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Abstract

Field-induced spin density wave (FISDW) systems exhibit coexistence phases between well-defined Quantum Hall plateaux
phases with even integers 2N and 2N0. We show that a disordered coexistence region accounts for the observed peaks in the
longitudinal reisitivity as the field varies between plateaux. It also results in a random spin mixing which yields two energy-split
extended states. The longitudinal resistance is expected to show two peaks with a temperature (T) dependent width, Tk

: The
peak width should saturate below the non-nesting interlayer coupling of<40 mK. q 1999 Elsevier Science Ltd. All rights
reserved.
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Organic conductors exhibit a cascade of (magnetic) Field-
Induced Spin Density Wave Phases (FISDW) below about
1 K and in fields ranging from a few teslas to about 20 T.
Each SDW phase shows a well-defined Hall plateau where
the Hall resistance is h=�2e2N� with an integerN; see Refs.
[1–3] for recent reviews. The sequence of integers is usually
monotonic, the integerN decreasing by 1 as the field
increases. The even integers 2N signify that both spin states
are coupled by the spin density wave (SDW) and the quan-
tum Hall (QH) phenomena are then degenerate in the spin
states. Although the Quantized Hall Effect (QHE) in FISDW
seems similar in many respects to the Integer QHE seen, e.g.
in MOSFETS [4], it is different from the latter in many
important ways: it is observed in an anisotropic 3D material;
the effect would not exist in the absence of electron–
electron interactions; furthermore, under specific conditions
of pressure and field, the QHE changes sign: a negative
plateau is inserted within the positive sequence of FISDW
[5]; last, disorder plays no role in the phenomenon, contrary
to the situation in the IQHE: the Fermi level is pinned in the
middle of the SDW electronic gap between extended states
by the broken symmetry phenomenon, not by disorder. In
fact the very existence of FISDW phases is made possible
because very clean samples are available. This is a

prerequisite for the observation of FISDW: the electronic
mean free path has to be larger than the magnetic length
2p=G� f0=�Bb� (where f0 is the flux quantum,B the
magnetic field andb the interchain distance in the most
conducting plane).

The FISDW phase diagram is well understood within the
so-called Quantum Nesting Model [1–3,6–8]: in materials
with open Fermi surfaces and good nesting properties,
electronic motion under magnetic field becomes 1D and
periodic; this opens up gaps between Landau bands when
electron–electron interactions stabilize a SDW phase.
Minute changes in the electronic dispersion relation, such
as can be caused by applying pressure, may result in
stabilizing phases with negative Hall numbers [9].

The change in order parameter from sub-phase in the
sequence of FISDW is a discontinuous jump of the SDW
wave vector parallel component by one inverse magnetic
lengthG (in the usual monotonic sequence) or by an integer
number ofG’s (in the case of a transition from a positive
Hall number to a negative one). As a result, all phase transi-
tions are weakly first order. Hysteresis is observed quite
generally both in transport properties [5] and thermo-
dynamic ones [1–3].

Although the Quantum Nesting Model accounts in a satis-
factory way for nearly all aspects of the phase diagram
(except perhaps at very large fields), for the existence of
Hall plateaux, their sequence, and the rare occurrence of
negative Quantum Hall numbers, it fails to account correctly
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for the longitudinal Hall resistance at the transition between
FISDW phases. A naive interpretation of the model would
predict a small discontinuous change ofr xx at the transition
between plateaux at low temperatures, reflecting the small
discontinuous change in electronic gap at the Fermi level,
and the activated nature of dissipation processes. The
experimental situation is quite different:r xx exhibits spikes
at the transition between plateaux [5], in a manner similar, at
first sight, to what is observed in the usual MOSFET IQHE
[4].

The purpose of this paper is to suggest that spikes inr xx

can be understood on the basis of the thermodynamics of the
first-order transition between FISDW: we consider the
coexistence region between Hall plateauxN and N0 and
show that it exhibits critical phenomena specific to these
QH states. We propose then the following scenario. The
first-order transition between plateauxN and N0 is driven
by a balance of the interaction between electrons and
Landau quantization in a magnetic field. Within the
coexistence region we assume that nucleation of the new
phase is a slow dynamic process and, therefore, the system
is composed of isolated clusters of theN0 phase embedded in
a continuum of theN phase. On the time scale of electronic
transport, these clusters are randomly quenched. Uncoupled
chiral gapless states are formed at the cluster boundaries. As
the field increases the coexisting phases have an increased
fraction of the N0 phase until a percolation threshold is
achieved at some field, beyond which theN phase forms
isolated clusters within theN0 phase.2

The finite size of anN cluster implies that not all the
electronic states participate in forming the SDW, i.e. there
should be 2N gapless edge states, as in the usual QH system.
In fact Yakovenko and Goan [1–3] have explicitly
constructed such edge states for the FISDW. They show
that the SDW couples oppositêkF states which areN
chains apart wherekF is the Fermi wave-vector along the
quasi-1D chains (x-direction). Hence the lastN chains of
either1kF or 2kF near the edge are uncoupled, i.e. gapless
chiral electronic 1D liquids. When anN phase is embedded
in an N0 phase the latter produces 2N0 edge states with
opposite chirality around theN phase. The SDW can then
couple some of these states, so that onlyuN 2 N 0u chains
remain gapless. The density of states of the gapless states
is thenN�0� � uN 2 N 0u=�pvFl� per unit area, wherel is the
transverse size of a cluster.

Transport in the coexistence region is determined by the
gapless states which are scattered by the random SDW
clusters. The problem is then similar to the two dimensional
(2D) QH systems in which two spin states are randomly

coupled, e.g. by spin orbit coupling. Here, the two spin
states are coupled by the SDW fluctuating field. This
coupling leads to two nondegenerate extended states
[10,11], which yield peaks inr xx; the temperature depen-
dence of these peaks has been extensively studied in the 2D
QH systems [12,13] and yields information on the criticality
of QH states [14,15].

Consider the Hamiltonian in presence of a SDW order
parameter with amplitudeD and phaseu . This Hamiltonian
has been applied successfully for the FISDW phases [1–3].
We represent the Hamiltonian in a spinor state

�u�x; y� exp�ikFx 1 ikzz�; v�x; y� exp�2ikFx 1 i�kz 1 p=c��
�1�

for the right and left moving electrons. In all the FISDW
phases the SDW has wavevectorsp /c in the least conduct-
ing zdirection parallel to the magnetic field [7,8]; hence the
SDW couples states with momentumkz only to those with
momentakz 1 p=c. This is a result of perfect nesting in thez
direction, i.e. the one-electron dispersion relation alongkz is
dominated by atc cos(kzc) term which allows perfect match-
ing of the opposite Fermi surfaces whenkz is shifted byp /c
[7,8,16]. In contrast, the SDW wavevector componentsQx,
Qy depend on the magnetic field and jump discontinuously
between theN phases. In particularQx � 2kF 2 NG. The
Hamiltonian, with Pauli matricesti ; i � 1; 2; 3 in this
spinor space, has the form [1–3]

H � { 2 ivF2x 2 tc cos�kzc�} t3 1 Dt1 exp�it3�NGx2 u��
2 f �kyb 2 Gx� �2�

Here vF is the Fermi velocity, andf(kyb) represents the
electron dispersion in theky direction with the wavevectorky

shifted by a vector potential. Note that thetc coskzc form is
essential in obtaining a coupling between the two states in
the spinor Eq. (1) andtc cos��kz 1 p�c� � 2tccoskzc is used
to obtain itst3 form in Eq. (2). As a result, by a unitary
transformationU � exp�ixtccos�kzc�=vF� the tc term can be
eliminated and has no effect on the mean field level [6–
8,12,13]. Non-nesting terms, e.g.t 0ccos�2kzc�, cannot be
simultaneously transformed away.

In the coexistence phase the SDW order corresponds to a
random mixture ofN andN0 phases andD, u become space
dependent. We assume first that the disorder depends only
onx, y, i.e. the clusters are correlated in thez-direction. This
is reasonable since as discussed above, variations inQx

induce variations inQy but not inQz � p=c. Hence disorder
in the x- and y-directions is an inherent feature of the
coexistence, while the clusters can remain correlated in
the z-direction. The last term in the Hamiltonian is then
f �2i2yb 2 Gx�:

We proceed to describe the localization properties of the
gapless states in presence of a random distribution of the two
coexisting SDW order parameters. We recall first the
description of (spinless) electrons in random 2D QH
systems. The transition between QH plateaux is a quantum

P. Lederer, B. Horovitz / Solid State Communications 113 (2000) 213–216214

2 A hint about the interpretation ofr xx spikes at the transition
between Hall plateaux in terms of a mixed phase is present in
Ref. [3] above, which refers in that context to the following
paper: I. Ruzin, S. Feng, Phys. Rev. Lett. 74 (1995) 154. The latter
work analyses transport properties in the “usual” quantum Hall
effect systems.



percolation transition which involves tunneling and
interference between clusters. It leads to a well-known
localization lengthj which diverges as the electronic
Fermi energyE approaches a percolating valueEc as j ,
uE 2 Ecu2n with n < 2:4 (close to 7/3) [4,10]. Quantum
percolation signifies here the presence of an extended
state, while at energies away from percolation the states
are localized. Note, however, that in the QH system the
clusters result from a given random potential while in the
SDW system the disordered clusters themselves are gener-
ated by the magnetic field which drives the first-order tran-
sition. In both cases the magnetic field drives the Fermi
energy across a percolation point and the dynamics of
gapless modes in the SDW system is similar to that of
electrons in a random potential. In a layered QH system
with weak hopping t between layers, an uncorrelated
disorder between layers [17] leads to a finite width of
extended states (scaling as�t�1=n) and the actual localization
exponent becomesn < 1:45.

The case with two spin states requires some care in iden-
tifying their symmetry. For example, iff �kyb� � tb cos�kyb�,
i.e. perfect nesting also in they-direction, the Hamiltonian
would anti-commute withK � t2exp�2it3u� leading to
particle–hole symmetry. Such symmetries are essential for
identifying universality classes of QH systems. For
example, in a random super conductor [18] an electron–
hole symmetry is exact and leads to degenerate extended
states and distinct critical exponents; the symmetry opera-
tion in the latter case is anti-linear, while the SDW type
(approximate) symmetry defines yet another symmetry
class [19]. Although this SDW symmetry is approximate
in the uniform SDW state, it breaks down in the random
coexisting phase. The phaseu which signifies an SDW
translation is now randomlyx, y dependent and the operator
K � t2exp�2it3u�x; y�� no longer anti-commutes with the
Hamiltonian. The coexistence phase is then identified as a
U(2) symmetry class [10,11] in which the extended states
are nondegenerate and have the usual exponentn < 2:4:

Consider now the localization problem of gapless states in
the presence of a random SDW which mixes the two spin
states. We propose that this is equivalent to the QHU(2)
system [10,11] with a random scalar potential and a random
spin-flip coupling which mixes the two spin states. The latter
system exhibits “repulsion” between extended states, i.e.
even if the spin states were degenerate (i.e. no Zeeman term)
the U(2) mixing produces two non degenerate energies of
extended states. A Zeeman term will further increase the
splitting. In the SDW problem the magnetic field drives
also the “landscape” of the random potential so that the
splitting between critical field values corresponds to situa-
tion that the SDW fluctuationk�dD�2l1=2 changes byDE, the
energy splitting of the two extended states. Since fluctua-
tions dD relate to the unknown kinetics of the first-order
transition, we cannot estimate the splitting of the fieldsHc.

We can, however, evaluate the critical behaviour near one
Hc since the situation there is equivalent to a “spinless”

particle localization. As the field approaches a percolation
point Hc the localization length diverges asj , uH 2 Hcu2n

and the resulting extended state will produce a peak inr xx.
To estimate the width of this peak at finite temperatures we
consider the states at half maximum ofr xx as localized states
and evaluate their conductance via variable range hopping,
similar to the QH treatment [14,15]. The excitation energy
for a hop is either a Coulomb energy or determined by the
level spacing of the edge states. In view of the huge
dielectric constant of the SDW state (,109 or ,103 in the
x- and y-directions, respectively [21]) we consider an
excitation energy which is dominated by the level spacing
< 1=N�0�r2 at distancer. Hence

rxx , exp
1

N�0�r2T
2

r
j

� �
: �3�

Minimizing with respect tor yields

ln rxx , ��H 2 Hc�2n=N�0�T�1=3

i.e. for a constantN(0) the width of r xx is uH 2 Hcu ,
T1=2n � Tk

; so that k � 1=�2n�: Hence k � 0:21 for
correlated disorder in thec-direction while k � 0:34 for
uncorrelated disorder. Furthermore at a givenH ± Hc this
predicts the Mott law lnrxx , T21=3

: (Note that, in contrast,
when Coulomb interactions dominate electron–hole levels,
k � 1=n [14,15].)

This derivation assumes thatN(0) is non-critical and
smooth near percolation, i.e.N(0) of the edge states is
determined by the coexisting clusters rather than by the
percolation path that the edge states choose to take. Indeed,
N(0) is non-critical in the usual QH systems [4,10]. An
alternative derivation of the temperature scaling is based
on limiting j by an inelastic lengthLf , Tp=2 [12,20] i.e.
the width ofr xx is , �Lf�21=nTp=2n with p=2n . 0:36 for the
single layer system [20].

We consider finally the issue of interlayer coupling.
Within our 2D random system the effective 2D coupling is
the deviation from nesting in thez-direction which is rather
small 40 mK [22]. Thus ther xx width should saturate below
40 mK. If, however, the clusters are not correlated in the
c-direction, thentc < 10 K would lead to a large width for
rxx and critical behaviour below< 10 K could not be seen.
Recent data onr zz [23] has shown no special features at the
transition between plateaux in the ClO4 salt. This is con-
sistent with correlated clusters in thez-direction. In this case
the hopping termtc in Eq. (2) can be eliminated ands zz

depends only on the much smallert 0c. In the presence of
random point impurities [24]tc cannot be strictly gauged
away, though for extremely clean samples either a
renormalizedtc or t 0c are the relevant scales.

The explanation we have given for the behaviour of the
longitudinal resistivity at the transition between FISDW
phases is based on the first-order nature of this transition
and on the consideration of chiral edge electronic liquid
states which should exist at the boundary of a finite cluster
of phaseN embedded in a sea of phaseN0. Our analysis has

P. Lederer, B. Horovitz / Solid State Communications 113 (2000) 213–216 215



various consequences: the intensity of the longitudinal
resistivity spike at its maximum at the transition between
plateaux of a monotonic sequence, i.e. whenN 2 N 0 � 1
should not depend on field, only on temperature, since it
only depends on the number of percolating, channels at
the transition. It should be much larger at the transition
between phases with different signs of the Hall effect,
since the number of dissipative edge channels is
uN 2 N 0u q 1. In fact the width of ther xx peak, following
Eq. (3) has a factordH / �N�0��1=2n / uN 2 N 0uk; i.e.
increasing withuN 2 N 0u.

Indeed, experiments exhibit much larger spikes at the
transition between phaseN � 22 and its neighbours (i.e.
with uN 2 N 0u � 4 or 5) than between phases for whichN 2
N 0 � 1 [5].

In (TMTSF)2PF6, a single spike is observed at all transi-
tions, indicating that the spin splitting we expect is too small
to be resolved. However, magnetocaloric and partial
transport data on (TMTSF)2ClO4 [25] shows a splitting of
the transitions above 4.5 T. Those splittings have been
explained phenomenologically on the basis of a Landau–
Ginzburg expansion and the hypothesis of a repulsive
coupling between neighbouring phases. A different possible
interpretation of this splitting is the spin effect we have
discussed above. Higher sensitivity data onr xx are required
to test our interpretation. However, one should keep in mind
that the physics of the ClO4 salt is made complicated by the
anion ordering problem: depending on the sample cooling
rate, transverse Bragg reflections may significantly alter the
single-particle dispersion relation and thus the nesting prop-
erties of the electronic spectrum, in comparison with the PF6

compound, besides introducing significantly different electro-
nic relaxation times, different SDW pinning potentials, etc.

The explanation we have given for the behaviour of the
longitudinal resistivity at the transition between Ultra
Quantum Crystal phases (i.e. transition between FISDW
subphases [26,27]) resolves a long-standing problem in the
“standard model” (i.e. Quantum Nesting Model) approach
to the Ultra Quantum Crystal phenomenon. It is based on the
first-order nature of this transition and on the consideration
of chiral edge electronic liquid states which should exist at
the boundaries of a finite cluster of phaseN embedded in a
sea of phaseN0. The coexistence regions of the phase
diagram, characterized by a random mixture of clusters of
one phase embedded in the other are the regions wherer xy

varies rapidly with field from one Quantum Hall plateau to
the other; we have shown how this leads naturally to dissi-
pation and to peaks inr xx, where disorder is induced only by
the phase coexistence at the first-order transition. Using a
variable range hopping approach, we have derived critical
exponents for the width of ther xx peaks and predict spin
splitting of these peaks.

An intriguing possibility is that the split transition
observed in ClO4 salt corresponds to the resolved spin

splitting limit. More detailed experimental data are needed
to check the validity of our critical exponents’ predictions.
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