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Multiple Fano effect in charge density wave systems
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Abstract

A general framework for analyzing the multiple Fano effect (MFE) in charge density wave (CDW) systems is developed. The MFE occurs
when IR active modes have frequencies above the CDW gap and interference between the IR modes and the electronic continuum leads
to a series of resonances and anti-resonances. We parameterize the peaks and dips of the absorption by a set of bare frequencies, a pinning
parameter and one interaction parameter. We apply this method to recently observed photoinduced absorption spectra of�-conjugated
polymer films.
© 2003 Elsevier B.V. All rights reserved.
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1. Introduction

The phenomena of multiple Fano Effect (MFE) has been
pioneered by Rice[1]. A Fano resonance[2] occurs when a
sharp absorption line overlaps with a continuous absorption,
resulting in a dip, or anti-resonance, near the absorption
peak.

An incommensurate charge density wave (CDW) is of
special interest since its very existence leads to new IR
active modes. When the frequencies of these modes are
above the CDW gap, then Fano interference can occur.
Solids with large organic molecules in the unit cell are ideal
candidates since the internal molecular vibrations provide
high frequency modes. MFE were indeed observed, e.g.
in TEA(TCNQ)2 [3], confirming the basic idea presented
by Rice [1]. The MFE analysis has also been combined
with Raman data leading to quantitative predictions for the
various electron–phonon couplings[4].

Of particular interest is the application of MFE to
�-conjugated polymers (PCP). Photoinduced charge carri-
ers, e.g. polarons or bi-polarons provide electronic transi-
tions in the IR phonon range, leading to MFE[5]. In this
case, the incommensurate CDW corresponds to a localized
charge resulting in a space dependent displacement pattern.
The rapid development of the quality of PCP through better
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synthesis and innovative polymers has led to many interest-
ing novel phenomena and applications such as organic light
emitting diodes with high luminosity[6], 2D delocaliza-
tion of charge carriers[7,8] and high mobility field effect
transistors[9]. Yet the existence of a continuum electronic
state in the charge manifold of such superior polymers
has still remained elusive. So far there exist only one defi-
nite experimental example of the existence of a continuum
band threshold in PCP, namely the Franz–Keldysh-type
oscillation measured in the electro-absorption spectrum
of a polydiacetylene single crystal[10]. Although pho-
toemission and inverse photoemission measurements were
performed in doped and undoped PCP and oligomers[11],
these experimental techniques do not have sufficient energy
resolution to discern a continuum of electronic states above
the discrete excitonic levels.

In the present work, we develop a general framework for
analyzing MFE, a phenomena in the non-adiabatic regime.
In Section 2, we present the formalism and derive the
dominant sharp MFE structure. InSection 3, we analyze
photoinduced absorption (PA) spectra of PCP films[5] and
show that photoinduced polaron optical transitions to the
adjacent electronic band overlap with a series of photoin-
duced infrared-active vibrations (IRAV), which are known
to be formed in PCP when charges are added to the polymer
chains. When these conditions are met we observe a series
of quantum interference antiresonances (AR) between the
two types of excitations, namely the discrete IRAV and the
polaron PA band leading to MFE. The Fano-type AR can
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be very well explained by the present theory of MFE even
in this non-adiabatic situation. We consider the obtained fit
between the data and the model calculation as evidence for
the existence of a continuum band above the polaron state
in the charge manifold of PCP, justifying the quantitative
semiconductor treatments that have been done so far in
dealing with organic light emitting diodes and organic field
effect transistors.

2. Theoretical framework

We analyze the AR spectrum by a generalization of the
amplitude mode (AM) model[12], which has had spectac-
ular success in explaining the resonant Raman scattering
(RRS) dispersion as well as photoinduced and doping in-
duced IRAV in PCP[13]. In all of these previous applica-
tions of the AM model it has been explicitly assumed that
the adiabatic approximation holds true[12]. This was cor-
rect since the Raman frequencies are much smaller than the
optical gap, and the IRAV frequencies were much smaller
than the energy of the photo-induced or doping-induced elec-
tronic bands. This approximation, however, does not hold in
the case of MFE; we thus have to modify the AM model to
allow for non-adiabatic effects.

An important ingredient of the AM model is that all IRAV
are interconnected by being coupled to the same electronic
operator[1,4,12,13], which is unique to AR in polymers.
This makes AR in polymers especially interesting and sub-
stantially differs from the more regular Fano-type resonance
treatments in other materials[2].

We consider either of the following cases: (i) incommen-
surate CDW, (ii) commensurate CDW of high order (CDW
period > 2 lattice units), and (iii) dimerized CDW, as in
PCP, with an additional localized charge. In all of these
cases, the displacement pattern∆n(x) for each phonon mode
n = 1,2, . . . , N, is x dependent, either periodic in cases (i)
and (ii) or localized in case (iii). In the static situation for
each mode∆n(x) ∼ λnC(x) whereC(x) is the expectation
value of the electronic operator which couples linearly to
∆n(x) and�n are the electron–phonon couplings. Defining
λ = ∑

n λn, we have

∆n(x) = λn

λ
∆(x), (1)

where∆(x) = ∑
n ∆n(x) is the collective pattern to which

the electrons respond. We allow now small time dependent
oscillations, e.g. induced by an external forceF. Conse-
quently, each mode acquires a coordinateφn(t), i.e. its dis-
placement pattern is∆n(x − φn(t)). We can then define a
collective center of mass coordinateφ(t) via

∆(x− φ(t)) =
∑
n

∆n(x− φn(t)). (2)

Expansion to first order and use ofEq. (1)yields

φ(t) =
∑
n

λn

λ
φn(t). (3)

Next, we wish to evaluate the propagator for theφ(t) mode
in presence of charge pinning, i.e. a restoring force onφ(t).
Pinning is characterized by a single parameter,α, which
measures the pinning of the collective translation modeφ(t).
This description of pinning assumes that the charge carriers
are sufficiently extended so that individual modes do not
couple directly to a pinning center, but only via the collective
translation mode. The equations of motion for the modesφn
in the presence of pinning and an external forceF are then[

1 −
(
ω

ω0
n

)2
]
φn + αφ = −F. (4)

whereω0
n are the bare phonon frequencies. Solution of this

equation yields for the collective mode propagatorDα(ω),
defined as the responseφ = Dα(ω)F

Dα(ω) = D0(ω)

1 − αD0(ω)
, (5)

where

D0(ω) =
N∑
n=1

λn

λ

(ω0
n)

2

ω2 − (ω0
n)

2 + iδn , (6)

andδn are the phonon natural linewidths (inEq. (4)formally
δn → +0). The propagator for the phonons’ collective mode
φ(t) in the presence of pinning is thereforeDα(ω) and is next
employed in the treatment of the coupled electron phonon
system.

In the MFE regime phonon frequencies overlap with elec-
tronic transitions and thus the adiabatic approximation is
not valid. However, focusing on a sharp structure in the ab-
sorption the random phase approximation (RPA) ofFig. 1
is unique in that it exhibits the sharp structure ofDα(ω).

We can therefore go beyond the adiabatic approximation
by assuming a general response function for the RPA sum
(except the first term inFig. 1 that has no phonons) of the
form

g(ω) = −ω
2

E2
r

λDα(ω)f
2(ω)

(1 + 2λDα(ω)Iφ(ω))

= −ω
2

E2
r

λD0(ω)f
2(ω)

1 +D0(ω)[2λIφ(ω)− α]
, (7)

whereωf(ω) is proportional to the electron current coupling
to phonons (the first and last bubble in the second and higher
terms ofFig. 1) while Iφ(ω) is the phonon self mass correc-
tion due to the electrons (middle bubbles inFig. 1); Er is the

. . . .
Fig. 1. RPA sum for the conductivity allowing for the sharp structure of
the phonon propagator in Eq. (5). The wavy line represents phonons, the
dashed line represents the electromagnetic vector potential while the full
line represents the electron propagator.
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gap for electron–hole excitations, e.g. in presence of a po-
laron it is the transition from its localized level to the closest
continuum. The vertex, f(ω), and the self mass, Iφ, contain,
in general, electron–electron interactions. The particular
way of exhibiting f(ω) and Iφ(ω) in Eq. (7) is chosen for
comparison with the CDW case below. For now, we assume
that these functions are smooth on the scale of the fast varia-
tion of D0(ω), i.e. the spacing between ω0

n. The phonon con-
tribution to the conductivity is treated within RPA (Fig. 1)
since these are the only diagrams where the sharp struc-
ture of the collective propagator Eq. (6) is retained—these
diagrams are proportional to powers of Dα(ω). All other
diagrams involve integration over phonon lines and the
sharp structure is smeared; these terms are represented by
additional smooth functions of ω, as d1(ω) below.

The total conductance, σ(ω), can be written in the form

σ(ω) = ω2
p

4πiω
[f(ω)+ d1(ω)+ g(ω)− 1], (8)

where the term f(ω) + d1(ω) corresponds to the first term
in Fig. 1 (without phonons) and −1 is the diamagnetic term.
We define

c(ω) = λω2

E2
r
f(ω), (9)

and

2λIφ(ω) = 1 + c(ω)+ d2(ω), (10)

For the CDW case d1(ω) = d2(ω) = 0, but in general Iφ
can involve terms beyond c(ω), which are represented by
d2(ω). In the MFE regime with ω > Er, all these electronic
terms [such as f(ω); d1(ω); d2(ω); c(ω)] can be considered
as slowly varying on the scale of the spacing between ω0

n

(which is � Er). Since d2(ω) appears only in the combina-
tion 2λIφ(ω)− α, we may absorb it into the definition of α,
as it is weakly ω dependent.

Collecting terms,

σ(ω) = ω2
p

4πiω

{
f(ω)

1 +D0(ω)[1 − α]

1 +D0(ω)[1 + c − α]
− 1

}
+ smooth terms, (11)

and also c(ω) is taken as a constant c. Hence the sharp
structure of σ(ω) can be written as

σ(ω) ∼ 1 +D0(ω)[1 − α′]
1 +D0(ω)[1 + c1 − α]

, (12)

where c1 = R(c1) and in general α′ 	= α due to the smooth
terms. We note that for a single phonon mode Eq. (12)
reduces to the form suggested by Fano [2], however, the
multi-mode system is not a simple sum of Fano terms.

Peaks of absorption appear at solutions of the equation

D0(ω) = −1

1 − α+ c1
. (13)

An interesting feature of this equation is a “product rule”
for the N solutions ωφn . The denominator in Eq. (12) equa-
tion can be written as

∏
n [ω2 − (ωφn)2]/[ω2 − (ω0

n)
2]. By

comparing values at ω = 0 the product rule is obtained,

N∏
n=1

(
ω
φ
n

ω0
n

)2

= α− c1. (14)

We recall that c1 vanishes for IRAV with ω � Er [12] so
that

D0(ω) = −1

1 − α. (15)

We refer to IRAV as the discrete lines at ω < Er, in con-
trast to the MFE phenomena at ω > Er. Dips of absorption
(antiresonance) are given by the zeroes of Eq. (12),

D0(ω) = −1

1 − α′ , (16)

with a product rule for the AR frequencies ωAR
n

N∏
n=1

(
ωAR
n

ω0
n

)2

= α′. (17)

Note that if some ωAR
n are below the gap these are not ob-

servable and then the product rule 17 is not useful.
We also recall that for the Raman active modes [12,13]

D0(ω) = −1

1 − 2λ̃
, (18)

where λ̃ is an interaction parameter (in the absence of
electron–electron interactions λ̃ = λ). We summarize all
the eigenmodes in Table 1—all of them are determined by
the same D0(ω) and one additional parameter.

We finally recall the explicit results for the CDW system
(in the absence of electron-electron interactions) [1,4,19] at

Table 1
Equations for determining various eigenfrequencies in terms of pinning
parameters α, α′ and interaction parameters c1, λ̃

Mode and range Determining equation Product rule

MFE peaks
ω
φ
n > Er

D0(ω) = −1

1 − α+ c1

∏N
n=1

(
ω
φ
n

ω0
n

)2

= α− c1

MFE dips (AR)
ωAR
n > Er

D0(ω) = −1

1 − α′
∏N
n=1

(
ωAR
n

ω0
n

)2

= α′

IRAV ω
φ
n � Er D0(ω) = −1

1 − α
∏N
n=1

(
ω
φ
n

ω0
n

)2

= α

Resonance Raman
ωR
n � Er

D0(ω) = −1

1 − 2λ

∏N
n=1

(
ω
φ
n

ω0
n

)2

= 2λ̃

Er is the gap for electron–hole excitation—it may be the transition from
valence to conduction band (usually for Raman and IRAV) or a transition
between a localized polaron level and the closest continuum as in our PA
data.
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low temperatures (T � Er),

f(ω) = E2
r

ω2y
arctan

(
1

y

)
, if ω < Er

f(ω) = E2
r

2ω2y

[
ln

(
1 − y
1 + y

)
+ πi

]
, if ω > Er, (19)

where in both cases y = √|(1 − E2
r )/ω

2|. Note the complex
form for the case ω > Er.

3. Application to �-conjugated polymers

We have found that AR are quite a generic phenomenon in
PA spectra of ordered PCP films, where the polaron P1 band
overlaps with the IRAVs [5]. There are other examples of
photoinduced AR in the PA spectra, such as in polydiacety-
lene single crystals [14], and other polymer films [15–17]
where the AR phenomenon has not been identified or rec-
ognized, as well as in charge induced absorption measured
in RR-P3HT [18]. We conclude that photoinduced AR are
as common as photoinduced IRAV and therefore an appro-
priate model to describe them is in order.

The poles of Eq. (12) (i.e. Eq. (13)) give MFE peaks in
the conductivity (absorption) spectrum. On the other hand,
the zeros in Eq. (12) (i.e. Eq. (16)) give the indentations
(or AR) in the conductivity spectrum (see Fig. 2). It is thus
apparent that the AR are due to the formation of quantum
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Fig. 2. The measured (lines) and calculated (symbols) for phonon frequen-
cies in (a) doping induced absorption, (c) photoinduced absorption, and
(d) resonant Raman spectrum for RRPHT. The fitted propagator D0(ω)
(with parameters given in Table 2) is shown in (b), where the horizontal
lines are obtained using 2λ̃ = 0.442 (RRS, down triangles), α′ = 0.376
and c1 = −0.080 (ARs, circles) and αp = 0.213 (IRAVs, up triangles).
[From Ref. [5]].

Table 2
Fitting parameters obtained for RRPHT

n ω0
n

(cm−1)
λn/λ δn

(cm−1)
AR(e)
(cm−1)

AR(c)
(cm−1)

1 569.5 0.011 15 560 561.8
2 606.5 0.011 15 600 600.3
3 689.1 0.007 17 683 683.0
4 745.2 0.024 25 727 729.0
5 824.5 0.003 35 814 822.0
6 890.3 0.014 30 875 877.8
7 1019.9 0.011 25 1004 1004.8
8 1107.7 0.008 20 1084 1093.8
9 1183.4 0.005 25 1159 1169.4

10 1236.6 0.019 25 1207 1207.6
11 1388.2 0.005 30 1356 1356.0
12 1491.8 0.006 30 1431 1420.7
13 1995.7 0.876 10 1513 1505.4

The bare frequencies ω0
n, electron–phonon couplings λn = λ, natural

widths δn, together with measured (e) and calculated (c) AR frequencies,
respectively, using 2λ̃ = 0.442, α′ = 0.376, c1 = −0.080 and αp = 0.213.

interference between the phonons and the electron optical
transitions in the conductivity spectrum.

To have a more quantitative fit to the experimental PA
spectrum of RR-P3HT we used both resonant Raman scat-
tering (RRS) and doping induced absorption spectra (with
pinning parameter αp) of this polymer film to determine
the 13 bare phonon frequencies and their corresponding e–p
couplings as given in Table 2. Note that the pinning pa-
rameter depends on the way charge carriers are produced; a
dopant ion is expected to yield a stronger pinning parameter
αp than α for PA charges. We then fit one more parameter
(α′) to obtain 13 AR frequencies with excellent agreement
with the AR data as shown in Table 2.

The 13 coupled phonon modes contain 12 phonons with
a relatively weak coupling and a strongly coupled phonon
at about 2000 cm−1 (the C−C double stretching vibration)
with λ13 ≈ 0.2; this single mode has ≈0.9 of the overall λ.
From these parameters we estimate a superconducting tran-
sition temperature Tc ≈ 20 K [20], which may be reached
in the future with clean RRP3AT films in an incommensu-
rate state. This demonstrates the advantage of using the AM
model, i.e. the same phonon propagator, which determines
the photoinduced AR and IRAV frequencies, also determines
the RRS and doping induced IRAV frequencies.

To demonstrate the non-adiabatic effects on the PA spec-
trum we calculated the conductivity spectrum including the
MFE for polarons with low Er (Er here is the electronic
transition energy within the polaron states) and the corre-
sponding phenomena for high Er (ω < Er) which we term
as IRAV, as shown in Fig. 3. The calculation uses the CDW
form with Eq. (19) assuming a polaron charge that is suf-
ficiently spread to form locally an incommensurate CDW.
For these calculations, we used the phonon parameters of
RR-P3HT from Table 2. It is seen that when ω � Er, then
only IRAV with positive peaks can be observed (Fig. 3(a));
this happens since at ω < Er the absorption is anyway weak



B. Horovitz et al. / Synthetic Metals 141 (2004) 179–183 183

0 1000 2000 3000 4000 5000

R
e[

σ(
ω

)](
ar

b.
un

its
)

Frequency(cm )-1

(a)

(b)

Fig. 3. Calculated PA spectra (solid lines) using the CDW response
function with onset 2 at: (a) 2∆ = 2000 cm−1, (b) 2∆ = 800 cm−1. In
both cases, the FWHM of the distribution in  is 100%. The electronic
CDW PA without phonon contribution is also shown as dashed lines.
From [5].

between IRAV frequencies so that a zero factor at the fre-
quencies Eq. (16) is not noticeable. However when Er is
small so that the CDW band overlaps with the IRAV, then
quantum interference occur that give rise to MFE in the
spectrum (Fig. 3(b)); in this case, the AR are more dominant
than the peaks that occur on their high energy side.

4. Conclusions

We have developed a formalism for MFE in CDW sys-
tems. These systems are either incommensurate CDW, high
order commensurate CDW or dimerized CDW, as in PCP,
with an additional localized charge. In all of these systems,
we have identified a collective translation mode that couples
to the electrons, to an external electric field and to a pin-
ning center. We have shown that a multi-phonon system pro-
duces MFE—an interference phenomena in a non-adiabatic
regime.

We have applied this analysis to PA spectra of a variety of
PCP films and found an excellent agreement. This strongly
indicates that in the PA data a continuous absorption band
is produced, most likely due to a polaron band [8]. Our
analysis, therefore, provides a sensitive tool for identifying a
continuous absorption band that overlaps with discrete IRAV.

We have also shown that high frequency modes can be
strongly coupled to electrons. In particular in RRPHT we
have found that ≈0.9 of the electron–phonon coupling is
due to a 2000 cm−1 mode. Such modes are essential for en-

hancing the superconducting transition temperature within
the electron–phonon mechanism. The transition tempera-
tures for superconductivity and for CDW (in the incom-
mensurate case) are comparable when such high frequency
modes are strongly coupled [20]. The CDW may be sup-
pressed by increasing interchain coupling and then super-
conductivity dominates. The MFE analysis presented here
is therefore an essential tool for identifying these important
strongly coupled high frequency phonons.

In memory of Michael Rice

Michael has been a constant inspiration throughout our
work on conducting polymers. Michael’ s choice of topics
and methods, as well as his joyful way of leading dicussions,
carried an impact on the whole community.
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