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Disorder Induced Transitions in Layered Coulomb Gases and Superconductors
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A 3D layered system of charges with logarithmic interaction parallel to the layers and random dipoles
is studied via a novel variational method and an energy rationale which reproduces the known phase
diagram for a single layer. Increasing interlayer coupling leads to successive transitions in which charge
rods correlated in N . 1 neighboring layers are nucleated by weaker disorder. For layered superconduc-
tors in the limit of only magnetic interlayer coupling, the method predicts and locates a disorder induced
defect-unbinding transition in the flux lattice. While N � 1 charges dominate there, N . 1 disorder
induced defect rods are predicted for multilayer superconductors.

PACS numbers: 74.60.Ge, 64.60.Cn, 74.80.Dm
Topological phase transitions induced by quenched dis-
order are relevant for numerous physical systems. Such
transitions are likely to shape the phase diagram of type II
superconductors. It was proposed [1] that the flux lat-
tice (FL) remains a topologically ordered Bragg glass at
low field, unstable to proliferation of dislocations above a
threshold disorder or field, providing one scenario for the
controversial “second peak” line [2,3]. Another scenario
[4] is based on a disorder induced decoupling transition
(DT) responsible for a sharp drop in the FL tilt modulus.
Furthermore, for the pure system, it was shown recently
[5] that, in the absence of interlayer Josephson coupling,
point “pancake” vortices, i.e., defects such as vacancies
and interstitials in the FL, are nucleated at a temperature
Tdef, distinct from melting above some field. It is believed
that this pure system topological transition merges with the
thermal DT [6,7] once the Josephson coupling is finite, be-
ing two anisotropic limits of the same transition [8]. In this
combined DT-defect transition superconducting order is
destroyed while FL positional correlations are maintained.
Thus an interesting possibility is that a similar, but now
disorder induced, vacancy-interstitial unbinding transition
can be demonstrated in 3D layered superconductors, rele-
vant to many layered and multilayer materials [2,9].

In 2D recent progress was made to describe disorder in-
duced topological transitions, in terms of Coulomb gases
of charges with logarithmic long range interactions. It was
shown [10–13] that quenched random dipoles lead to a
transition, via defect proliferation, at a finite threshold dis-
order, even at T � 0. The charges then see a logarith-
mically correlated random potential, a unique type which
allows a nontrivial phase transition.

In this Letter we develop a theory for a 3D defect-
unbinding transition in the presence of disorder. It is
achieved for systems which can be mapped onto a layered
Coulomb gas with quenched random dipoles, in which the
interaction energy between two charges on layers n and
n0 is 2Jn2n0 lnr , with r the charge separation parallel to
the layers. This system is realized by the FL in layered
superconductors [2,9,14] with only interlayer magnetic
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coupling, for which we predict and locate the vacancy-
interstitial unbinding transition. Indeed, as we show, dis-
order induced deformations of the lattice result in random
dipoles as seen by the defects. Our results correspond to
systems with negligible Josephson coupling, e.g., multi-
layer systems; with finite Josephson coupling the phase
transition found here is a lower bound on the combined
DT-defect transition field.

To study this problem, we develop an efficient varia-
tional method which allows for fugacity distributions,
known [13] to be important in 2D as they become broad at
low T . We test the method on a single layer and reproduce
the phase diagram, known from renormalization group
(RG) with a T � 0 disorder threshold scr � 1�8 [15].
For the two-layer system, we find that above a critical
anisotropy h � 2J1�J0 � hc � 1 2 1�

p
2 the single

layer-type transition is preempted by a transition induced
by bound states of two pancake vortices on the two layers
with scr , 1�8. We develop a T � 0 energy rationale
by an approximate mapping to a Cayley tree problem and
find that it reproduces the two-layer result. Extension to
many layers with only nearest layer coupling shows a
cascade of transitions in which the number of correlated
charges on N neighboring layers increases, while the
critical disorder decreases with h, with N ! `, scr ! 0
as h ! 1�2. For layered superconductors, we expect that
the N � 1 state dominates and find its phase diagram.
Varying the system parameters by forming multilayers
allows for realization of the new N . 1 phases.

We study the Hamiltonian:

H � 2
1
2

X
rfir0

X
n,n0

2Jn2n0sn�r� ln�r 2 r0�sn0�r0� , (1)

2
X
r,n
Vn�r�sn�r� , (2)

where sn�r� � 61, 0 define the positions r of charges on
the nth layer, and Vn�r� is a disorder potential with long
range correlations Vn�q�Vn0�2q� � 4psJ2

0Dn2n0�q2 with
D0 � 1 (the short distance cutoff being set to unity). For
simplicity we start with uncorrelated disorder from layer
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to layer Dn2n0 � dnn0 with

�Vn�r� 2 Vn�r0��2 � 4sJ2
0 ln jr 2 r0j (3)

representing quenched dipoles on each layer. We develop
first a simple energy rationale for T � 0. For a single
layer it corresponds to either using [10,17] a “random en-
ergy model” approximation [18] or, more accurately, to
a representation in terms of directed polymers on a Cay-
ley tree (DPCT) [12] shown to emerge [13] (as a contin-
uum branching process) from the Coulomb gas RG of the
single layer problem. Schematically, the tree has inde-
pendent random potentials (Fig. 1) yi on each bond with
variance y

2
i � 2sJ2

0 . After l generations, one has �e2l

sites which are mapped onto a 2D layer; i.e., two points
separated by r � el have a common ancestor at the pre-
vious l � lnr generation. Each point r has a unique path
on the tree with y1, . . . , yl potentials and is assigned a po-
tential V �r� � y1 1 · · · 1 yl . Since all bonds previous
to the common ancestor are identical �V �r� 2 V �r0��2 �
2

Pl
i�1 y

2
i reproducing (3) on each layer. Exact solution

of the DPCT [19] yields the energy gained from disorder
Vmin � minrV �r� � 2

p
8s J0 lnL for a volume L2, with

only O�1� fluctuations [13], i.e., 2
p

8s J0 per generation
with l � lnL.

Optimal energy configurations for M coupled layers are
constructed considering N neighboring layers with a 1, 2
pair on each layer and no charges on the other layers. We
can take J0 . 0 and Jnfi0 # 0 so that equal charges on
different layers attract. The DPCT representation now in-
volves, on a single tree, N 1 polymers (each seeing differ-
ent disorder) andN 2 polymers. A plausible configuration
is that the 1 charges bind within a scale Le (0 # e # 1);
so do the 2 charges, while the 1 to 2 charge separa-
tions define the scale L. Its tree representation (Fig. 1) has
2N branches with e lnL generations, i.e., an optimal en-
ergy of 22N

p
8s J0e lnL. On the scale between Le and
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FIG. 1. Critical disorder values with only nearest neighbor
coupling J1 vs the anisotropy h � 2J1�J0. Transitions be-
tween different N phases are marked with arrows. Inset: the
Cayley tree representation (for N � 3 neighboring layers) with
1 charges (at the tree end points) separated by Le along the
layers, and separated by L from the N � 3 2 charges.
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L, the 1 charges act as a single charge with a potentialPN
n�1 Vn�r� of variance Ns, hence, the optimal energy is

22
p

8Ns J0�1 2 e� lnL. The total disorder energy is [20]

Edis � 22J0

p
8s �eN 1 �1 2 e�

p
N � lnL . (4)

The competing interaction energy Eint is the sum of the
one for the 12 pairs, �2J0N 1 4

PN
n�1 Jn�N 2 n�� lnL

and for the 11 � 22 pairs, 24
PN
n�1 Jn�N 2 n�e lnL.

The total energy Etot � Edis 1 Eint being linear in e, its
minimum is at either e � 1 or e � 0. Since e � 1 implies
that the 1 charges unbind, it is sufficient to consider e �
0 with all N $ 1, i.e., a rod with N correlated charges has
energy (with hn � 2Jn�J0)

Etot � 2J0N

"
1 2 2

NX
n�1

hn

µ
1 2

n
N

∂
2

s
8s

N

#
lnL .

(5)

Disorder induces the N vortex state at the critical value:

scr �
N
8

∑
1 2 2

NX
n�1

hn

µ
1 2

n
N

∂∏2

(6)

(i.e., Etot � 0). Consider first only nearest neighbor
coupling hl � h1dl1. Then scr is minimal at N � 1 with
scr � 1�8 if h1 , 1 2 1�

p
2. For larger anisotropies

successive N states form at 1��1 2 2h1� � 1 1p
N�N 2 1� � N with diverging N as h1 ! 1

2 (Fig. 1)
[21].

Consider now Jn of range n0 constrained by
P
n Jn � 0

as relevant to superconductors; e.g., hn � h1e2�n21��n0

for which scr � �1 2 e2N�n0 ��8N�1 2 e21�n0�. For
n0 ¿ 1, each hnfi0 is small: for N & n0, the lowest
scr is at N � 1. However, the combined strength of
N � n0 vortices being significant scr has a maximum
and decreases back to zero for N . n0 as scr � n2

0�8N .
Hence, scr ! 0 as N ! ` and any small disorder seems
to nucleate such vortices. The constraint

P
n Jn � 0

manifests that an infinite vortex line has a vanishing lnr
interaction; hence, a logarithmically correlated disorder is
always dominant.

The realization of the largeN rods depends, however, on
the type of thermodynamic limit. Adding to (5) the core
energy EcN and minimizing yields a N-vortex scale

L � exp	Ec
p
N��2J0�

p
8s 2

p
8scr ��
 . (7)

Hence, as s ! 0 such states are achievable only when
L�N diverges exponentially. Using scr � n2

0�8N ,
for N . n2

0�8s the lowest scale L in this range is
achieved at N � n2

0�2s and leads to a lower bound
Lmin � exp�Ecn0�4J0s� for observing large N states with
a given s ,

1
8 . For layered superconductors Ec�J0 ¿ 1

[22] and n0 ¿ 1 and this large N instability occurs at
unattainable scales, thus N � 1 dominates. One needs
n0 � 2 3, as in multilayers, to realize the N . 1 states.

To substantiate these results, we develop a variational
method for M layers which allows for fugacity distribu-
tions, an essential feature in the one-layer problem. Disor-
der averaging (2) in Fourier using replicas yields
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bHr �
1

2d2

Z
k

Z
q
sa�q, k� �G0�ab�q, k�s�

b�q, k�

1 bEc
X
r,n
s2
na�r� , (8)

where b � 1�T , �G0�ab�q, k� � �4p�q2� �bJ�k�dab 2

sJ2
0 b2D�k��, d is the interlayer spacing [23],

a, b � 1, . . . ,m are replica indices, and m ! 0 is to
be carefully taken. In transforming to a sine-Gordon
Hamiltonian [8], it is crucial to keep all charge fugacities
[13], which yields

bHSG � 1
2

Z
kq

xa�q, k� �G0�21
ab x�

b�q, k�

2
X
r

X
sfi0
Y �s� exp�is ? x �r�� . (9)

From now on, s � 	sna
n�1,...,M;a�1,...,m is an integer
vector both in layer label and replica space (i.e., of length
M ? m) of entries 0, 61, and the summation is over all
such non-null vectors [also x�r� � 	xn,a�r�
, s ? x �P
na snaxna]. We now look for the best Gaussian

approximation of (9) with propagator G21
ab �q, k� �

�G0�21
ab �q, k� 1 sc�k�dab 1 s0�k�. The bare fugacity

being Y �s� � exp�2bEc
P
n,a s

2
n,a�, the naive approach

would be to restrict to charges s with a single nonzero
entry, leading to a uniform fugacity term exp�2bEc� 3P

r,n,a cos�xna�r�� and a diagonal k-independent replica
mass term. Instead we keep all composite charges s,
which allow for variational solutions with off-diagonal
and k-dependent replica mass terms. This corresponds,
respectively, to fluctuations of fugacity and N . 1 charge
rods being generated and becoming relevant as also seen
from RG.

Schematically, we evaluate averages �· · ·�0 using a Boltz-
mann weight with bH0 � 1

2

R
q,k xa�q, k�Gab�q, k� 3

x
�
b�q, k�. Hence, the last term of (9) has an aver-

age F�s� � Y �s� �expis ? x�r��0 which can be written
in terms of

P
q Gab�q, k� � Gc�k�dab 2 A�k� with

Gc�k� � A�k� � ln�1�sc�k�� as sc�k� ! 0. While de-
tails of the method are given elsewhere [16], a key element
involves rewriting the off-diagonal terms with A�k� as an
average over M random Gaussian fugacities wk:

exp

Ω
1
2

Ç X
a
sa�k�

Ç2
A�k�

æ
�

ø
expwk

X
a
sa�k�

¿
w

, (10)

where [23] �· · ·�w �
Q
k

R
· · · e2jwk j2�2A�k� d2wk�

p
2pA�k�.

This allows one to perform the exact sum on replicas yield-
ing a form

P
s F�s� � �Zm�w . The variational equation for

m ! 0 is sc�k� � ��≠2 lnZ���≠wk≠w�
k ��w expressed in

terms of the fugacity distributions wk . For a single layer
k � 0 and Z is a trinomial in terms of exponentials involv-
ingGc�0� andwk�0. The solution for the critical line where
sc�0� ! 0 is shown in Fig. 2 (N � 1 line) reproducing
precisely recent RG results. The variational scheme,
allowing for all replica charges s, therefore treats disorder
correctly. For two layers kd � 0, p we need two fugacity
distributions w0,wp and Z is a “ninomial,” i.e.,
Z � 11 eight exponentials involving Gc�0�, Gc�p�,
0
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FIG. 2. Phase diagram for the onset of the N � 1, 2 instabili-
ties for anisotropy h � 0.35. At low T two distinct transitions
are possible, the first being to the rod N � 2 phase. At high T
the independent layer N � 1 transition dominates.

w0, wp . Focusing on the low T boundary, where
sc�p� � �sc�0��a ! 0, we find [16] either (i) a � 1 for
h1 , hc � 1 2 1�

p
2, representing decoupled layers,

or (ii) a ! ` for h1 . hc, representing a 11 bound
state on the two layers. The T � 0 energy rationale is
therefore reproduced. The phase diagram for two layers
with hc , h , 1�2 is shown in Fig. 2 [15].

For any number of layers, one obtains a simple
N rod solution by restricting the sum over s in
(9) to a subclass of charges of the form sna �
sa

P
j�1,N dn,n01j21. The variational solution, of the

form sc�k� � scfN�k�, reduces to an effective one-layer
problem, in term of the structure factor of the rod
sa�k�s�

b�k� � fN�k� � sin2�Nkd�2�� sin2�kd�2�. Allow-
ing now interlayer disorder correlation via D�k�, the N
rod becomes critical at

scr �

µZ
k

fN�k�J�k�
∂2 ¡ µ

8J2
0

Z
k

fN�k�D�k�
∂

. (11)

This formula generalizes (6) and can equivalently be ob-
tained within the Cayley tree rationale.

As a direct application, we consider a flux lattice in
a layered superconductor with no Josephson coupling
and a magnetic field B perpendicular to the layers.
We first consider the clean system, reproduce [5] by a
systematic derivation of the defect interaction, and then
allow for disorder. The FL is composed of pancake
vortices displaced from the pth line position Rp at the
nth layer into Rp 1 unp . In addition to the pancake
vortices composing the FL, we allow for vacancies and
interstitials, i.e., defects sn�r� � 0, 61. These defects
couple to the lattice via Hvac �

P
r,p,n,n0 sn0�r�Gy�Rp 1

unp 2 r,n0 2 n�, where in Fourier [8]Gy�q, k� � �f2
0d2�

4pl
2
abq2���1 1 f�q, k�� and f�q, k� � �d�4l

2
abq� 3

sinhqd��sinh2�qd�2� 1 sin2�kd�2��; f0 � Ba2 is the
flux quantum, a is the FL spacing, lab is the penetration
length along the layers. To zeroth order in unp the defects
feel a periodic potential fixing their position in a unit cell,
hence, s�q, k� involve only jqj , 1�a.
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In the limit q ! 0 the longitudinal modes, to which
defects couple, have for (tilt) elastic energy [24] Hel �
1��2d2a4�

R
kq D�k� juL�q, k�j2 with D�k� � 1

2

P
Qfi0 3

�Gy�Q, k� 2 Gy�Q, 0�� 1 Gy�k�, where Q are re-
ciprocal wave vectors of the lattice and Gy�k� �
limq!0Gy�q, k�q2 � f

2
0d2k2

z��4p�1 1 l
2
abk2

z �� and kz �
�2�d� sin�kd�2�. The sum on Q is due to the high momen-
tum components of the magnetic field and is responsible
for the nonperfect screening of the defect interaction
and to a finite Tdef. Minimizing Hvac 1 Hel yields
then uvac�q, k� � iqs�q, k�Gy�k�a2�D�k�q2. The effec-
tive interaction between defects involves the direct one
Gy�q, k� and the FL screening which is Hvac 1 Hel at
its minimum. The total effective interaction then has form
(8) with

J�k� � Gy�k� �1 2 Gy�k��D�k���4p . (12)

Thus the long range interaction is � lnr and its co-
efficient determines Tdef � 1

2

R
k J�k� � 1

2J0. SinceR
k Gy�k� � f

2
0d�l

2
ab , the scale of the melting transi-

tion [14], the defect transition occurs before melting
and can thus be consistently described only if D�k� 2

Gy�k� ø D�k�. This is possible if either d ø a ø lab ,
where J�k� � dt0 ln�1 1 a2k2

z�4p� with t0 � f
2
0da2�

�128p3l
4
ab� and [5] Tdef � t0 ln�a�d�, or for d . a,

where J�k� � �d4�a�t0k2
z e

22pd�a leading to Tdef �
4�d�a�t0e22pd�a. Remarkably, D�k� 2 Gy�k� ø D�k�
also yields that the long range response uvac�r� � a2r�r2

to a vacancy at r � 0 is confined to the same layer.
Point disorder deforms the flux lattice, producing

quenched dipoles coupling to our defects. Expansion
of the disorder energy, valid below the Larkin length
[1], and minimization together with Hvac 1 Hel yields
readily (2). A more general argument, valid at all
scales, treats uvac as a small perturbation around the
Bragg glass configuration. Systematic expansion of the
free energy F � FBG 1

1
d2a2

R
qk s�q, k�Gy�q, k�iq ?

�u�q, k��s�0 1 O�s2� in defect density in a given
disorder configuration with �· · ·� a thermal average.
This shows that disorder induced displacements gen-
erate random dipoles iq ? �u�q, k��s�0 for the charges
s�q, k�. Hence, the defects feel a logarithmically cor-
related random potential Vn�r� as in (2) and (8) with
sJ2

0 D�k� � Gy�k�2 limq!0 CBG�q, k��4pd2a4, where

CBG�r, n� � �u0
L�0�� �unL�r�� is the disorder aver-

aged correlation in the unperturbed Bragg glass
CBG�q � 0, k� � 1��c2

44�k4 1 R21
c k

3��, Rc a Larkin
length along c [1]. It yields a k-independent D�k� for
k . 1�Rc while D�k� � k for k , 1�Rc.

Applications to FL depends on the interlayer form of
(12) of range n0 � a�d for large a�d. Remarkably, g�k �
0� � 0, i.e., perfect screening holds as in 2D [5]. Hence,P
n Jn � 0 and as n0 is reduced J0, J1 dominate the sum,

i.e., h1 ! 1
2 when d ¿ a. One finds that h1 crosses

the critical value 1 2 1�
p

2 when d�a � 1, depending
weakly on a�lab . We thus propose that FL in multilayer
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superconductors, where d . a can be achieved, can show
a rich phase diagram with N . 1 phases. In layered super-
conductors a�d � 10 100 [2] and the N � 1 transition at
scr � 1�8 dominates for realistic sizes. The disorder in-
duced decoupling transition, neglecting defects, predicted
[7] at sdec � 2 is thus above the defect transition (with
B � s) in the B 2 T plane (similarly thermal decoupling
occurs at Tdec � 8Tdef for d ø a ø l). A natural sce-
nario is again of a single transition at sc varying from 2
to 1�8 as the bare Josephson coupling is reduced, e.g., by
increasing d in multilayers.

In conclusion, we developed a variational method and
a Cayley tree rationale to study layered Coulomb gases.
The results are relevant to flux lattices where we predict
that as field or disorder are increased a thermodynamic
phase transition will occur, affecting magnetization, trans-
port, and the critical current. We also propose new N . 1
phases for d * a. The present methods may be useful for
other 2D disordered systems, such as the quantum Hall.
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