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Layered singlet paired superconductors with disorder and broken time reversal symmetry are studied,
demonstrating a phase diagram with charge-spin separation in transport. In terms of the average
intergrain transmission and the interlayer tunneling we find quantum Hall phases with spin Hall
coefficients of �spin

xy � 0; 2 separated by a spin metal phase. We identify a spin metal-insulator
localization exponent as well as a spin conductivity exponent of � 0:96. In the presence of a
Zeeman term an additional �spin

xy � 1 phase appears.
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The problem of quasiparticle transport and localiza-
tion in disordered superconductors is of considerable in-
terest in view of experimental activity on the high Tc
cuprates as well as theoretical realization that disordered
superconductors provide new symmetry classes of ran-
dom matrix theory [1]. Of particular interest is class C for
which the Hamiltonian breaks time reversal symmetry
but spin rotation invariance remains intact. Physically, it
can be realized in materials consisting of singlet super-
conductor grains in a magnetic field or else, by a super-
conductor in the absence of magnetic field whose order
parameter breaks time reversal invariance, such as d�
id0. Class C can therefore be realized by high Tc com-
pounds where d-wave pairing is well established. In fact,
d� id0 pairing has been suggested [2], in particular, in
overdoped compounds or as field induced [3].

Transport properties of random superconductors are
unusual since a quasiparticle does not carry charge, being
screened by the condensate, while the singlet paired
condensate does not transport spin. Furthermore, the
gapless nature of d-wave pairing with low lying quasi-
particle excitations leads to a rich phase diagram in two
dimensions (2D) with spin quantum Hall phases [4,5],
spin insulators, and spin metals [6,7]; a metallic phase
was also found for triplet pairing [8].

The usual quantum Hall system in 2D as well as its
extension to three-dimensional (3D) layered system have
been studied by a network model [9,10] which consists of
a lattice of nodes connected by links. In 2D, the unidirec-
tional propagation on links is described by random
phases, corresponding to a group U(1), while transfer at
nodes is controlled by a parameter which determines the
critical point. The transfer matrix of the network model
can be efficiently evaluated identifying the critical be-
havior; e.g., the localization exponent is 
QH � 2:5. The
2D class C problem has recently been studied by a net-
work model [4] where propagation on links of particle-
hole spinors via the Bogoliubov–de Gennes Hamiltonian
is realized by random SU(2) matrices. The quantized spin
Hall conductance �xy is shown to jump by two units at a
critical point of a new universality class with a localiza-
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tion exponent 
2D � 1:12; an exact mapping on a classical
percolation problem [11,12] has found 
2D � 4=3. The
spin rotation invariance can be broken by having a differ-
ent transmission for particles and holes [4], e.g., a
Zeeman term. The phase diagram has then three phases
with �xy � 0; 1; 2 and a localization exponent 
QH of the
usual U(1) theory.

Recent advances in measuring spin transport [13] al-
low probing of these unusual predictions, provided that
deviations from the critical point can be controlled. In the
usual quantum Hall effect, this is achieved by the position
of the Fermi energy relative to that of an extended state in
a Landau band. In a superconductor, the particle-hole
symmetry fixes the Fermi energy at the middle of the
gap, and the relative position of states is not directly tuned
by the overall density. It was in fact suggested that
changing the strength of disorder can lead to quantum
Hall transitions [5], at least for weak breaking of time
reversal symmetry.

An important insight into the nature of d� id0 super-
conductors comes from studying their edge states [2,3,14]
which provide a realization of our network model and
identify its parameters. In the d-wave case, a prominent
zero bias anomaly [2,3] has identified a surface state at
zero energy. The d� id0 case allows current carrying
chiral states that split the zero bias anomaly as seen in
the overdoped compounds [3]. The chirality of these edge
states leads directly to quantized Hall conductance [5,14].
In contrast, charge transport of superconducting grains is
dominated by the randomness of the Josephson coupling
between the grains; the phase correlation between grains
is lost in 2D at a critical value of disorder, as shown in an
XY model with random phase shifts [15].

In the present work we solve a network model for a
layered 3D random superconductor. We find three phases
which are identified as spin insulators with Hall coeffi-
cient 0 and 2, respectively, and a spin metal phase. We
also identify the localization exponent at the insulator-
metal transition, 
3D � 0:96. When the spin rotation
symmetry is broken by a Zeeman term, an additional
phase with Hall coefficient �spin

xy � 1 is found. The spin
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FIG. 1. Phase diagram of the 3D network model with spin-
rotational symmetry. The solid lines describe the fit t� j�j1:2.
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metal phase is a realization of a proposed phase with
nonzero spin diffusion constant at zero temperature [6].
We identify the conductivity of the spin metal and find its
critical exponent to be 
3D as well. Finally, we identify
the physical parameter that controls criticality of spin
transport, namely, the average transmission of quasipar-
ticles between grains. This then demonstrates spin-charge
separation in the sense that their critical behavior relevant
to transport is controlled by distinct parameters.

The 3D network model consists of layers of 2D lattices.
Each 2D lattice has nodes, which are connected by links
[9]. Quasiparticles propagate unidirectionally on links,
hence their transfer matrix is equivalent to the evolution
operator, which for a singlet superconductor is a SU(2)
matrix describing an Andreev process where particle and
hole components mix [4],

T 1 �
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where �1, �2, x are random, 0 � �1, �2 < 2�, 0 � x < 1.
The propagation between grains, i.e., at nodes of the

network, is determined as follows. At each node we have
two incoming and two outgoing links with particles and
holes separately scattered. The transmission probability at
a node is parameterized in the form T0 � �1�
exp	���
��1, so that for � � 0 the transmission equals
reflection, i.e., maximal mixing of all links. In the fol-
lowing, we allow also a Zeeman parameter � which
breaks spin rotation invariance. The transfer matrix
across a node is then
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where the � sign corresponds to particle with spin-up or
hole with spin-down, respectively.

The final ingredient of the 3D network model consists
of additional nodes [10] connecting neighboring layers.
Placing 2D layers one on top of the other allows for links
belonging to neighboring layers to form nodes and qua-
siparticles scatter. The matrix describing this scattering is

T 3 �

�������������
1� t2

p
t

�t
�������������
1� t2

p

 !
: (3)

Consider a system of size M
M
 L where M is the
number of links in one layer (with two channels per link)
and L! 1 (typically L � 105) is its length. For a given
M, the eigenvalues of ln	TyT
, where T is the full transfer
matrix, behave as �2�nL, defining the Lyapunov expo-
nents f�ng; the smallest positive one, �1, defines the
localization length �M � 1=�1. The M dependence of
�M=M identifies the phases: (i) a decreasing ratio corre-
sponds to localized state, i.e., a spin insulator, (ii) a
constant ratio corresponds to a critical state, and (iii) an
increasing ratio corresponds to a spin metal. The phase
diagram for the class C network model (with � � 0) is
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displayed in Fig. 1. Square boxes represent critical �cr	t

lines. The particle-hole symmetry of the superconductor
ensures a degeneracy at the critical point � � t � 0, i.e.,
the Hall coefficient changes by two units. Furthermore, in
the clean limit, the Hall conductance has two units [14];
this corresponds to transmission T0 � 1, i.e., � > 0 and
large. Hence there are three distinct phases: Hall insulator
with Hall conductance �spin

xy � 1 , spin metallic phase,
and a quantized spin Hall phase with �spin

xy � 1.
The width W	t
 in � of the metallic region increases

with t, and is expected to behave as [10] W	t
 � t1=
2D ,
where 
2D is the localization length exponent in 2D. To
show this, consider a 2D isolated layer with a mean level
spacing �1=�22D (�2D the 2D localization length) and
with 2D wave functions having a random phase corre-
lated on a scale ‘. The overlap of neighboring layers has
then 	‘=�2D
2 terms with random phases so that their sum
yields an interlayer coupling �t=�2D. At the mobility
edge the mean level spacing is of the same order as the
interlayer coupling according to the Thouless criterion,
hence �� t1=
2D . The curve in Fig. 1. represents the least
square fit for the data, producing W � t1=1:2, which is in
good agreement with our previous value [4] of 
2D.

The divergence of the localization length at �cr	t

identifies the localization exponent of a spin insulator-
metal transition in 3D. We have evaluated the critical
exponent at the symmetric point t � 1=

���
2

p
(larger t

maps into a smaller t by rearranging layer indices) and
found 
3D � 0:96 fitting both the insulator and metal
sides, as shown in Fig. 2 with an estimated error of
�0:1; a similar value of 
3D is found for t � 0:1.

Figure 2 shows that in the metallic phase, �M=M in-
creases approximately linearly with M. It was proposed
[16] that this identifies the 3D conductivity as �xx � 	��
�cr

3D . This derivation needs to be revised since in the 3D
limit, the conductivity involves many Lyapunov expo-
nents �n. The multichannel conductance is given by
[17,18] g �

P
n�1� cosh	�nL
�

�1. For a few channels
M2 � L, the lowest Lyapunov dominates, but in the 3D
limitM2 � L, the number of termsNeff that contribute to
-2



FIG. 2. Scaling of renormalized localization length for the
3D network model with spin-rotational symmetry at t �
1=

���
2

p
showing an exponent 
3D � 0:96. The lower and upper

branches correspond to the insulating � > �cr and metallic
� < �cr phases, respectively.
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g is large. In fact, for many channels, the rigidity in the
spectrum of TyT suppresses fluctuations in f�ng and one
expects [18] �n � n�1. Hence g � Neff � 1=	�1L
. The
conductance has then the form

g � Neff �
M
L
�a	�� �cr

3DM� b�: (4)

This shows that the conductivity in 3D is indeed �xx �
gL=M2 � 	�� �cr



3D . On the critical line � � �cr, the
conductance g � Mb=L is limited to the surface area.

Consider next the � � 0 case with broken spin rotation
symmetry. At � � 2, e.g., the 2D system (t � 0) is criti-
cal at �cr � �0:64 with a critical exponent 
QH � 2:5 of
the usual quantum Hall system. At t � 0, we expect each
of the critical states to split into two with a band of
metallic states between them (as for � � 0); however, it
is not obvious whether the two internal critical curves
merge or do not cross as t increases. We find merging of
these lines, producing a four-phase diagram as shown in
Fig. 3. Both outer critical lines scale as t� �j�j � 0:64�
QH
FIG. 3. Phase diagram of the 3D network model with � � 2
showing an additional phase with �spin

xy � 1 . The outer solid
lines describe the fit t� �j�j � 0:64�2:5, while the inner solid
line is a guide to the eye.
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in agreement with the argument above. The inner curve is
affected by both critical points and therefore deviates
from this scaling form.

Figure 3 shows the existence of a new phase with
�spin
xy � 1, which becomes metallic at very low values of

t, e.g., t � 0:001 at � � 0. We note that at t � 0, a single
spin state becomes extended at �cr, while the other spin
state becomes extended independently at ��cr. For t <
0:001, these extended states produce two metallic bands
which do not overlap, hence when the chemical potential
is in between these bands, the �spin

xy � 1 phase emerges.
When t > 0:001, these bands overlap and a �spin

xy � 1
phase is not possible. We emphasize that for t � 0 there
is a single simply connected metallic phase, hence in this
phase the two extended spin states mix via interlayer
coupling, unlike the situation at t � 0.

We proceed to evaluate the localization length expo-
nent for � � 2 and different t. For t � 1=

���
2

p
[maximal

mixing of Eq. (3)], we find 
 � 0:85 while for t � 0:1 we
find 
 � 0:93, fairly close to 
3D. It differs significantly
from the value 1.45 found for the 3D U(1) system [10].
This is consistent with our finding of a single metallic
phase in which extended states with both spins are mixed.
Thus at t � 0 (extended states at ��cr are decoupled), the
symmetry is reduced to U(1) producing the 
QH exponent,
while the t � 0 metallic phase (mixed extended states)
seems to have the same symmetry for � � 0 or � � 0.

Based on this analysis, we propose a three-parameter
scaling function near the multicritical point � � � �
t � 0

�M
M

� f	�
2DM;�!M; t"M
: (5)

On the critical surface, the scaling function is M inde-
pendent, hence for � � 0 the critical line is �cr � t"=
2D .
As discussed above,W	t
 � �cr � t1=
2D ; therefore," � 1.
We demonstrate in Fig. 4 scaling along the line ����0
with " � 1. Note that when t is too large, approaching
the symmetric point 1=

���
2

p
, scaling is not expected. The
FIG. 4. Scaling of renormalized localization length for � �
� � 0 as function of interlayer coupling.
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analysis above yields �xx � t when approaching the mul-
ticritical point.

Finally we consider a realization of the parameter
which drives the phase transitions. Correspondence with
edge states of the d� id0 system shows that the transition
is driven by the average value T0 of quasiparticle trans-
mission between grains, which determines � via T0 �
�1� exp	���
��1. Following the suggestion that, at least
for weakly broken time reversal symmetry, disorder may
drive the transitions [5], we have performed further
simulations of the 2D network searching for the effect
of randomness in �. We have found this randomness to
have a negative scaling exponent, i.e., an irrelevant vari-
able. In fact, the mapping to a percolation problem [12]
leads to a distribution in the percolation parameter which
is indeed irrelevant. Hence, in our system where time
reversal symmetry breaking is fully developed, disorder
does not drive a spin quantum Hall transition. In contrast,
charge transport is dominated by the randomness of the
Josephson coupling between superconducting grains; the
phase correlation between grains is lost in 2D at a critical
value of disorder as shown in an XY model with random
phase shifts [15].We conclude then that a superconductor-
insulator transition for charge transport is disconnected
from that of quasiparticle spin transport. Therefore,
although the quasiparticles are repeatedly scattered by
the condensate random order parameter, spin-charge
separation in transport persists on long scales.

As a concrete realization, we consider two grains of
d� id0 superconductors with parallel edge states along an
axis x. An impurity provides an intergrain scattering
potential Va�	x
, where a is a lattice constant. The right
and left moving edge state  R	x
 and  L	x
 then satisfy

�iv@x R	x
 � Va�	x
 L	x
 � E R	x


iv@x L	x
 � Va�	x
 R	x
 � E L	x
;
(6)

where E is an energy eigenvalue. Here v is the edge state
velocity, v � a�xy for a (110) surface and v � a�x2�y2

for a (100) surface [14] where �xy and �x2�y2 are the gaps
of dx2�y2 and dxy, respectively, with �xy � �x2�y2 .

The transmission from an incoming  R	x
 to an out-
going  L	x
 is readily evaluated as

T0 � 4	Va=2v
2=�1� 	Va=2v
2�2: (7)

Note that T0 has a maximum of 1 at Va=2v � 1 and
decreases at large V. The transmission needed for exhibit-
ing an extended state, T0 � 1=2, is achieved at V � �0 for
(110) edges or V � � for (100) edges, i.e., a much weaker
coupling in the former case.

In conclusion, we have demonstrated spin-charge sepa-
ration in transport: spin transport and related QH transi-
tions are controlled by the average intergrain transmis-
sion while charge transport and superconducting correla-
tion is controlled by the amount of disorder in the inter-
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grain (Josephson) coupling. We show that interlayer cou-
pling leads to a new spin metal phase and identify the
localization exponent for the spin insulator-metal transi-
tion as 
3D � 0:96. The latter is also the spin conductivity
exponent when approaching the transition from the me-
tallic side.
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