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PACS. 74.20.Rp – Pairing symmetries (other than s-wave).
PACS. 74.25.Ha – Superconductivity: Magnetic properties.
PACS. 74.25.Fy – Transport properties (electric and thermal conductivity, thermoelectric ef-

fects, etc.).

Abstract. – Broken time reversal symmetry (BTRS) in d-wave superconductors is studied and
is shown to yield current-carrying surface states. The corresponding spontaneous magnetization
Φ is temperature independent near the critical temperature Tc for weak BTRS, in accord with
recent data. For strong BTRS and thin films we expect a temperature-dependent Φ with a
paramagnetic anomaly near Tc. The Hall conductance is found to vanish at zero wave vector
q and finite frequency ω, however at finite q, ω it has an unusual structure.

Recent data on the high-Tc superconductor YBa2Cu3Ox (YBCO) has supported the pres-
ence of broken time reversal symmetry (BTRS) [1–3]. A sensitive probe of BTRS are Andreev
surface states. For a d-wave with time reversal symmetry bound states at zero energy are ex-
pected for a surface parallel to the nodes (a (110) surface in YBCO). When BTRS is present,
by either a complex order parameter or by an external magnetic field, the bound states shift
to a finite energy. Indeed tunneling data usually shows a zero-bias peak which splits in an
applied field; the splitting is nonlinear in the magnetic field, indicating a proximity to a BTRS
state [2,4]. In fact, in some samples tunnelling data shows a splitting even without an external
field [1, 2], consistent with BTRS; the splitting increases with increasing overdoping [2, 5],

Further support for a spontaneous BTRS state are spontaneous magnetization data as
observed in YBCO [3], setting in abruptly at Tc and being almost temperature (T ) independent
below Tc. The phenomenon has been attributed to either a dx2−y2 + idxy state or to the
formation of π junctions. No microscopic reason was given, however, for the spontaneous
magnetization being independent of both T and of film thickness [3].

It has been shown theoretically that BTRS can occur locally in a dx2−y2 superconductor
near certain surfaces [6–8] leading to surface currents. The onset of such BTRS is expected
to be below Tc and therefore does not correspond to the spontaneous magnetization data [3].
We note that in response to an external magnetic field the surface states are paramagnetic
and compete with Meissner currents. This effect has been proposed to account for a minimum
in the magnetic penetration length [9]. In fact, it was proposed that this paramagnetic effect
c© EDP Sciences



B. Horovitz et al.: Spontaneous magnetization and Hall effect etc. 893

leads to spontaneous currents and BTRS in a pure dx2−y2 state [10, 11]. The onset of this
BTRS is much below Tc [11] and therefore does not correspond to the data [3].

Of further theoretical interest is the relation of the BTRS state to quantum Hall systems
with a variety of Hall effects [12–15]. In particular a finite charge Hall conductance has been
suggested [12], though this has been questioned [14].

In the present work we assume that BTRS is a bulk property, i.e. both components
of an order parameter dx2−y2 + idxy set in at Tc; this is a plausible scenario which can
possibly account for the data. In previous works [6–8] surface states appear due to a surface-
induced idxy component. We find, however, the less anticipated result that the bulk state
dx2−y2 + idxy leads to surface states with finite surface current densities. The latter situation
was found in the bulk p-wave state [16] and for the total current was inferred from topological
considerations [17]. We then evaluate the spontaneous magnetization and show that it is
dominated by (100) surfaces; for thin films it increases with the ratio ∆′/∆ (∆ and ∆′ are
the amplitudes of dx2−y2 and dxy, respectively) while for thick films it has a maximum at
λ/ξ′ ≈ 1, where ξ, ξ′ are the coherence lengths associated with ∆, ∆′, respectively (ξ′ =
Fermi velocity/∆′, similarly for ξ) and λ is the magnetic penetration length. The maximum for
YBCO is at ∆′/∆ ≈ ξ/λ ≈ 0.01. Throughout we assume an exterme type-II superconductor,
i.e. ξ � λ, while ξ′/λ is arbitrary. We show that for weak BTRS, λ/ξ′ < 1, the spontaneous
magnetization is T - and thickness-independent, while for strong BTRS thickness- and T -
dependence may occur, as well as a transition to a paramagnetic state close to Tc. For the
sample of ref. [3] we estimate ∆′/∆ ≈ 10−4, i.e. weak BTRS. We also derive the effective action
and identify the Hall coefficient which has an unusual wave vector and frequency dependence.

First we demonstrate the existence of surface states. Consider a dx2−y2 + idxy state where
the order parameter is

∆(p̂x, p̂y) = ∆′p̂xp̂y/k2
F + i∆(p̂2

x − p̂2
y)/k2

F , (1)

where p̂ = −ih̄∇ is the momentum operator and kF is the Fermi momentum. We consider a
vacuum-superconductor boundary at x = 0, and assume for now that ∆,∆′ are constants at
x > 0 and vanish at x < 0. For ∆ � ∆′ this corresponds to a (100) surface; to describe a (110)
surface ∆ and ∆′ need to be interchanged. The electron-hole wave functions u(x, ky) exp[ikyy],
v(x, ky) exp[ikyy] with mass m satisfy the Bogoliubov-de Gennes equations

(2m)−1(−k2
F − d2/dx2)u(x, ky) + ∆(p̂x, ky)v(x, ky) = εu(x, ky) ,

∆∗(p̂x, ky)u(x, ky) + (2m)−1(k2
F + d2/dx2)v(x, ky) = εv(x, ky) . (2)

The decaying eigenfunctions have the form ∼ exp[±ikx − x|ky|/ξ′kF], with k = |k| and
ξ′ = kF/m∆′. Specular reflection at the surface requires a superposition of ±k states which
vanish at the surface. This yields the eigenvalue equation

iε +
√|∆(+k, ky)|2 − ε2

−iε +
√|∆(−k, ky)|2 − ε2

= −∆(+k, ky)
∆(−k, ky)

. (3)

Its solutions are ε = −sign(ky)∆(k2−k2
y)/k2

F. In terms of the incidence angle ζ, ky = kF sin ζ,
k = kF cos ζ, the allowed positive eigenvalues are ε = ∆ cos(2ζ) for −π/4 < ζ < 0 and ε =
−∆ cos(2ζ) for π/4 < ζ < π/2 (see inset of fig. 1). We note that self-consistency would imply
that ∆′ = 0 at x = 0 [8]; the eigenfunctions would then be ∼ exp[− ∫ x

0
∆′(x′)dx′| sin ζ|/vF],

resulting in a qualitatively similar dependence on ξ′. The dominant order parameter ∆ is
finite at the (100) boundary [8], hence we expect our results to be quantitatively correct.
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Fig. 1 – Spontaneous flux for a (100) boundary in thick films (ξ′ < d̄) in units of 2φ0Lyλ∆/πλ2
0Tc.

The hatched areas in the inset show the allowed directions (k, ky) of bound states. Their spectra span
the range ε = 0 (diagonal lines) up to ε = ∆ as shown.

In the presence of a vector potential Ay(x) the spectrum ε is Doppler-shifted by
−(e/mc)kyAy. For the expectation value of the current density in the y-direction and the
charge density, we obtain

4π

c
jedge(x) =

4φ0

πξ′λ2
0

∫ π/2

0

dζ cos ζ sin2 ζe−2x sin ζ/ξ′
tanh

(
∆ cos 2ζ + (e/c)vF sin ζAy(x)

2T

)
,

nedge(x) =
ekF

πdξ′

∫ π/2

0

dζ cos ζ sin ζe−2x sin ζ/ξ′
, (4)

where λ0 = (mc2d/2k2
Fe2)1/2 = λ(T = 0) and d is the spacing between layers, converting the

current per layer of the states in eq. (2) to a current density. Note that for either ∆ = 0 or
∆′ = 0 all angles ζ are allowed in the solution of eq. (3) and then the current density vanishes.
This demonstrates then that BTRS leads to current-carrying surface states. We note also
that the integrated current

∫ ∞
0

jedge(x)dx vanishes, unlike the p-wave case [16].
The response to jedge(x) includes London terms as well as a BTRS-induced Chern-Simon

term. As shown below, the Chern-Simon term is weaker at T → Tc so that London’s equation
with jedge(x) as a source term is valid,

−∇2Ay(x) = [−(1/λ2)Ay(x) + (4π/c)jedge(x)]θ(x) , (5)

where θ(x) is a step function. We consider first solutions where the Doppler shift ∼ Ay on
the right-hand side of eq. (4) is neglected. This is solved by the Greens’ function G(x, x′) =
−(λ/2)[exp[−|x − x′|/λ] + exp[−|x + x′|/λ]] resulting at T → Tc in the solution

Ay(0) = (2φ0λ∆/πλ2
0Tc)

∫ π/2

0

dζ cos ζ sin2 ζ cos 2ζ(2 sin ζ + ξ′/λ)−1 . (6)

The total spontaneous flux is Φ = Ay(0)Ly, where Ly is the length of the boundary. The
ratio Φ̃ = −Φ/(2φ0Lyλ∆/πλ2

0Tc) is shown in fig. 1. It varies between ξ′/12λ at λ � ξ′ to
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λ/15ξ′ at λ � ξ′ with a maximum of 0.014 at λ ≈ ξ′. For a (110) surface Φ̃ = ξ∆′/12λ∆,
much smaller than for a (100) surface. We note that Φ is T -independent up to Tc since the
product λ∆ is finite at T → 0, consistent with the spontaneous magnetization data [3]; more
details on the data follow in the discussion.

The above refers to thick films with thickness d̄ > ξ′. For thin films the right-hand side of
eq. (5) is multiplied by d̄δ(z). For Ay(x) ≡ Ay(x, z = 0) this yields

Ay(x) − Ay(0) =
∫ ∞

0

dx′ ln |(x − x′)/x′|[−(1/λ2)Ay(x′) + (4π/c)jedge(x′)]d̄ , (7)

which implies a slow (nonexponential) decay of Ay(x). To avoid divergence of dAy(x)/dx|x=0,
the relation Ay(0) = λ2(4π/c)jedge(0) must hold. This, interestingly, yields for Φ the previous
result of the λ � ξ′ case, i.e. Φ̃ = λ/15ξ′; in fig. 1 this is the tangent line to the thick film
curve at the origin. Hence we can define two regimes: Weak BTRS with λ/ξ′ < 1 where
the spontaneous flux is T - and d̄-independent, and strong BTRS with λ/ξ′ > 1 where film
thickness matters. In the latter case the T -dependence is induced as ξ′ < d̄ changes to the
thin-film case ξ′ > d̄ as T → Tc.

We now reconsider the effect of the Doppler shift. Near Tc the effect is linear in Ay and
can be incorporated as an effective λeff replacing λ in the results above, where

1
λ2

eff

≈ 1
λ2

− ξ0

λ2
0 max(ξ′, λ)

. (8)

Hence at a temperature T ′
c λeff changes sign, where (Tc − T ′

c)/Tc ≈ [ξ/max(ξ′, λ)]2, i.e. less
then 10−4 for YBCO. The effect of the Doppler shift was previously considered only at low
temperatures where on the (110) surface paramagnetism and spontaneous surface currents
appear even when ∆′ = 0 at ∼ (ξ0/λ0)Tc � Tc [10, 11]. For thin films, max(ξ′, λ) is replaced
by ξ′ and (Tc − T ′

c)/Tc ≈ (ξ/ξ′)2 also for strong BTRS where Tc − T ′
c is enhanced. Hence a

transition from paramagnetic (T > T ′
c) to diamagnetic response (T < T ′

c) can be observed at
T ′

c and the magnetization Φ̃ = (λ/15ξ′)(λeff/λ)2 is peaked and changes sign at T ′
c. The effect

is more pronounced for the (110) surface, however, the condition for a thin film d̄ < ξ is more
difficult to achieve.

Next we consider the effective action of a bulk dx2−y2 + idxy superconductor. In terms
of the Nambu spinors ψ†(r) = [u∗(r), u∗(r)], the superconducting phase θ(r) and Pauli ma-
trices τi, the transformation ψ(r) → exp[iτ3θ(r)/2]ψ(r) yields the off-diagonal Hamiltonian∫

d2rψ†(r)h∆ψ(r), where

h∆ = −[∆(−∂2
x + ∂2

y)τ1 + ∆′∂x∂yτ2]/k2
F (9)

and we neglect terms with ∇θ � kF. The action in the presence of electromagnetic potentials
A, ϕ is then

S =
∫

d2rdtψ†(i∂t − τ3ε(p̂) − h∆ − Σ)ψ ,

Σ = τ3(a0 + a2/2m) + a · p/m − i∇ · a/2m, (10)

where ε(p̂) = (p̂2 − k2
F)/2m and we introduce the gauge-invariant potentials a = 1

2∇θ − eA

and a0 = 1
2

∂
∂tθ − eϕ. Expansion to 2nd order in a, a0 leads to the effective action

Seff =
∫

d2qdω

(2π)3
Pµν(q, ω)aµ(q, ω))aν(−q, ω)) . (11)
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At T = 0 and q, ω → 0 we obtain P00 = N0 (density of states which is N0 = m/2π in two
dimensions), Pij = −N0c

2
s, where c2

s = vF/
√

2, while P0j(q) = isign(∆∆′)ε0ijqi/(4π) and ε0ij

is the antisymmetric unit tensor. The latter term reflects BTRS and is derived for ∆′ � ∆.
Integrating out the phase θ, we obtain the effective action in terms of the electromagnetic

potentials A, ϕ

Seff{A, ϕ} = e2

∫
d2qdω

(2π)3
{ c2

sq
2

c2
sq

2 − ω2

[
P00|ϕ(q, ω)|2 − i

4π
ε0ijqiϕ(q, ω)Aj(−q,−ω) +

+O(ω2|A|2)
]
− P00

(cs

c

)2

|A(q, ω)|2
}

. (12)

The total electromagnetic action includes also the Maxwell field part SM =
∫

d2rdt( �E2 −
�H2)/8π. E.g., for ω 	= 0, q → 0 the propagator for ϕ yields the plasmon mode at ωp = c/λ0.
The Hall current Jy is identified by a functional derivative with respect to Ax leading to the
Hall coefficient

σxy(q, ω) = sign(∆∆′)
e2

4πh̄

c2
sq

2

c2
sq

2 − ω2
. (13)

Transport is defined by taking the q → 0 limit first, i.e. σxy = 0. Hence the conventional
Hall coefficient vanishes, as expected from Galilean invariance [14]. A limit in which ω → 0 is
taken first yields a quantized “static” conductance e2/2h which was argued to correspond to
σxy 	= 0 in the presence of a boundary [12]. In the absence of an external magnetic field, and
given a spontaneous magnetization decaying in the bulk (as confirmed below), Ampère’s law
yields zero total current, hence σxy = 0; this is valid also with a boundary and external electric
field. It is intriguing, however, that σxy(q, ω) has a nontrivial structure and space-resolved
measurement of a Hall current could then probe the full equation (13). We note that a result
similar to eq. (13) was obtained for superfluid 3He [15].

We proceed to derive the effective action in the presence of a boundary and at finite T .
Special care is needed for the Chern-Simon coefficient P0j which is now nonlocal due to the
specular reflection at the boundary. After integrating out θ, we obtain the form (considering
only the ω = 0 term)

Sb{A, ϕ}= e2

∫
dr

[
P00

(
ϕ2(r)−

(cs

c

)2

A2(r)
)

+b1(r)ϕ(r)Ay(r)+b2(r)ϕ(r)
∂Ay(r)

∂x

]
. (14)

Variation of S + SM leads to a generalization of eq. (5) in which the equations for A and ϕ
are coupled,

(
1

λ2
D

− ∂2

∂x2

)
ϕ − 4πe2

ch̄
b2

∂Ay

∂x
− 4πe2

ch̄
b1Ay = 4πenedge(x) , (15)

(
1
λ2

− ∂2

∂x2

)
Ay − 4πe2

ch̄
b2

∂ϕ

∂x
+

4πe2

ch̄
(b1 − ∂xb2)ϕ = −4π

c
jedge(x) , (16)

where λD = (8πe2N0)−1/2 is the Debye screening length. For T → Tc we obtain λ ≈ λ0(1 −
T/Tc)−1/2, b1(r) = 0.11(∆∆′/T 2

c ) d
dx ln[∆∆′]/2hcd and b2(r) = 0.21(∆∆′/T 2

c )/2hcd.
An external electric field leads to ϕ ∼ exp[−x/λD], hence the magnetization remains

localized even in presence of such a field and the space integration of eq. (16) (i.e. Ampère’s
law) yields a zero total current, i.e. σxy = 0. The Chern-Simon term, however, affects the
spontaneous magnetization, leading to an additional flux ∼ (∆′/∆)(1−T/Tc) which vanishes
at T → Tc.
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We consider now in more detail the experimental data on the spontaneous magnetiza-
tion [3]. The data shows that for a YBCO disc with a perimeter of Ly ≈ 2 cm the sponta-
neous magnetization is temperature independent in the range 80–89 K and is also thickness-
independent in the range 30–300 nm with a value of ≈37φ0. Taking λ∆ ≈ λ0∆0, their T = 0
value, and typical YBCO parameters we find Φ̃ ≈ 10−3. Figure 1 implies that the limit ξ′ > λ
applies, i.e. weak BTRS; hence for either thick or thin films we estimate λ/ξ′ ≈ 10−2 or
∆′/∆ ≈ 10−4. We propose therefore that increasing the ratio ∆′/∆, e.g. by using overdoped
YBCO [2], one can enhance the spontaneous magnetization up to a maximum of ≈ 103φ0

when ∆′/∆ ≈ 0.01 within the thick-film regime.
For strong BTRS, λ/ξ′ > 1, the film thickness matters, i.e. we expect a temperature

dependence due to the crossover from thick- to thin-film regimes at d̄ ≈ ξ′ as T → Tc. For
thin films (d̄ < ξ′ < λ) we obtain Φ̃ = λ/12ξ′, i.e. for YBCO the total flux can reach
105∆′/∆φ0 per cm of boundary, much higher than thick-film values. The situation of a strong
BTRS with thin films is interesting also as being the most likely one to show the paramagnetic
anomaly at T ′

c ≈ Tc[1 − (ξ/ξ′)2].
In conclusion, we have shown that the surface states of a dx2−y2 + idxy superconductor

lead to a spontaneous magnetization which is T -independent and thickness-independent for
weak BTRS, λ/ξ′ < 1, in accord with the data [3]. For strong BTRS, λ/ξ′ > 1, as expected
in overdoped YBCO [2], a crossover from thick to thin film behavior can lead to T - and
thickness-dependence, as well as to an observable paramagnetic anomaly near Tc. We also
find that the Hall conductance has an unusual σxy(q, ω) dependence, though its conventional
transport value vanishes.
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