolution doesnot exist. The centers
The spectralweight B(q,0)) satisfies the

sum rule

JWB(q,a.)dw = 0)~. (14)

~ 4 4 ________ 0
0 5 ¶0 IS 20 We havecheckedto what extent this sum rule is

WI

2E~xIIS3
exhaustedby our approximationfor B(q,0)). We

FIG. 2. The function oiB(q,w) for four cases find that outside the interval where the undamped
specifiedby the parametersin the figure. See solution doesnot exist, the sum rule is satisfied
text for further details, verywell. In this interval, however,the sum rule

is not satisfiedand for it = 0.25we find that

obtainedin this way andfound that the previous 20 per centaremissing near q = 2PF which in-
results are effectedonly by about 2 per cent. creasesto about 80 per cent for A = 0.5. This
The reasonfor’ that is that the vertex diagrams meansthat in the immediateneighborhoodof
of the ladder-typearevery small exceptfor a q = 2Pp our approximation is not good enough
weakdivergence in a very narrowregion around and it becomesworse as A increases.As we saw,
the lines u.~= ±2vpq’. Sinceour solutions do not this cannotbe improved by the inclusion of ladder
cQr~etriat ctoie to this region they are not ef- diagrams.If the physicalsituation correspondsto
tectedappreciably.The details of this calculation A < 0.25 then our approximationis quite reliable
will be describedelsewhere. for all q’.
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~ the two branchesexist. However theexperimental1. I ~ I An ideal neutronscatteringexperimentwould\1i5 resolve the two contributionsto B(q,0)) where
_~>\ t~~25 resolution may not be sufficient for that. It isV ment, to characterizethe spectraldistribution bytherefore instructive, for comparisonwith experi-

age<(0) — ~) >. We computetheseaverageswith

05 its averageci~andby thespreadaroundthis aver-the weight function (~/~~)B(q,0)), ratherthanwith B(q,0)), becausethe latter cannotbe nor-0.2 . malizedbetween0 and ~. The functions ~ and

cj . I <(0) — ‘.~)2>~ in units of Wa are plotted in Fig. 3
for A = 0.25, 0.5 and 0)~/2�p = 0.01, 0.1. It is,r\~,~\
hard to say which of the curves represents a
physicalcasebecauseof the uncertaintyin the

values of the two parametersinvolved. However,

the results indicatethat near q = 2p1 one should
expect a depression in the center of mass of the
spectraldistribution accompaniedby an increase

in the phonon line widths. If theseeffects are01. r
I I sharp enoughto be detected experimentally, it

-0.2 -0.1 0 0.1 02
may be possible to locate planar portions of the
Fermi surface in f3-tungstens by neutronscat-

FIG.3. The function ii5 (full line) and <(0) ~ tering experiments.
in units of wo. (a) 0)~/

2Ep= 0.01, (b) Wo/2Ep = 0.1.
The numbers on the curves indicate values of A.
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On étudie le spectre de phbnons d’un metal dont la surface de Fermi
est plane. Deux branches d’excitations sont trouvées dans la region

de vecteur d’onde q 2pp. Le calcul est testé au moyen d’une régle
de somme sur la densité spectrale: Ia fréquence moyenne et l’écart
quadratique moyen de cette distribution sont calculés.


