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PACS. 71.38.-k – Polarons and electron-phonon interactions.
PACS. 72.15.Nj – Collective modes (e.g., in one-dimensional conductors).
PACS. 71.38.Mx – Bipolarons.

Abstract. – Non-linear photocurrent carriers in conjugated polymers, such as polarons,
bipolarons and solitons, are considered at low photon energies where a tunnelling process
is necessary. We show that polarons dominate the photocurrent I due to a novel electric-
field–assisted tunnelling route for which ln I ∼ −E−2/3. For near-degenerate polymers with
an electric field E which exceeds the confinement parameter and frequencies near twice the
soliton energy, soliton formation is favored. Photocurrent data can then be used to identify the
remarkable soliton conduction.

Photoexcitation of charge carriers in conjugated polymers is of considerable interest for de-
termining types of charge carriers and for probing novel conduction mechanisms. Considerable
theoretical attention has been given to polyacetylene (PA) [1–4] which has degenerate ground
states (i.e. by inverting the dimerization sign) predicting photocurrent carried by charged soli-
tons. Experimentally, however, significant photocurrent has been observed in non-degenerate
conjugated polymers such as polydiacetylene (PDA) [5,6].

In a non-degenerate polymer the dimerization pattern in the ground state is unique, being
fixed by the polymer structure. The charge carriers are expected to be [4] either polarons
or doubly charged bipolarons; the continuum model for polarons and bipolarons has been
considered in detail [7–9]. Reversing the sign of the dimerization leads to a local minimum (at
least for near-degenerate systems) which is higher by an energy of α per unit length. A soliton
is an excitation which interpolates between states with opposite signs of dimerization; hence
generating a soliton pair leads to an excess energy linear in the separation R of the solitons,
i.e. a confining potential αR. In contrast, polarons or bipolarons are local deformations of
the ground state, hence a polaron pair has no confinement potential. We note that interchain
coupling acts as a confining potential, hence even PA with degenerate minima should be
considered as a near-degenerate polymer.

Some properties of PDA serve us as a prime example for illustrating phenomena in a non-
degenerate polymer. PDA has chains of the form [= RC − C ≡ C − CR =]n, where R is
one of a number of side groups with which the monomer can be synthesized. Band structure
calculations [10] show that the states near the gap are essentially πz orbitals. If these orbitals
were removed, the underlying structure would be [−RC − C = C − CR−]n, i.e. 3 bonds per
c© EDP Sciences
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carbon. If a is the mean spacing of carbons, the electron spectrum in an extended zone scheme
with wave vectors in the range [−π/a, π/a] has gaps at ±nπ/4a with n = 1, 2, 3 since the unit
cell has 4 carbons. Filling in one electron per carbon for the πz orbitals up to wave vectors
±π/2a leads therefore to a gap at the Fermi level, a so-called “extrinsic gap” ∆e. In addition,
the πz orbitals tend to dimerize, i.e. their overlap between nearest carbons is alternating.
This dimerization increases the gap at the Fermi level, so that the gain in electron energies
overcomes the cost in the lattice distortion. For PDA, the usual acetylenic ground state is
then formed with the above triple bond. It is possible, however, depending on the side groups
R, on temperature or on external strain, that the ground state will favor the opposite sign
for this dimerization, leading to the butatrienic form [−RC = C = C = CR−]n. In fact
some data supports a PDA butatrienic form in a different photopolymerization procedure,
which transforms into an acetylenic form when annealed above ≈ 350 K [11]. Solitons in PDA
interpolate between these states, i.e. [. . .−RC = C = C = CR −RĊ − C ≡ C − CR = . . .].
The central carbon Ċ has only three bonds, i.e. it acquires a localized orbital with intragap
energy. If a phase transition in PDA is indeed possible, then at the critical temperature α = 0
and solitons can lead to photocurrent [12]. As we show below, even a small tunable α can
lead to the remarkable phenomena of soliton conductance.

Experimental data on PDA [5] with currents measured down to 10−16 A shows a steep
photocurrent edge at photon energy of 0.8 eV which is well below either the band gap of
2.4 eV, or the exciton level at 2 eV. Further data on PDA with a different side group [6] has
shown that thermal annealing allows for measurable photocurrents at 2.2 eV, with an exciton
level at 2.3 eV; the current sensitivity in this case was about 10−13 A.

In the present work we study photocurrent due to tunnelling into a variety of charge carriers
—polarons, bipolarons and solitons. We show that at low photon energies h̄ω < 2Ep polarons
usually dominate, where Ep is the polaron formation energy. The electric field allows for a
novel tunnelling route where weak lattice deformations are formed at large separation Rp such
that upon charge transfer shallow polarons are formed; the energy gain eERp compensates
for the missing formation energy 2Ep − h̄ω. This process is likely to be effective also in
semiconductors with higher dimensionality. We also show that bipolarons can be directly
photoproduced, though with a smaller probability. Finally, we show that the external electric
field E can overcome the confinement potential when eE > α and allows for charged-soliton
creation. We find that for 2Es < h̄ω < 2Ep, and above the threshold field α/e soliton
formation is favored, where 2Es is the soliton pair energy (in addition to the αR term).

We consider first photocurrent due to polarons at h̄ω < 2Ep. The tunnelling process is pa-
rameterized by two local deformations of the dimerization pattern separated by a distance R,
each deformation yields a bound state of size 1/κ. These localized states are pulled from the va-
lence and conduction band edges at ±∆0, respectively. We assume that direct electron-electron
(e-e) interactions are embedded in the parameters such as ∆0, Ep and κ; where needed, we
address e-e interactions explicitly. For the purpose of illustration, we show the electron level
structure in fig. 1 for the electron-lattice (e-l) model in the absence of e-e interactions.

The initial-state potential V0(κ,R) describes the deformed lattice with the electron occu-
pation following adiabatically that of the ground state. The excited state corresponds to a
dipole allowed transition of one electron into a state with energy higher by 2ω0, e.g. for κ = 0
we have 2ω0 = 2∆0. The excited state can relax adiabatically into a two-polaron state P+P−

with energy minimized at some κ = κp, i.e. the polaron energy Ep(κ) relaxes to Ep ≡ Ep(κp).
In the e-l model the initial state of each deformation has the lower level (fig. 1a) doubly oc-
cupied while the upper level is empty; the excited state has one more electron in the upper
state (P−) or one less in the lower state (P+).

The condition for having a localized state with well-defined charge is i) R � 1/κ and ii) that
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(b)(a)

Fig. 1 – Two localized states with intragap energies ±ω0 (continuum states starting at ±∆0, ∆0 > ω0,
are not shown). The dots represent occupation of these levels in the e-l model for (a) a separated
polaron pair P−P+, (b) a separated bipolaron pair B+B−.

E does not mix the state with continuum states, i.e. the energy shift of the localized state
≈ eE/κ is small relative to the excitation energy into the continuum, hence eE/κ � ∆0 −ω0.
We claim that for small κ the latter is ∆0 − ω0 ≈ ∆0κ

2ξ2, where ξ = vF/∆0 and vF is the
Fermi velocity in the absence of an energy gap. For the non-interacting case this is seen
by continuing analytically the momentum k → iκ in the spectrum ω0 =

√
∆2

0 − v2
Fκ

2 ≈
∆0(1 − 1

2κ
2ξ2). In the final paragraph before the conclusions we show that to first order in

Coulomb interactions the κ2 form is maintained. This is rather surprising since the Hartree
term by itself gives a ∼ κ term [4]. The perturbation parameter being e2κ/∆0 implies that
higher-order terms lead to higher powers of κ.

The condition eE/κ � ∆0 − ω0 becomes then κ � κm, where

κm = (eEξ/∆0)1/3/ξ. (1)

Since typically ∆0 ≈ 1 eV, ξ ≈ 1 nm and E < 105 V/cm, we have eEξ/∆0 < 10−2 which serves
as a small parameter. This condition for localized charges is extremely important —when it
applies the excited-state potential gains an electric-field energy Vex(κ,R) = 2Ep(κ) − eER,
hence the energy gain eER facilitates tunnelling even if h̄ω < 2Ep. The initial-state potential
has neutral components, hence V0(κ,R) = 2Ep(κ) − 2ω0(κ).

Perturbation theory in the exciting photons ∼ eiωt [3, 13] in the adiabatic limit (h̄ω, 2∆0

large compared with a typical phonon energy h̄ωph) shows that the electron transition occurs
at κ, R such that V0(κ,R) = Vex(κ,R)−h̄ω. The tunnelling barrier changes then from V0(κ,R)
to Vex(κ,R)− h̄ω at the crossing point. The dynamics is dominated by the ion kinetic energy;
the space-dependent dimerization pattern ∆(x; k,R) = ∆p(κ, x − R/2) + ∆p(κ, x + R/2),
where ∆p(κ, x) is the single-polaron pattern, leads to the kinetic energy

EK =
∫

dx
∆̇2

πλvFω2
ph

= M1(κ)Ṙ2/2 + M2(κ)κ̇2/
(
2κ4

)
, (2)

where the dot stands for a time derivative. M1(κ) is the mass for polaron motion while M2(κ)
is the mass for polaron shape or size 1/κ variations. Note that ∆p(κ, x) is symmetric in x
(same dimerization on both sides) hence ∂R terms are antisymmetric and the coefficient of a
cross term Ṙκ̇ vanishes.

Consider first a tunnelling trajectory such that initially κ increases (at small R < ξ) until
crossing into the excited potential occurs (this may require of κ an initial overshoot of the
polaron value κp). The matrix element for the transition involves the photon field and a wave
function overlap which is large for R < ξ. The tunnelling continues then on the excited state
with increasing R, reducing the excited-state energy with the −eER term until it vanishes at
R1 = (2Ep − h̄ω)/eE (fig. 2a). The condition R1 � ξ is satisfied if 2Ep − h̄ω is not too small,
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Fig. 2 – Energy barriers for (a) tunnelling along R for polarons (curve p with 2Ep − h̄ω − eER) and
for bipolarons (curve b with 2Eb − h̄ω − 2eER), and (b) tunnelling along κ: the initial deformed
ground-state energy (curve g with 2Ep(κ) − 2ω0(κ)) crosses into the polaron state (curve p with
2Ep(κ)− eER − h̄ω) at the minimal value of κ, κm.

e.g. > 0.1 eV and with ξ ≈ 1 nm one needs E � 106 V/cm. Most of the trajectory is then
in the regime R � ξ justifying the use of the form Vex(κ,R) = 2Ep − eER and the use of
effective masses. The tunnelling rate along the R trajectory under the barrier 2Ep−eER− h̄ω
(curve p in fig. 2a) is given by a WKB form with the polaron mass Mp = M1(κp),

Γ1 ∼ exp
[
− 2

∫ R1

0

dR
[
2Mp

(
2Ep − h̄ω − eER

)]1/2
]

= exp
[
− 4

√
Mp

3eE
(
2Ep − h̄ω

)3/2
]
. (3)

This exponent involves two large parameters. The first one involves the electric field,
∆0/eEξ > 102, while the second involves the mass,

√
Mpv2

F/∆0 ∼ ∆0/ωph, i.e. an adiabatic
parameter which is ≈ 10. Hence Γ1 is extremely small. (We have neglected the initial
tunnelling where κ increases from 0 which further reduces Γ1.)

To find the optimal tunnelling trajectory in the (R, κ)-plane, we note from eq. (3) that
tunnelling along R is strongly suppressed by two large parameters in the exponent. To avoid
a trajectory along R, consider the opposite extreme where κ increases from 0 at a large fixed
R. This corresponds to nucleating two lattice deformations at a large distance R with initial
energy 2Ep(κ)−2ω0(κ) which crosses the excited-state energy at some κ (fig. 2b). The price to
pay in this process is that the matrix elements involve the overlap of localized wave functions
separated by a large R, i.e. ln Γ ≈ −2κR. As discussed above, the minimal κ that is consistent
with localized charges is κm, hence we choose to nucleate the deformations at a distance Rp

such that the crossing in fig. 2b is at κm, i.e.

2Ep(κm) − 2ω0(κm) = 2Ep(κm) − h̄ω − eERp. (4)

Since κm is small, Rp ≈ (2∆0 − h̄ω)/eE, hence the tunnelling rate is

Γp ∼ e−4(1− h̄ω
2∆0

)(
∆0
eEξ )2/3

. (5)

Γp involves also the tunnelling across small κ values of fig. 2b which contributes a small
correction within the exponent in eq. (5). We note that the crossing of fig. 2b can be chosen
at a somewhat smaller R if it occurs at κp with the minimal Ep, i.e. R = (2Ep−h̄ω)/eE < Rp.
However, here κ = κm ≈ 1/ξ so that κR increases considerably.
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A few comments on the role of Coulomb interactions. We note that our tunnelling routes
bypass the strongly Coulomb-bound exciton state by involving charges at separations much
larger than the exciton size; in particular, for the process in fig. 2b the direct Coulomb
interaction of the P+P− pair is negligible, since e2/Rp � eERp. As for the excitation
from the polaron localized state to the continuum, we note that if Coulomb energies gave an
excitation energy ∼ κ (possibly in semiconductors with higher dimensionality) then κm ∼ E1/2

and ln I ∼ (∆0/eEξ)1/2.
The result for Γp is remarkable —it reduces the large ∆0/eEξ factor in eq. (3) to its 2/3

power and also avoids the large adiabatic parameter. Hence eq. (5) dominates over trajectories
with tunnelling in R such as in eq. (3), unless 2Ep − h̄ω is extremely small. Furthermore, this
process is much more efficient than the Franz-Keldysh process [14] which is the photon-assisted
κ = 0 process, i.e. tunnelling between extended states of the valence and conduction bands
with ln Γ ∼ −(1− h̄ω/2∆0)3/2∆0/eEξ. We conclude that the process leading to eq. (5) is the
most efficient one for generating polarons. This is a most remarkable process —the system
prepares localized states at a large separation (typically Rp > 100 nm) so as to accommodate
an eventual transfer of charge.

We consider next tunnelling into bipolarons. The electric field breaks inversion symme-
try and allows charge transfer between polarons, leading to doubly charged bipolarons. The
excitation potential is Vb(κ,R) = 2Eb(κ)−2eER, where 2Eb is the creation energy of two bipo-
larons; in the e-l model 2Eb(κ) = 2Ep(κ)+2ω0 (fig. 1b). If tunnelling along R had dominated,
then direct tunnelling into bipolarons would have dominated at low frequencies. To see this,
note that Vb(κ,R)−h̄ω (Eb here is the minimized Eb(κ)) crosses 0 at R2 = (2Eb−h̄ω)/2 which
is smaller than R1 (fig. 2a) if h̄ω < 4Eb − 2Ep, or h̄ω < 0.4∆0 in the e-l model. Tunnelling
directly into bipolarons eliminates the costly tunnelling range between R2 and R1 at the ex-
pense of an e−2κR2 factor for the second charge transfer. Since tunnelling along R is typically
more costly than e−2κR2 overlap factors, bipolarons would dominate at low h̄ω when R2 < R1.

Within the much more efficient process of tunnelling along κ at a large R bipolarons are
more efficiently generated when R = Rb is chosen such that the bipolaron curve 2Eb−2eER−
h̄ω crosses the initial energy 2Ep − 2ω0 at the minimal κm, hence Rb ≈ (2∆0 − 1

2 h̄ω)/eE.
The polaron excitation energy is then below the bipolaron one, but since −eER is absent at
κ < κm, the polaron curve would also cross near κm. The transfer of two charges involves
now a e−4κR factor, hence Γb � Γp with

Γb ∼ e−8(1− h̄ω
4∆0

)(
∆0
eEξ )2/3

. (6)

We consider next photocurrent of charged solitons which has been studied in detail for
the degenerate PA case [1–4]. In the non-degenerate case, or for PA with interchain coupling,
the electric field must exceed a threshold value to overcome the confinement potential. Soli-
tons being topological objects must be generated by R tunnelling —there is no κ parameter
or a local deformation which can generate a single soliton from the ground state. The exci-
tation energy of a soliton pair S+S− is then Vs(R) = 2Es + αR − eER allowing tunnelling
only for eE > α, i.e. the field needs to overcome the confinement potential. The tunnelling
terminates at Rs = (2Es − h̄ω)/(eE − α) which is assumed to be large, Rs � ξ. As above,
this implies that for 2Es − h̄ω > 0 and not too small, i.e. we need 0 < eE − α � 106 V/cm;
to achieve experimentally accessible fields of similar value we need also α � 106 V/cm; in
terms of the extrinsic gap ∆e and the electron phonon coupling λ, the confinement can be
written as [9] α = 4∆e∆0/(πλvF), where vF is the Fermi velocity. Hence, to observe pho-
tocurrent from solitons we estimate that the conventional confinement parameter should be
γ = ∆e/λ∆0 < 0.3.
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The tunnelling rate into solitons with mass Ms, for h̄ω < 2Es, eE > α, is then

Γs ∼ exp
[
−

√
8Ms

3(eE − α)
(2Es − h̄ω)3/2

]
. (7)

The formation of S+S− leaves a metastable state which can spontaneously form a pair of
solitons without a photon. Γs is extremely small (comparable to eq. (3)), unless h̄ω is close to
2Es. Soliton photocurrent may then dominate the polaron one if Es < Ep. In the e-l model
with weak α, one has Es ≈ 0.6∆0 < Ep ≈ 0.9∆0 where Es is defined so that a soliton pair
energy separated by R � ξ is 2Es + αR.

We consider therefore the range 2Es < h̄ω < 2Ep. The polaron photocurrent is still given
by eq. (5), while for solitons tunnelling can occur at R < ξ, where α and E are ineffective.
The result is then just as in the α = 0 system [3] ln Γ ≈ −∆0/ω0, with h̄ω-dependence
involving R < ξ details, including e-e interactions. We conclude that soliton photocurrent
dominates over that of polarons when 2Es < h̄ω < 2Ep and E > α/e. Hence varying E is a
sensitive tool for identifying α, Es and soliton conduction.

Finally, we present a somewhat technical section, evaluating the effect of Coulomb inter-
actions to first order on the excitation energy of, e.g., a P+ polaron, leading to the important
criteria for κm in eq. (1). The e-l system with (non-uniform) electron transfer between nearest
neighbors has particle-hole symmetry, i.e. each eigenstate φ(n) at site n with energy E allows
an eigenstate (−)nφ(n) with energy −E. Completeness relation for the polaron P+ state
(right side of fig. 1a) yields for the charge density of each spin ρ↑(n) = 1

2 , ρ↓(n) = 1
2 − φ2

b(n),
where φb(n) is the lower-energy localized eigenstate (fig. 1). A Hubbard interaction, to first
order, is

∑
n(ρ↑(n)− 1

2 )(ρ↓(n)− 1
2 ) = 0; similarly, for all interactions with range of even sites.

Consider next-nearest-neighbor interaction HV with coupling V . Its average yields a direct
term and an exchange one,

〈HV 〉 =
1
2
V

∑
n

{(
ρ(n) − 1

2

)(
ρ(n + 1) − 1

2

)
−

−
∣∣∣∣ ∑

α

φ∗
α(n)φα(n + 1) + φ∗

b(n)φb(n + 1)
∣∣∣∣
2

−
∣∣∣∣ ∑

α

φ∗
α(n)φα(n + 1)

∣∣∣∣
2
}
, (8)

where ρ(n) = ρ↑(n) + ρ↓(n) and
∑

α sums on all occupied continuum states (per spin) with
energy up to −∆0. The 2nd term above is the exchange for ↑ spin while the 3rd term is for
↓ spin. The summation can be done in a continuum limit [9], where x = na and fα, gα are
wave functions on the even and odd sites, respectively (up to (−)n factors). For small κ (1/κ
is the range of the localized state) we obtain from [9]

∑
α

f∗
α(x)gα(x) =

∆e − ∆0

2πλvF
−

(
1 − 1

2
γξκ

)
fb(x)gb(x) + O

(
κ2

)
(9)

and the contribution to the polaron energy becomes

〈HV 〉p = −V a2
∑

n

(
∆e − ∆0

2πλvF

)2

+ V a
∆e − ∆0

2πλvF

(
1 − 4

π
γξκ

)
+ O

(
κ2

)
. (10)

Note that the direct term 1
2V

∑
n f2

b(n)g2
b(n) ∼ O(κ) cancels with the exchange term (ref. [4]

presents just the direct term which, as shown here, is insufficient). The 1st term in eq. (10) is
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the correction to the ground-state energy while the 2nd one contributes to the polaron energy,
and is ∼ γκ.

The polaron P+ excited state involves an electron transfer from the top of the valence band
with an extended wave function φv(n) into the lower localized state (fig. 1a) which becomes
doubly occupied. Hence the direct term becomes 1

2V
∑

n φ2
v(n)φ2

v(n+ 1) → 0 for an extended
system, while the exchange yields the excited-state energy

〈HV 〉e = −1
2
V

∑
n

{∣∣∣∣ ∑
α

φ∗
α(n)φα(n + 1) + φ∗

b(n)φb(n + 1)
∣∣∣∣
2

+

+
∣∣∣∣ ∑

α

φ∗
α(n)φα(n + 1) + φ∗

b(n)φb(n + 1) − φ∗
v(n)φv(n + 1)

∣∣∣∣
2
}
. (11)

Using [9]
∫

dxf∗
v (x)gv(x) = 1

2 + O(κ2), we obtain that the excited polaron energy is the same
as that of the polaron to order κ2. Hence the excitation energy is O(κ2), the same as in the
e-l model.

In conclusion, we have shown that polarons dominate the photocurrent when h̄ω < 2Ep

(except when 2Es < h̄ω < 2Ep and E > α/e) with the tunnelling rate from eq. (5), i.e. ln I ∼
−E−2/3. However, for 2Es < h̄ω < 2Ep and E > α/e solitons dominate the photocurrent.
This is achievable for near-degenerate polymers, i.e. a small α. Furthermore, the intriguing
possibility that PDA has a phase transition at which the confinement parameter α vanishes [11]
can be sensitively tested by the E-dependence of photocurrent data.
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