Solid State Communications, Vol. 11, pp. 1361-1364, 1972. Pergamon Press.

Printed in Great Britain
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The effect of a planar Fermi surface on the phonon spectrum near

q = 2pr is investigated. Two branches of excitations are found in
this region. The reliability of the calculation is examined by means
of a sum rule for the spectral weight function. The average and the
spread of the spectral distribution are computed.

THIS work is motivated by the theoretical indi-
cation, ' supported by experimental evidence, 2
that the Fermi surface of several intermetallic
compounds of the A-15 (8-tungsten) crystal
structure contains planar sections. We investigate
the effect of such planar portions of the Fermi
surface on the phonon spectrum in the neighbour-
hood of q = 2pr. To this end we adopt an ideal-
ized picture of an electron gas with a Fermi sur-
face consisting of two parallel planes separated
by 2pr and limited by the Brillouin-zone bound-
aries. Such a system was studied by Alfanas’ev
and Kagan,® who predict that the phonon spectrum
near 2pr differs considerably from the case of a
spherical Fermi surface. This shows up in a much
stronger Kohn singularity. The origin of this ef-
fect is the sharp increase in the phase-space
volume available for low energy electron exci-
tations accompanied by the absorption of phonons
with g = 2pg. This leads to a strong coupling
with such phonons and, thus, to a significant
renormalization of the phonon spectrum in this
region. One implication of this strong coupling is
the breakdown of Migdal’s theorem, which asserts
that the electron—phonon vertex is described cor-
rectly up to the order of /(m/M) (m — electron mass,
M — ion mass) by the bare coupling constant.

The authors of reference 3 did not calculate the
phonon spectrum explicitly.
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Note that a planar Fermi surface means that
the system is one-dimensional at least in momen-
tum space. The coupled one-dimensional elec-
tron—phonon system was studied by Engelsberg
and Varga® in the framework of the Tomonaga
model. This model cannot be applied in our case
since it excludes electron excitations across the
Fermi surface and is valid only for longwave
phonons.

We start from an effective Frohlich Hamiltonian
+ o, + PR
H = % €pCpCp + %waaqaa + p% 84(aq + @4 XCp+q Cp,

@
where a,, ¢, are the phonon and electron destruc-
tion operators and g, is the electron—phonon
coupling constant. It is assumed that the long-
range effects of the electron—electron interaction
are already included in €,, wg and g, We charac-
terize the strength of the electron—phonon coupling
by a dimensionless parameter A, defined by

3
g = 2 g @
Bmpe
where 8 = (fdp-dp,/pZ). The parameter B is related
to the electron density by n = B(pg/27)°. We shall
assume that wj and Aq do not vary strongly in the
neighbourhood of g = 2pr and we shall replace
them by constants w, and A. To estimate A we
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write g2 in the form

2 J?
= 3
g 2Mnw, )

where J is the matrix element <k |VU|{& + 2ps>.
Semiempirical values of Fermi surface averages
of J? for various materials were given McMillan.5
The value of pr may be estimated from positron
annihilation experiments 2 and «w, from the Debye
temperature. On the grounds of such estimates
one gets for V3Si, A = 0.1-0.5.

All the information about the phonon spectrum

is contained in the phonon Green’s function
2wq
w? woz zwgn( ‘R (5 =+ 0)’
—wy® - 2w,1l(q, w) + 0
)
where the phonon self-energy [l(g, «) is given by

D(g,w) =

0 ¢
g, @) = (-271)-;J 2. U(p, € q,w)
Go(p + q, € + w) Go (p, €)d’°pde 6))

where [ is the electron—phonon vertex function.
We have replaced the electron Green’s function
G by the free Green’s function G,, the argument
being that they differ only in a very small region
of integration around the Fermi surface. In view
of the planar Fermi surface, G, depends only on
pz. As a first step we replace I by g, and solve
for the poles of D(g,w). We thus have on account
of equation (2)

[lo(g, ) = - /\qw,g(ﬁ>L f Gp+4g,€+w)
m/8&m

Go(p, €)dpde 6)

where the Cartesian index z has been suppressed.

The real and imaginary parts of [I,(g, w) are

(@/2 + pr)’ - (mw/q)

ReIly(g, @) = —Age® Pl 1n | L/ i S
’ ©faq | @/ZT=prr — ma/gqy
@
Imllo(g, @) = —’\qwg% [e(eq/2+mw/q_ €r)

—B(EQ/2~mw/q‘ F')] sgnw, (8)

where 8(x) = 1 for x > 0, and 8(x) = 0 for x < 0.
We are looking for solutions of the equation

w? = a)gz + 2w3llo(gq, w), %
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near g = 2ps. Let us denote q¢' = q/2 — pr and
consider '} << pr. We continue analytically the
function [I,(g, ) to the complex «w-plane, separ-
ate the real and imaginary parts of equation (9)
and obtain two coupled equations for the real (w)
and imaginary () parts of the phonon frequency:

), (10)

2y
. 11
(Qvrg)? + y? - &? ab

w?oy?= w%(l —gln

[(w + 2vrq" ) + ¥¥ll(w= 2vpq')* - 57

(8ep?
. Acw? o
Wy = - 22 [ - 2vel ")

+ arctg

In view of the 8-function we consider separately
the two possibilities: w < 2vpig'l and w > 2velgl.
In the first case the only solution of equation
(11) is wy = 0, namely, either w = 0 or ¥ = 0.
There exists formally a solution of equations
(10) and (11) with w = 0, ¥ # 0, however, we shall
see later that the weight of this solution in
D(q,w) is zero. We therefore are left with v =0,
w # 0. Such a solution exists outside an interval
of width 2¢, around q = 2pp. This width depends
on A and is approximately given by

/\.

Zlin

2

4€p

7= 1 (12)
Vrdo

This interval increases and becomes more asym-
metric with respect to 2pgr as A increases. The
frequency w vanishes as q' approaches the end
points of this interval from the outside. In the
second case, w > 2vplq'l, one finds a solution
with w # 0, ¥ # 0, which exists as long as w
exceeds v#q|(q/2pr) - 1| 2vplq’|. A typical
phonon spectrum with the two branches. is shown
in Fig. 1 for A = 0.25 and w,/2€r = 0.01.

So far we have replaced the electron—phonon
vertex in equation (5) by the bare coupling con-
stant. This is justified when Migdal’s theorem
holds. It can be shown in our case? that the first
order correction to the electron—phonon vertex
diverges and a proper renormalization is needed.
The simplest renormalization is that which results
from summing all ladder diagrams. We have recal-
culated the phonon spectrum with the self-energy
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F1G. 1. A typical phonon dispersion curve near
G = 2pr for A = 0.25 and w,/2€ = 0.01. The real
and imaginary parts of the damped branch are
indicated. The broken lines correspond to

w = +2vgq'
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F1G. 2. The function wB(qg, w) for four cases
specified by the parameters in the figure. See
text for further details.

obtained in this way and found that the previous
results are effected only by about 2 per cent.

The reason for that is that the vertex diagrams

of the ladder-type are very small except for a
weak divergence in a very narrow region around
the lines w =  2vpq'. Since our solutions do not
come tnat close to this region they are not ef-
tected appreciably. The details of this calculation
will be described elsewhere.
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Let us now analyze our results with the help
of the spectral weight function B(q, ), which is
related to D(g, w) by

B(q, w)sgaw = —%ImD(q,w). (13)

It is clear from equation (4) with [l; replacing II,
that whenever Imllo(g, w) = 0, the spectral weight
B(q,w) is proportional to 8(w — wy), where wy is
a root of equation (9) on the real w-axis. It fol-
lows from equation (8) that ImIl,(g,«) = 0 for

w < 2vplq’'| and therefore the undamped branch
of the phonon spectrum is represented in the
spectral distribution by a §-function. We men-
tioned before that equations (10) and (11) also
have a formal solution with @ = 0, ¥ # 0, however,
w = 0 is not a root of equation (9) on the real
w-axis and this solution does not carry any spec-
tral weight. The other branch of the phonon spec-
trum occurs in a region where Imll, # 0. There
B(g,w) is a continuous function of «. The func-
tion wB(q,w) is plotted in Fig. 2 for A = 0.25,
wo/2€p = 0.01 and several values of gq. The
vertical arrows indicate the §-function contri-
bution of the undamped lower branch. In case (a)
the undamped solution does not exist. The centers
of the horizontal lines in the upper part of the
figure and their lengths show the values of w(g")
and Y(q') for the damped solution. This solution
does not exist for case (d).

The spectral weight B(g,w) satisfies the
sum rule

[wBa,@)dw = wf. (14)

We have checked to what extent this sum rule is
exhausted by our approximation for B(g,«). We
find that outside the interval where the undamped
solution does not exist, the sum rule is satisfied
very well. In this interval, however, the sum rule
is not satisfied and for A = 0.25 we find that

20 per cent are missing near g = 2pr which in-
creases to about 80 per cent for A = 0.5. This
means that in the immediate neighborhood of

g = 2pF our approximation is not good enough
and it becomes worse as \ increases. As we saw,
this cannot be improved by the inclusion of ladder
diagrams. If the physical situation corresponds to
A < 0.25 then our approximation is quite reliable
for all ¢q'.
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An ideal neutron scattering experiment would
tesolve the two contributions to B(g,w) where
the two branches exist. However the experimental
resolution may not be sufficient for that. It is
therefore instructive, for comparison with experi-
ment, to characterize the spectral distribution by
its average @ and by the spread around this aver-
age <(w — @) >. We compute these averages with
the weight function (w/w,) B(gq, w), rather than
with B(q,w), because the latter cannot be nor-
malized between 0 and =<. The functions & and
<(w - @)*>'"?in units of w, are plotted in Fig.3
for A = 0.25, 0.5 and w./2¢7 =0.01, 0.1. It is
hard to say which of the curves represents a
physical case because of the uncertainty in the
values of the two parameters involved. However,
the results indicate that near q = 2ps one should
expect a depression in the center of mass of the
spectral distribution accompanied by an increase
in the phonon line widths. If these effects are
sharp enough to be detected experimentally, it
may be possible to locate planar portions of the

3 ; (6ull Line) and <( fo172 Fermi surface in 8-tungstens by neutron scat-
F1G.3. The function & (full line) and <(w - @)> tering experiments.

in units of wo. (a) wo/2€x = 0.01, (b) we/2€x = 0.1. ring expert

The numbers on the curves indicate values of A.
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On étudie le spectre de phonons d’un métal dont la surface de Fermi
est plane. Deux branches d’excitations sont trouvees dans la région
de vecteur d’onde g ~ 2pg. Le calcul est testé au moyen d’une regle
de somme sur la densité spectrale: la fréquence moyenne et l’écart
quadratique moyen de cette distribution sont calcules.



