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We briefly discuss various applications of the Chalker–Coddington network model, start-
ing with the original one, proposed to describe inter-plateaux transition in the integer
quantum Hall effect (IQHE). Next, we present generalization appropriate for the IQHE
allowing to include spin, and conclude with recent applications to dirty superconduc-
tors. We then describe how numerical calculations on an open network produce data for
the localization length behavior in the metal-insulator transition, whereas calculations
on the closed system allow elucidation of various levels statistics. We also discuss how
numerical algorithm for systems with additional symmetries is modified in order to im-
prove the accuracy. Finally, results for the nearest-neighbor spacing distribution in dirty
superconductors are presented.
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1. Introduction

Numerical models are usually constructed for describing particular phenomena and

for calculating some specific properties. They serve that purpose, produce some

results, and usually have no future. In this brief review, we discuss a model which

was initially designed for the critical behavior at the integer quantum Hall plateau

transition, and in this sense could have followed the standard route of numerical

models. In fact, this model turned out to allow generalizations, describe more in-

volved phenomena, make analytic predictions, produce results for different physical

quantities, and in general, be applicable to systems which are very different from

the original quantum Hall system.

2. One-Channel Network Model

The original network model1 was proposed to describe transitions between plateaux

in the quantum Hall effect (QHE). QHE is realized in a two-dimensional electron gas

subject to a strong perpendicular magnetic field and a random potential. When ran-

dom potential varies smoothly (its correlation length is much larger than the mag-
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netic length), a semi-classical description becomes relevant: electrons move along

the lines of constant potential. When two equipotential lines come close to each

other (near a saddle point), tunneling is feasible. In the network model, electrons

move along unidirectional links forming closed loops in analogy with semi-classical

motion on contours of constant potential. Scattering between links is allowed at

nodes in order to encode tunneling through saddle point of the potential landscape.

Propagation along links yields a random phase φ. Thus, links are presented by di-

agonal matrices with elements in the form exp(iφ). Transfer matrix for one node

relates a pair of incoming and outgoing amplitudes on the left to a corresponding

pair on the right; it has the form

T =

(

cosh θ sinh θ

sinh θ cosh θ

)

. (1)

The node parameter θ is related to the electron energy in the following way

ε = −
2

π
ln(sinh θ) , (2)

where ε is a relative distance between the electron energy and the barrier height.

It is easy to see that the most “quantum” case (equal probabilities to scatter to

the left and to the right) is at ε = 0 (θ = 0.8814); numerical calculations show that

there is an extended state at that energy.

Numerical simulations on the network model are performed in the following

way: one study system with fixed width M and periodic boundary conditions in

the transverse direction. Multiplying transfer matrices for N slices and then diag-

onalizing the resulting total transfer matrix, it is possible to extract the smallest

Lyapunov exponent λ (the eigenvalues of the transfer matrix are exp(λN)). The

localization length ξM is proportional to 1/λ. Repeating calculations for different

system widths and different energies, it is possible to show that the localization

length ξM satisfies a scaling relation

ξM

M
= f

(

M

ξ(ε)

)

. (3)

In the QHE, the thermodynamic localization length ξ(ε) ∼ |ε|−ν and ν = 2.5± 0.5.

This is the main result1 and it is in a good agreement with experimental data

for spin-split resolved levels,2 numerical simulations using other models3 and semi-

classical argument4,5 that predicts ν = 7/3.

3. Two-Channel Network Model

A natural generalization of the network model includes spin or mixing of the

two lowest Landau levels. It is achieved by allowing each link to carry two

channels — both in the same direction. Two states can mix on the link but scat-

ter separately at the node. Energies of both states are equal but are differently

distributed between guiding center motion and Landau (spin) level allowing, there-

fore, two lowest Landau levels or spin-up and spin-down levels. A certain parameter
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∆ describes the relative energy distance between the two levels and effectively mea-

sures the magnetic field. The mixing matrix on the link is a 2 × 2 unitary matrix

U = eiδ

(

eiα cosφ eiγ sinφ

−e−iγ sin φ e−iα cosφ

)

. (4)

Results for spin degenerate levels show that there are two separate critical energies.6

Performing numerical calculations for different energies and ∆, we trace7 the depen-

dence of the extended states energies on magnetic field without fitting parameter

and confirm the conjecture on the levitation of extended states in low magnetic

fields.8

The symmetries of the transfer matrix on the link reflect the symmetries of the

underlying Hamiltonain and can therefore describe different physical systems. We

have already seen how a group symmetry of the link matrix corresponds to the

lowest Landau level (U(1) symmetry) and to two spins or Landau levels (U(2) sym-

metry). Two other symmetries SO(2) and U(1) × SO(2) exhibit the same behavior

as a single channel model. This is not surprising due to the commutativity of the

U matrices on the links.

4. New Symmetry Classes

It turns out that the “nearest neighbors” of the first two models, namely, systems

with O(1) and SU(2) symmetries are of great interest and correspond to very non-

trivial physical systems. Altland and Zirnbauer9 considered properties of quasipar-

ticles in disordered superconductors that are governed by a quadratic Hamiltonian,

which may include effects of disorder in both the normal part and the superconduct-

ing gap function. Such Hamiltonians are representatives of a set of symmetry classes

different from the three classes which are familiar both in normal disordered con-

ductors and in the Wigner–Dyson random matrix ensembles. A list of additional

random matrix ensembles, determined by these new symmetry classes, has been

established. These additional random matrix ensembles describe zero-dimensional

problems, and are appropriate to model a small grain of a superconductor in the

ergodic highly conducting limit. In our work we have extended the study of classes

C and D into two dimensions and found transitions between metallic, localized, or

quantized Hall phases for quasiparticles.

4.1. Class C

Hamiltonian with broken time reversal symmetry and spin rotational symmetry

intact belongs to class C in Altland and Zirnbauer notation. It can be realized

when grains of a single superconductor surrounded by normal metal are subject to

a perpendicular magnetic field. The associated change in quasiparticle dynamics

must be probed by spin transport, rather than charge transport, since quasiparti-

cle charge density is not conserved. This symmetry class when mapped onto CC
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network model corresponds to SU(2) matrices on the link. Scattering at the nodes

is parameterized by ε ± 1

2
∆. The value of ε determines the Hall conductance of

the system, as measured at short distances: varying ε drives the model through

the delocalization transition (in this sense ε corresponds to a Fermi level as in the

standard CC model). A non-zero value for ∆ breaks spin-rotation invariance, and

will in fact change the universality class for the transition. The results10 show that

the renormalized localization length ξM/Ml (Ml is a system width) is described

near the fixed point (ε = ∆ = 0) by a two parameter scaling function

ξM/Ml = f(εM
1/ν
l , ∆M

1/µ
l ) , (5)

with ν = 1.12 and µ ≈ 1.45. It was also shown that as ∆ approaches zero, extended

states coalesce, having a separation, 2εc ∝ ∆µ/ν which is much smaller than ∆,

their separation in the absence of coupling between the two spin orientations. Fi-

nally, in contrast with the conventional plateau transition, the Hall conductance

for conserved quasiparticles (∆ = 0) changes at this transition by two units.

4.2. Class D

The last symmetry class treated by CC model is class D. The symmetry may be

realized in superconductors with broken time-reversal invariance, and either broken

spin-rotation invariance (as in d-wave superconductors with spin-orbit scattering)

or spinless or spin-polarized fermions (as in certain p-wave states). The associated

changes in quasiparticle dynamics must be probed by energy transport, since nei-

ther charge density nor spin are conserved. A Bogoliubov–de Gennes Hamiltonian

with this symmetry may be written in terms of a Hermitian matrix.9 The corre-

sponding time evolution operator is real, restricting the generalized phase factors to

be O(N) matrices for a model in which N -component fermions propagate on links,

and to the values ±1 for N = 1, the case that was studied. We define two mod-

els: uncorrelated O(1) model, where phases on the links are independent random

variables, and a model first introduced by Cho and Fisher (CF)11 where scattering

phases with the value π appear in correlated pairs (see details below). Each model

has two parameters. The first one is a disorder concentration W , such that there

is a probability W (1 − W ) to have phase 0(π) on a given link. The second pa-

rameter is an energy ε describing scattering at the nodes. We have found12 that in

the uncorrelated O(1) model, all states are extended independent of ε and W . For

the CF model, the phase diagram in the ε–W plane has three distinctive phases:

metallic, and two insulating phases characterized by different Hall conductivities.

The sensitivity to the disorder is a distinctive feature of class D.

The existence of region of extended states means that the smallest Lyapunov

exponent at each particular energy is zero or extremely small. We wish to discuss

this point in some detail in order to demonstrate the power of the CC model. First,

we present an analytic argument for this result, and then show how to modify the

numerical algorithm employing additional symmetries of the system that increases

accuracy of calculations.
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Consider the uncorrelated O(1) model with M = 2. It has two eigenvectors

(1,−1)T and (1, 1)T . The effect of one node and one link transfer matrix on the

first eigenvector is
(

cosh θ sinh θ

sinh θ cosh θ

)(

1 0

0 A

)(

1

−1

)

= exp(−Aθ)

(

1

−A

)

(6)

and after many iterations

· · · = exp[(−A − AB − ABC − · · ·)θ]

(

1

−ABC
· · ·

)

, (7)

where A, B, C, . . . assume values +1 with probability W , and −1 with probability

1−W . The same procedure with the eigenvector (1, 1)T produces the same result as

Eq. (7), with all signs reversed. The weighted averaged value of the exponent (tak-

ing into account contributions of both eigenvectors) defines the Lyapunov exponent.

We therefore need to find the relative weights of the two eigenvectors. The ergodic-

ity of the system implies that after many iterations, the expression ABC · · · equals

+1 (−1) with probability α (1−α) for some constant α. Assuming the same prob-

ability after the next step, we find αW + (1 − α)(1 − W ) = α, which immediately

gives α = 1/2, thus both eigenvectors have the same relative weight, and their

contributions to the Laypunov exponent cancel each other exactly. We therefore

conclude that for M = 2, the Lyapunov exponent is exactly zero independent of

θ(ε) and W .

The decomposition of the transfer matrix for the CF model gives
(

coshAθ sinh Aθ

sinh Aθ cosh Aθ

)

=

(

1 0

0 A

)(

cosh θ sinh θ

sinh θ cosh θ

)(

1 0

0 A

)

. (8)

The same exercise for the CF model produces exp(Aθ) for both eigenvectors, the

Lyapunov exponent then is zero only when 〈A〉 = 0, i.e. for W = 1/2.

The standard method for numerically calculating Lyapunov exponents involves

application of transfer matrix for successive slices of the system on a set of

M orthogonal vectors, and imposing orthogonality by means of Gram–Schmidt

procedure.13 If all Lyapunov exponents are separated by gaps, this set of vectors

converges to the eigenvectors of T T T associated with the first M exponents (the

width of the system is 2M). Convergence rates are determined by the sizes of gaps

between adjacent exponents. In the present case, convergence rates are seriously

reduced if the smallest positive Lyapunov exponent ν1 approaches zero, so that the

gap between the smallest exponents vanishes. Moreover, numerical noise ultimately

limits the extent of convergence, and leads to an erroneously large value for ν1.

To overcome this flow, the following modification of the numerical algorithm was

proposed.12,14 Consider the transfer matrix T of the whole system in more detail.

It has the polar decomposition

T =

(

A1 0

0 A2

)(

cosh γ sinh γ

sinh γ cosh γ

)(

AT
3

0

0 AT
4

)

, (9)
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where A1, . . . , A4 are M×M real orthogonal matrices and γ is an M×M real diag-

onal matrix. It follows that T T T is diagonalized by the transformation BT T T TB,

where

B =

(

A3 A3

A4 −A4

)

. (10)

We then impose on the M pertinent vectors (beyond simple orthogonality) an ad-

ditional constraint that their first M components separately form an orthogonal

matrix A3, and their last M components form another orthogonal matrix A4, as is

evident from Eq. (9). This procedure drastically improves convergence and accu-

racy of the calculations, confirming analytical arguments presented above for both

systems.

5. Level Statistics

Finally, we briefly describe the use of the CC model for level statistics calculations.

If, instead of studying transport properties of the system, it is closed up as a torus,

then the eigenvalue problem can be addressed. Such a system can be specified using

a discrete-time evolution operator, U(ε). For a square network of N ×N nodes, U

is a (2 × N 2) × (2 × N 2) unitary matrix. The action of U on a vector Ψ of flux

amplitudes, defined on the start of each link, maps the system on itself, providing

therefore an eigenvalue equation U(ε)Ψ = Ψ. Unfortunately, it is not possible at

present to find numerical solutions of that equation. Instead, Klesse and Metzler15

proposed to solve the unitary evolution equation

UΨn = exp[iωn(ε)]Ψn (11)

and to study statistics of ωn for a given ε. The idea behind that proposal is based

on two suggestions. First, there are many states even in the narrow window near

particular energy ε to provide good statistics. Second, the behavior of curves ωn(ε)

is smooth enough, therefore statistics of ωn for a given ε is expected to be the same

as statistics of εn for ω = 0 (true energy eigenvalues). We have reasons to believe

that the second suggestion is justified only after proper unfolding procedure, and

have shown16,17 that for the CF model at ε = 0 and W = 0.1 (where transition

takes place) the nearest neighbor spacing distribution (NNSD) P (s) after proper

unfolding procedure is in excellent agreement with the Wigner surmise for the

GUE. At ε = 1 at the same W = 0.1 which, according to our phase diagram,12 is

a localized state, we have found a clear transition to Poissonian statistics.

6. Conclusion

We have briefly described various applications of the CC model for different physical

systems. The model allows some powerful analytical arguments as well as numerical

simulations of different physical quantities. We have to mention that there are

numerous applications of the CC model which are not included in this work such as
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formulation in terms of supersymmetry,18 calculations of mesoscopic fluctuations

of Hall conductance19 and generalization to three-dimensional systems.20
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