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Thermal metal in network models of a disordered two-dimensional superconductor
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We study the symmetry class for localization which arises from models of noninteracting quasiparticles in
disordered superconductors that have neither time-reversal nor spin-rotation invariance. Two-dimensional sys-
tems in this category, which is known as class D, can display phases with three different types of quasiparticle
dynamics: metallic, localized, or with a quantized~thermal! Hall conductance. Correspondingly, they can show
a variety of delocalization transitions. We illustrate this behavior by investigating numerically the phase
diagrams of network models with the appropriate symmetry and show the appearance of the metallic phase.
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The properties of quasiparticles in disordered superc
ductors have been a subject of much recent interest. With
mean-field treatment of pairing, the quasiparticles are no
teracting fermions, governed by a quadratic Hamilton
which may contain effects of disorder in both the normal p
and the superconducting gap function. Such Hamiltoni
are representatives of a set of symmetry classes diffe
from the three classes which are familiar both in norm
disordered conductors and in the Wigner-Dyson random
trix ensembles. A list of additional random matrix ensembl
determined by these new symmetry classes, has been e
lished relatively recently.1 These additional random matri
ensembles describe zero-dimensional problems and are
propriate to model a small grain of a superconductor in
ergodic limit. In the corresponding higher-dimensional s
tems from the same symmetry classes, there can be tr
tions between metallic, localized, or quantized Hall pha
for the quasiparticles.2–4 The associated changes in quasip
ticle dynamics must be probed by energy transport or~in
singlet superconductors! spin transport, rather than charg
transport, since quasiparticle charge density is
conserved.2 There are various possibilities for this behavio
depending on the particular symmetry class conside
These have been studied theoretically using nonlineas
model methods,2 numerically,3 and in quasi-one-dimensiona
models.5 An important question not addressed in such wo
so far, and which will not be considered here, is whether
self-consistent solution to the gap equation in the presenc
disorder affects the universal statistical properties of the
sembles.

In this paper we present extensive numerical results o
symmetry class with a particularly rich phase diagram in t
dimensions, class D. The symmetry may be realized in
perconductors with broken time-reversal invariance and
ther broken spin-rotation invariance~as ind-wave supercon-
ductors with spin-orbit scattering! or spinless or spin-
polarized fermions ~as in certain p-wave states!. The
nonlinears model for class D~Ref. 1! has been shown, in
the two-dimensional case, to flow under the renormalizat
group to weaker values of the coupling constant.6–9 The cou-
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pling constant is proportional to the inverse of the therm
conductivity of the superconductor, and this flow implies th
there is a phase in which there is a nonzero~indeed,
diverging7! density of extended fermion eigenstates at z
excitation energy. A superconductor described by this mo
would be in a thermal metal phase. We will refer to such
phase simply as a metallic phase. In addition, a phase
localized quasiparticles is a natural possibility and—sin
time-reversal symmetry is broken—so is one with quantiz
thermal Hall~or Leduc-Righi! conductance. Our aim in the
following is to investigate the appearance of these phase
simple models. Remarkably, we find that the symmetry cl
alone is not sufficient to determine which phases occur
that different particular forms of disorder result in quite d
tinct physical behavior.

As our starting point, we take versions of the netwo
model10 for a single-component fermion, which we speci
in detail after first summarizing our findings. Disorder a
pears in the network model in the form of random scatter
phases, and the symmetries of class D restrict scatte
phases to the values 0 andp. Within this framework, we
discuss three alternative choices. The first of these was in
duced in work by Cho and Fisher~CF! ~Ref. 11! with the
intention of modeling the two-dimensional random bo
Ising model~RBIM!, which possesses a fermion represen
tion with the symmetries of class D. In fact, as not
subsequently,12,13a precise mapping of the Ising model lea
to a second version of the network model, which we la
RBIM. In both these models, scattering phases with the va
p appear in correlated pairs. A third model~also discussed in
Ref. 9!, which we denote by O~1!, arises naturally if one
instead takes scattering phases to be independent ran
variables.

Each model has two parameters: a disorder concentra
p (0<p<1) and a tunneling amplitudea (0<a<p/2),
which controls the value of the thermal Hall conductance
short distances.14 Our phase diagram for the CF model in th
(p,a) plane is shown in Fig. 1. It contains a region of m
tallic phase and two distinct localized phases, which can
identified with the ordered and disordered phases of
©2001 The American Physical Society06-1
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RBIM or as regions with different quantized thermal Ha
conductance. As a consequence, three potentially diffe
critical points occur: an insulator-to-insulator quantum-Ha
type transition, an insulator-to-metal transition, and a mu
critical point at which all three phases meet. This phase
gram has the form proposed generically for class D in Ref
In contrast, neither the RBIM nor the O~1! model supports
all three phases: arguments that the metallic phase ca
appear in RBIM’s with real Ising couplings are given in Re
15, while in the O~1! model we find no localized phase, i
striking distinction to all network models studied previous
We show below how these differences can be understoo
solving the models in one dimension and by consider
them in two dimensions at weak tunneling.

All these models represent coherent propagation
quantum-mechanical flux on a square lattice of directed li
which meet at nodes, as illustrated in Fig. 2. Such a sys
can be specified using a discrete-time evolution oper
U.16,14 For a network ofN links, U is an N3N unitary
matrix. The action ofU on a vector of flux amplitudes,zl(t),

FIG. 1. The phase diagram of the CF model obtained from
numerical calculations.

FIG. 2. The network model. Values of the scattering matrix
ements,6cos(a) and 6sin(a), at nodes on each sublattice are i
dicated forp50 schematically by6C and6S.
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defined on the start of each linkl at time t, generates ampli-
tudeszl(t11). A matrix elementU jk is nonzero only if the
links j and k are, respectively, outgoing and ingoing at t
same node. Its value in this case is the product of a ph
factor exp(ifk) associated with the linkk and a tunneling
amplitude associated with the node, which takes the va
6cos(a) or 6sin(a) as indicated in Fig. 2. Plaquettes of th
lattice can be divided into two sets, according to the direct
of circulation around them. For general values ofa, all
plaquettes are coupled, but fora50 the system separate
into uncoupled plaquettes with clockwise circulation, wh
for a5p/2 it consists of uncoupled anticlockwise plaquette
Disorder is introduced via the link phasesf l . To make clear
the constraints imposed in class D, recall that
Bogoliubov–de Gennes Hamiltonian with this symme
may be written in terms of a purelyimaginary Hermitian
matrix.1 The corresponding time evolution operator is pure
real, restricting the generalized phase factors to be ON)
matrices for a model in whichN-component fermions propa
gate on links and to the values61 for N51, the case we
treat. In addition to the link phases, it is useful also to co
sider the gauge-invariant total phase, modulo 2p, accumu-
lated on passing around each elementary plaquette. In
disorder-free reference system of Fig. 2, this phase has
value p for every plaquette. Randomness can be charac
ized by the positions of flux lines which thread a subset
plaquettes, changing the value of the accumulated phas
these to 0. Local disorder in link phases generates these
lines in pairs.

The models we study and the important distinctions
tween them are as follows. The CF model has flux-line pa
introduced at nodes with probabilityp, in such a way that for
every pair the position vector representing the separatio
the two flux lines is oriented in the@1,1# direction on the
lattice of Fig. 2. In consequence, both members of a flux-l
pair pass through plaquettes with the same circulation,
different pairs may belong to plaquettes with opposite cir
lation. The RBIM similarly has a pair of flux lines introduce
at each node with probabilityp, but with the difference that
all flux lines thread plaquettes of the same circulation.13,15

Finally, the O~1! model has link phase factors chosen neg
tive with probabilityp and positive with probability 12p. As
a result, a pair of flux lines is introduced with probabilityp
into the two plaquettes either side of each link: the
plaquettes have opposite circulation. Each of the model
invariant under the transformationp→12p, and so we con-
sider only 0<p<1/2. The CF and O~1! models are both
~statistically! self-dual for all p under a Kramers-Wannie
transformation that takesa to p/22a, leaving the linea
5p/4 invariant. The RBIM is not self-dual, except atp50.
Finally, the CF and O~1! models are equivalent, under
gauge transformation, on the linep51/2.

Some of the differences in the behavior of these th
models can be illustrated by solving their one-dimensio
versions, which consist of a single chain of square plaque
joined by nodes at opposite corners as on a diagonal of
2. For the RBIM in one dimension, disorder in the sign of t
nearest-neighbor exchange interaction can be removed
gauge transformation, and the inverse localization length
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the disorder-independent valuejRBIM
21 [arctanh@ usin(a)u#, fi-

nite for all aÞ0,p/2. For the CF model, an elementary ca
culation gives

jCF
215u122pujRBIM

21 , ~1!

so thatjCF diverges asp→1/2 but is otherwise finite. For the
O~1! model we findjO(1)

21 50 for all pÞ0,1. Thus, the local-
ization properties of the one-dimensional CF model ap
Þ1/2 are like those of models belonging to the Wign
Dyson universality classes, in that states are localized, w
the absence of localization in the O~1! model mirrors that
found previously in quasi-one-dimensional class D system5

A second useful approach illustrating differences betw
these models is to consider their two-dimensional version
the limit of weak interplaquette tunneling (a!1 or p/22a
!1) and weak disorder (p!1).17 The eigenvalues of the
evolution operatorU lie on the unit circle and may be writte
ase2 i e. The reale (2p,e<p) play the role of excitation
energy eigenvalues, and are distributed symmetrically
pairs arounde50 becauseU is a real orthogonal matrix
Long-time properties are determined by the part of the sp
trum neare50, on which we now focus. At zero tunneling
it is sufficient to examine an isolated plaquette. In o
disorder-free reference system, the evolution operator fo
single plaquette satisfiesU4521, and hencee56p/4,
63p/4. For a single plaquette with a flux line added,U4

51 and e50,p,6p/2. Turning on weak tunneling, it is
clear that the spectrum neare50 for a large system will
arise by hybridization of thee50 states from plaquettes wit
flux lines. In both the RBIM and CF models, there are tw
scales for this hybridization, because flux lines appear in
system in adjacent pairs associated with plaquettes of
same circulation. The first consequence of tunneling is
remove the degeneracy within each pair, yielding appro
mate eigenvaluese56e0. At small p, pairs are dilute and
tunneling between different pairs is not sufficient to gener
extended states ate50. By contrast, for the O~1! model in
this regime there is only one scale for hybridization, sin
single flux lines appear independently on the set of wea
coupled plaquettes. As a result, metallic behavior is not
cluded even atp,a!1.

Our results from numerical simulation supplement t
qualitative discussion. We study the CF and O~1! models in
cylindrical geometry via the transfer matrixT, obtaining the
positive Lyapunov exponents 0<n1<•••<nM in a system
of width M 852M links. These exponents define inverse c
relation lengths, and from their dependence onM 8 we iden-
tify the phases present in each two-dimensional model, u
established scaling ideas.19,20 A crucial technical aspect o
these calculations is our discovery that the stand
algorithm19,20 has a serious instability to round-off erro
throughout much of the phase diagram of both models. M
specifically, we find that the smallest positive Lyapunov e
ponentn1 may be either identically zero or exceptional
small (n1!M 21). @The first happens in the O~1! model for
all p and a and in the CF model on the self-dual linea
5p/4; the second happens in the metallic phase of the
model.# Under these circumstances, numerical noise fr
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round-off errors generates a systematic positive error in
value obtain forn1. From an analytical theory18 of the insta-
bility, we find that the error inn1 decreases with reduce
noise amplitudeh only as u ln(h)u21. This instability can be
cured by making explicit use in numerical calculations of t
structure imposed onT by current conservation and the sym
metry of class D, as described elsewhere.18 The results we
obtain in this way for the CF model differ significantly from
those of Ref. 11.

Evidence in support of the phase diagram of Fig. 1 for
CF model is presented in Fig. 3. First we consider behav
as a function ofp on the self-dual linea5p/4. On this line
we believe thatn1 is identically zero @as in the one-
dimensional O~1! model#. For example, atp51/2 and a
5p/4 we obtain in systems of lengthL553105 the bounds
n1,1.531023 at width M 854 and n1,1.531024 at M 8
5256. In order to search for a possible multicritical point
the self-dual line, we therefore examine the value ofn2.21 If
there is a multicritical point atp5pMC , one expects the
amplitude ratioM 8n2 to show three regimes at largeM 8, as
a function of p. For p,pMC , the scaling flow is towards
smallerp andM 8n2 has ap-independent value governed b
the critical point atp50. At p5pMC , a distinct limiting
value arises from the multicritical point. And forp.pMC ,
the scaling flow of the conductivity in the metallic pha
towards larger values means thatM 8n2 will slowly decrease
towards zero with increasingM 8. The data shown in Fig
3~a! are consistent with this scenario, although the posit
of the multicritical point is not well determined: we find th
bounds 0.05<pMC<0.15. Second, we consider behavior as
function of a at fixedp,pMC . A quantum-Hall-type transi-
tion is observed on crossing the self-dual line, as illustra
in Fig. 3~b!: M 8n1 increases withM 8 for aÞp/4 ~localiza-
tion! and vanishes asa→p/4 ~delocalization!. This transi-
tion is expected7 to be in the universality class of the pur
Ising transition, because the disorder strength scales tow

FIG. 3. Behavior of the CF model in systems of widthM 8
564 (s), 128 (h), and 256 (L). ~a! The self-dual line:M 8n2 as
a function ofp. ~b! Quantum-Hall-type transition:M 8n1 as a func-
tion of sin2(a) at p50.1. ~c! Insulator-metal transition:M 8n1 as a
function of p at sin2(a)50.19.
6-3
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BRIEF REPORTS PHYSICAL REVIEW B 65 012506
zero, as in the RBIM at smallp. Third, we examine behavio
as a function ofp for aÞp/4, shown in Fig. 3~c!. Phases can
be identified using the variation ofM 8n1 with M 8. At small
p, M 8n1 increases withM 8, as expected for an insulator, an
at largerp, M 8n1 decreases rapidly with increasingM 8, in-
dicating a thermal metal. The critical pointpC(a) is identi-
fied by the crossing of curves for differentM 8. In this way,
we arrive at the phase diagram for the CF model displaye
Fig. 1.

We believe that the O~1! model has only a metallic phas
and hasn1 identically zero for allpÞ0. Our calculations
cover the range 0.1<p,0.5 and 0.1<sin2(a)<0.5. If the
model were to support a localized phase, it should appea
smallp,a. As an illustration of the absence of localization,
p50.1, sin2(a)50.1, we calculate forM 8516, n1,1023 in
the O~1! model, whilen150.83 in the CF model.

In summary, we find that two-dimensional models for l
calization in the symmetry class D can have quite differ
behavior according to the form of disorder. Several ad
tional points deserve emphasis. The metallic phase of the
model is self-dual, as is its multicritical point. By contras
,
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the RBIM is not self-dual but has higher supersymmetry
its multicritical point.13 There is little reason to suppose th
these two multicritical points are in the same universa
class. Separately, the apparent absence of an insulating p
in the O~1! model is remarkable, because the bare cond
tivity becomes small whena→0 or p/2. Recently, it has
been emphasized that the target manifold of the class D n
linears model is not connected,9 and this means that domai
wall excitations can occur in thes model, which must be
described by additional parameters and have not been t
into account in weak-coupling analyses so far. It is likely th
these domain walls in thes model language are connecte
with the richness of phases in this symmetry class. In t
context, the O~1! model withp51/2 is known to be a specia
case, since it maps to as model without domain walls: this
fact suggests that proliferation of domain walls may be n
essary for localization.9,13,15
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DMR-98-18259~N.R.! and DMR-00-75064~A.W.W.L.!, and
the DIP German Israeli program~B.H. and Y.A.!.
of
ev.

ot

f the
ta-
1A. Altland and M. R. Zirnbauer, Phys. Rev. B55, 1142 ~1997!;
M. R. Zirnbauer, J. Math. Phys.37, 4986~1996!.

2T. Senthilet al., Phys. Rev. Lett.81, 4704~1998!.
3V. Kagalovskyet al., Phys. Rev. Lett.82, 3516~1999!.
4T. Senthil, J. B. Marston, and M. P. A. Fisher, Phys. Rev. B60,

4245 ~1999!; I. A. Gruzberg, A. W. W. Ludwig, and N. Read
Phys. Rev. Lett.82, 4524~1999!.

5P. W. Brouweret al., Phys. Rev. Lett.85, 1064~2000!.
6R. Bundschuhet al., Phys. Rev. B59, 4382~1999!.
7T. Senthil and M. P. A. Fisher, Phys. Rev. B61, 9690~2000!.
8N. Read and D. Green, Phys. Rev. B61, 10 267~2000!.
9M. Bocquet, D. Serban, and M. R. Zirnbauer, Nucl. Phys. B578,

628 ~2000!.
10J. T. Chalker and P. D. Coddington, J. Phys. C21, 2665~1988!.
11S. Cho and M. P. A. Fisher, Phys. Rev. B55, 1025~1997!.
12S. Cho, Ph.D. thesis, UC Santa Barbara, 1997.
13I. A. Gruzberg, N. Read, and A. W. W. Ludwig, Phys. Rev. B63,
104422~2001!.
14C.-M. Ho and J. T. Chalker, Phys. Rev. B54, 8708~1996!.
15N. Read and A. W. W. Ludwig, Phys. Rev. B63, 024404~2001!.
16R. Klesse and M. Metzler, Europhys. Lett.32, 229 ~1995!.
17A similar approach to a different free-fermion representation

the RBIM was used in J. A. Blackman and J. Poulter, Phys. R
B 44, 4374~1991!.

18F. Merz and J. T. Chalker, Phys. Rev. B~to be published!.
19A. MacKinnon and B. Kramer, Phys. Rev. Lett.47, 1546~1981!;

Z. Phys. B: Condens. Matter53, 1 ~1983!.
20J. L. Pichard and G. Sarma, J. Phys. C17, 4111~1981!.
21A complication arises from the fact that the CF model is n

~statistically! invariant under 90° rotations, except atp50 and
p51/2. Because of this (p- anda-dependent! anisotropy, thenn

have been calculated throughout as the geometric mean o
Lyapunov exponents for cylinders with perpendicular orien
tions relative to the lattice.
6-4


