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Thermal metal in network models of a disordered two-dimensional superconductor
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We study the symmetry class for localization which arises from models of noninteracting quasiparticles in
disordered superconductors that have neither time-reversal nor spin-rotation invariance. Two-dimensional sys-
tems in this category, which is known as class D, can display phases with three different types of quasiparticle
dynamics: metallic, localized, or with a quantiz¢éberma) Hall conductance. Correspondingly, they can show
a variety of delocalization transitions. We illustrate this behavior by investigating numerically the phase
diagrams of network models with the appropriate symmetry and show the appearance of the metallic phase.
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The properties of quasiparticles in disordered superconpling constant is proportional to the inverse of the thermal
ductors have been a subject of much recent interest. Within @onductivity of the superconductor, and this flow implies that
mean-field treatment of pairing, the quasiparticles are noninthere is a phase in which there is a nonzdmodeed,
teracting fermions, governed by a quadratic Hamiltoniandiverging) density of extended fermion eigenstates at zero
which may contain effects of disorder in both the normal partexcitation energy. A superconductor described by this model
and the superconducting gap function. Such Hamiltoniansvould be in a thermal metal phase. We will refer to such a
are representatives of a set of symmetry classes differethase simply as a metallic phase. In addition, a phase with
from the three classes which are familiar both in normallocalized quasiparticles is a natural possibility and—since
disordered conductors and in the Wigner-Dyson random maime-reversal symmetry is broken—so is one with quantized
trix ensembles. A list of additional random matrix ensemblesthermal Hall(or Leduc-Righj conductance. Our aim in the
determined by these new symmetry classes, has been estdblowing is to investigate the appearance of these phases in
lished relatively recently. These additional random matrix simple models. Remarkably, we find that the symmetry class
ensembles describe zero-dimensional problems and are aplone is not sufficient to determine which phases occur and
propriate to model a small grain of a superconductor in thehat different particular forms of disorder result in quite dis-
ergodic limit. In the corresponding higher-dimensional sys-tinct physical behavior.
tems from the same symmetry classes, there can be transi- As our starting point, we take versions of the network
tions between metallic, localized, or quantized Hall phasesnodet® for a single-component fermion, which we specify
for the quasiparticle$:* The associated changes in quasipar-in detail after first summarizing our findings. Disorder ap-
ticle dynamics must be probed by energy transpor{ior pears in the network model in the form of random scattering
singlet superconductorspin transport, rather than charge phases, and the symmetries of class D restrict scattering
transport, since quasiparticle charge density is nophases to the values 0 and Within this framework, we
conserved. There are various possibilities for this behavior, discuss three alternative choices. The first of these was intro-
depending on the particular symmetry class considerediuced in work by Cho and FishéCF) (Ref. 11 with the
These have been studied theoretically using nonlinear intention of modeling the two-dimensional random bond
model method%,numerically,3 and in guasi-one-dimensional Ising model(RBIM), which possesses a fermion representa-
models® An important question not addressed in such worktion with the symmetries of class D. In fact, as noted
so far, and which will not be considered here, is whether theubsequently?>**a precise mapping of the Ising model leads
self-consistent solution to the gap equation in the presence ¢ a second version of the network model, which we label
disorder affects the universal statistical properties of the enRBIM. In both these models, scattering phases with the value
sembles. 7 appear in correlated pairs. A third modelso discussed in

In this paper we present extensive numerical results on Ref. 9, which we denote by @), arises naturally if one
symmetry class with a particularly rich phase diagram in twoinstead takes scattering phases to be independent random
dimensions, class D. The symmetry may be realized in suvariables.
perconductors with broken time-reversal invariance and ei- Each model has two parameters: a disorder concentration
ther broken spin-rotation invarianéas ind-wave supercon- p (0=p=<1) and a tunneling amplitude: (0<a=<m/2),
ductors with spin-orbit scatteringor spinless or spin- which controls the value of the thermal Hall conductance at
polarized fermions(as in certain p-wave states The  short distance¥! Our phase diagram for the CF model in the
nonlinearo- model for class D(Ref. 1) has been shown, in (p,«) plane is shown in Fig. 1. It contains a region of me-
the two-dimensional case, to flow under the renormalizatiortallic phase and two distinct localized phases, which can be
group to weaker values of the coupling constitThe cou-  identified with the ordered and disordered phases of the
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05 . defined on the start of each lidkat timet, generates ampli-
tudesz(t+1). A matrix element; is nonzero only if the
links j andk are, respectively, outgoing and ingoing at the
same node. Its value in this case is the product of a phase
factor expi{¢y) associated with the linlkk and a tunneling
03 L Metal ) amplitude associated with the node, which takes the values
*cosf) or £sin(e) as indicated in Fig. 2. Plaquettes of the
p lattice can be divided into two sets, according to the direction
02+ . of circulation around them. For general values ®f all
plaguettes are coupled, but far=0 the system separates
into uncoupled plaquettes with clockwise circulation, while
for a= 7/2 it consists of uncoupled anticlockwise plaquettes.
Disorder is introduced via the link phasés. To make clear
0.0 | the constraints imposed in class D, recall that a
700 0.5 1.0 Bogoliubov—de Gennes Hamiltonian with this symmetry
Sinz(oc) may_bf written in terms of_a purel'yn_aginary Herrr_litian
matrix.” The corresponding time evolution operator is purely
FIG. 1. The phase diagram of the CF model obtained from ouf€@l, restricting the generalized phase factors to b&l)O(
numerical calculations. matrices for a model in whicN-component fermions propa-
gate on links and to the valuesl1 for N=1, the case we
treat. In addition to the link phases, it is useful also to con-
rﬁ'der the gauge-invariant total phase, modute, 2ccumu-

0.1

RBIM or as regions with different quantized thermal Hall

conductance. As a consequence, three potentially differeI ted 4 q h el ¢ I wte. In th
critical points occur: an insulator-to-insulator quantum-Hall- ated on passing around each elementary piaquette. in the

type transition, an insulator-to-metal transition, and a multi_dsorder-free reference system of Fig. 2, this phase has the

critical point at which all three phases meet. This phase digyalue m for every plaquette. Randomness can be character-

gram has the form proposed generically for class D in Ref. 7|_zed by the positiqns of flux lines which thread a subset of
In contrast, neither the RBIM nor the() model supports plaguettes, changing the value of the accumulated phase on

all three phases: arguments that the metallic phase cann};}ese to 0. Local disorder in link phases generates these flux

appear in RBIM’s with real Ising couplings are given in Ref. '"€S in pairs. . L
i 9 pling 9 The models we study and the important distinctions be-

1 hile in the @1 I fi locali h i . :
5, while in the @1) model we find no localized phase, in tween them are as follows. The CF model has flux-line pairs

striking distinction to all network models studied previously. . . o
We show below how these differences can be understood t%gtroduced at nodes with probabilify in such a way that for

solving the models in one dimension and by considerin very pair thq posi_tion yector representing tth‘ separation of
them in two dimensions at weak tunneling he two flux lines is oriented in thgl,1] direction on the

All these models represent coherent propagation o‘“amce of Fig. 2. In consequence, both member§ of af_lux—line
quantum-mechanical flux on a square lattice of directed link&a!l Pass through plaguettes with the same C|rculr_;1t|0n_, but
which meet at nodes, as illustrated in Fig. 2. Such a systerfliferent pairs may belong to plaquettes with opposite circu-

can be specified using a discrete-time evolution operatorz’mon'-rhe RBIM similarly _h_asapair_of flux Iines introduced
U.2614 For a network of\V links, U is an XA unitary at each node with probability, but with the difference that

all flux lines thread plaquettes of the same circulafidt?.
Finally, the Q1) model has link phase factors chosen nega-
tive with probabilityp and positive with probability + p. As

a result, a pair of flux lines is introduced with probabilfy
into the two plaquettes either side of each link: these
~ ' plaguettes have opposite circulation. Each of the models is
invariant under the transformatign— 1— p, and so we con-
sider only 0<p<1/2. The CF and 1) models are both
(statistically self-dual for allp under a Kramers-Wannier
transformation that takes to #/2— a, leaving the linea

= /4 invariant. The RBIM is not self-dual, exceptat0.

matrix. The action ofJ on a vector of flux amplitudeg,(t),

. Finally, the CF and @) models are equivalent, under a
gauge transformation, on the line=1/2.
L C c - \ Some of the differences in the behavior of these three
) ) S models can be illustrated by solving their one-dimensional

versions, which consist of a single chain of square plagquettes
joined by nodes at opposite corners as on a diagonal of Fig.
FIG. 2. The network model. Values of the scattering matrix el-2. For the RBIM in one dimension, disorder in the sign of the
ements,* cosf) and = sin(w), at nodes on each sublattice are in- nearest-neighbor exchange interaction can be removed by
dicated forp=0 schematically by-C and +S. gauge transformation, and the inverse localization length has
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the disorder-independent valdga, =arctanf|sin(@)[], fi- 190 —————— ' ' ' T
nite for all «# 0,7/2. For the CF model, an elementary cal- | ]
culation gives

r=|1-2p|énan, 1
écr=| Pl éraim (1) 10.0

so thatég diverges ap— 1/2 but is otherwise finite. For the
O(1) model we findéq;)=0 for all p#0,1. Thus, the local-
ization properties of the one-dimensional CF modelpat
#1/2 are like those of models belonging to the Wigner-
Dyson universality classes, in that states are localized, while 90 |
the absence of localization in the(I) model mirrors that
found previously in quasi-one-dimensional class D systems.
A second useful approach illustrating differences between
these models is to consider their two-dimensional versions ir

the limit of weak interplaquette tunnelingx@l or ml2—« 0.0 0:1 0.4 0.;1-6 o_As 0.?0 0.19 0.20 0.21
<1) and weak disorderp<1).!’ The eigenvalues of the

evolution operatol lie on the unit circle and may be written ~ FIG. 3. Behavior of the CF model in systems of width'

ase”'. The reale (— m<e=<m) play the role of excitation =64 (0), 128 (), and 256 (). (a) The self-dual lineM v, as
energy eigenvalues, and are distributed symmetrically irft function ofp. (b) Quantum-Hall-type transitiorM ' », as a func-
pairs arounde=0 becauseU is a real orthogonal matrix. tion of sirf(e) at p=0.1. (c) Insulator-metal transitionM ' v, as a

Long-time properties are determined by the part of the spedtnction ofp at siff(a)=0.19.

trum neare=0, on which we now focus. At zero tunneling,
it is sufficient to examine an isolated plaquette. In ourround-off errors generates a systematic positive error in the
disorder-free reference system, the evolution operator for ¥alue obtain forv;. From an analytical theot§ of the insta-
single plaquette satisfied*=—1, and hencee=+=/4,  bility, we find that the error inv; decreases with reduced
+3m/4. For a single plaquette with a flux line adddd*  noise amplituder only as|in(#)|~*. This instability can be
=1 and e=0,7,* /2. Turning on weak tunneling, it is cured by making explicit use in numerical calculations of the
clear that the spectrum near=0 for a large system will structure imposed o by current conservation and the sym-
arise by hybridization of the=0 states from plaquettes with Mmetry of class D, as described elsewh€r&he results we
flux lines. In both the RBIM and CF models, there are twoobtain in this way for the CF model differ significantly from
scales for this hybridization, because flux lines appear in théhose of Ref. 11.
system in adjacent pairs associated with plaquettes of the Evidence in support of the phase diagram of Fig. 1 for the
same circulation. The first consequence of tunneling is t¢>F model is presented in Fig. 3. First we consider behavior
remove the degeneracy within each pair, yielding approxias a function op on the self-dual linex= /4. On this line
mate eigenvalues= * ¢,. At small p, pairs are dilute and We believe thatv; is identically zero[as in the one-
tunneling between different pairs is not sufficient to generatglimensional @1) model. For example, ap=1/2 and «
extended states at=0. By contrast, for the (1) model in = /4 we obtain in systems of length=5x 10° the bounds
this regime there is only one scale for hybridization, sincer;1<1.5X10"% at width M’=4 and»;<1.5x10"* at M’
single flux lines appear independently on the set of weakly=256. In order to search for a possible multicritical point on
coupled plaguettes. As a result, metallic behavior is not exthe self-dual line, we therefore examine the value gf* If
cluded even ap,a<1. there is a multicritical point ap=pyc, one expects the
Our results from numerical simulation supplement thisamplitude ratioM’ v, to show three regimes at lar¢é’, as
qualitative discussion. We study the CF anfljlOmodels in  a function ofp. For p<pyc, the scaling flow is towards
cylindrical geometry via the transfer matrix obtaining the smallerp andM ' v, has ap-independent value governed by
positive Lyapunov exponents<Oy;<---<wy in a system the critical point atp=0. At p=pyc, a distinct limiting
of width M’ =2M links. These exponents define inverse cor-value arises from the multicritical point. And f@r>pyc,
relation lengths, and from their dependenceMdhwe iden-  the scaling flow of the conductivity in the metallic phase
tify the phases present in each two-dimensional model, usintpwards larger values means tiat v, will slowly decrease
established scaling ided3?° A crucial technical aspect of towards zero with increasinyl’. The data shown in Fig.
these calculations is our discovery that the standar@®(a are consistent with this scenario, although the position
algorithmt®2® has a serious instability to round-off errors of the multicritical point is not well determined: we find the
throughout much of the phase diagram of both models. Moréounds 0.05 py<0.15. Second, we consider behavior as a
specifically, we find that the smallest positive Lyapunov ex-function of « at fixed p<pyc. A qguantum-Hall-type transi-
ponentr; may be either identically zero or exceptionally tion is observed on crossing the self-dual line, as illustrated
small (v;<M 1), [The first happens in the (@ model for  in Fig. 3(b): M’ v, increases wittM' for a+# 7/4 (localiza-
all p and o and in the CF model on the self-dual lire  tion) and vanishes as— /4 (delocalizatiof. This transi-
= m/4; the second happens in the metallic phase of the CEon is expectefito be in the universality class of the pure
model] Under these circumstances, numerical noise fronising transition, because the disorder strength scales towards
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zero, as in the RBIM at smafl. Third, we examine behavior the RBIM is not self-dual but has higher supersymmetry at
as a function op for a# m/4, shown in Fig. &). Phases can its multicritical point'® There is little reason to suppose that
be identified using the variation &’ v, with M’. At small ~ these two multicritical points are in the same universality
p, M’ v, increases withM’, as expected for an insulator, and class. Separately, the apparent absence of an insulating phase
at largerp, M’ v, decreases rapidly with increasiig’, in-  in the Q1) model is remarkable, because the bare conduc-
dicating a thermal metal. The critical poipt(«) is identi- ~ {ivity becomes small whem—0 or 7/2. Recently, it has
fied by the crossing of curves for differeRt’. In this way, been emphaS|z_ed that the target man_n‘old of the class D non-
we arrive at the phase diagram for the CF model displayed if]"€ar @ model is not connectetiand this means that domain
Fig. 1. wall excitations can occur in the model, which must be

described by additional parameters and have not been taken
into account in weak-coupling analyses so far. It is likely that
these domain walls in thee model language are connected
ﬂith the richness of phases in this symmetry class. In that
context, the Q1) model withp=1/2 is known to be a special
case, since it maps to@ model without domain walls: this
fact suggests that proliferation of domain walls may be nec-
essary for localizatiot***°

We believe that the ) model has only a metallic phase
and hasv, identically zero for allp#0. Our calculations
cover the range 02p<0.5 and 0.&sin’(a)<0.5. If the
model were to support a localized phase, it should appear
smallp,a. As an illustration of the absence of localization, at
p=0.1, sirf(a)=0.1, we calculate foM’ =16, v;<10 % in
the 1) model, whiler;=0.83 in the CF model.

In summary, we find that two-dimensional models for lo-
calization in the symmetry class D can have quite different This work was supported in part by the EPSRC under
behavior according to the form of disorder. Several addi-Grant No. GR/J78327J.T.C), the NSF under Grant Nos.
tional points deserve emphasis. The metallic phase of the CBMR-98-18259N.R.) and DMR-00-75064A.W.W.L.), and
model is self-dual, as is its multicritical point. By contrast, the DIP German Israeli prografB.H. and Y.A).
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