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Anharmonicity of flux lattices and thermal fluctuations in layered superconductors
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We study elasticity of a perpendicular flux lattice in a layered superconductor with Josephson coupling
between layers. We find that for flux displacemeptshe energy containg? In p terms, so that elastic
constants cannot be strictly defined. Instead we define effective elastic constants by a thermal average. The tilt
moduli have terms~-In T which for \ y<a, where\; is the Josephson length aads the flux-line spacing,
lead to{p?)~T/|In T|. The expansion parameter indicates that the dominant low-temperature phase transition
is either layer decoupling at high fields £a) or melting at low fields X ;<a). [S0163-182@08)09237-9

[. INTRODUCTION then ¢, .1 has large variations in a circle of radigsbe-

. . . . tween these pancake vortices. This effect has led . 9
The properties of Abrikosov flux lattices in layered super-, anticipate a2 In p term in the energy expansion when

conduptors are of considerable interest in view of numerou?J>§ whereé is the in-layer coherence length. This term was
experiments on high~, compounds.For magnetic field per-

. , , also found by Kraméf for a single vortex line and indepen-
pendicular to the layers, the flux lattice can be considered 3ently by ust!

two-dimgnsiona(ZD) point vortices in each superconducting In this work we present the detailed energy expansion. In
layer which are stacked one on top of the other. Each poinfqgition to the difficulty at short scales, leading to tfein p
vortex, or a pancake vortex, represents a singularity of thgarm, we find that the convergence parameter of the expan-
superconducting order parameter, i.e., the superconductorgion vanishes as [t E;| when the Josephson couplirig,
phase in a given layer changes byr 2round the vortex. 0. Thus theE;=0 elastic constants are not recovered by a
These pancake vortices are coupled by their magnetic field s, 0 limit. We then show(Sec. Il D) how to define effec-
well as by the Josephson tunneling between nearest layengve elastic constants and apply our resugc. IV) to ther-
The fluctuations of the displacements of pancake vortices anmal averages ofp?). In particular we find p2)~T/|In T| for
manifested by a variety of experimeritsnd affect phase \j<<a, where\; is the Josephson length aadis the flux-
transitions such as melting of the flux lattice and layer dedine spacing. The expansion parameter indicates the type of
coupling, i.e., vanishing of the interlayer Josephson couplinglominant fluctuation with a related instability, i.e., fag
on long scale$™® >a the decoupling transition dominates while foy<a the

A harmonic expansion of the flux lattice energy to secondmelting transition dominates. The relevance to experimental
order in displacements of the flux lines, defines in general théata is discussed in Sec. V.
elastic constant$ For anisotropic layer systems a harmonic
expansion was studied by Glazman and Kosh&lBK).°
This expansion is, however, nontrivial, since it involves ex- Il. THE MODEL
panding the nonlinear Josephson couplidgcosdyn 5 _
where ¢, ,.1 is the relative phase of neighboring layers. We start from the Lawrence-Doniacliree energy in
When two pancake vortices which are one on the top of théérms of superconducting phasgg(r) on then-th layer and
other are separated by a distange(Rarallel to the layeps the three-component vector potentir,z):

1 - d D 2
}'=§fd2rdz [VXA(r,z)]2+)\—621b§n: (Z—;V(ﬁn(r)—A(r,z)) 8(z—nd)
2 nd
_EJ; fdzr COS{%(r)—qﬁn_l(r)—g: (H)dAZ(r’Z)dZ’ @

where\ o, is the penetration length parallel to the lay@tss  and two pancake vortices, one at the bottom layé? atand
the spacing between layed,=hc/2e is the flux quantum, the other at the top layer &;+ p. It is rather straightfor-

andA= (A Ay). ward, as shown in Appendix A, to show that the free-energy
In Appendix A we consider a simplified model with two expansion has a2 In p term.
layers in thee—0 [i.e., A(r,z) decouples fromp,(r)] limit We proceed with the partition sum for E(L) which in-
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volves integrating ove,(r) andﬁ\(r,z), subject to a gauge
condition. Sinceﬂ(r,z) is a Gaussian fieldchoosing the

axial gaugeA,(r,z)=0, A(r,z)=[A(r,z),0]) we can shift

A— A+ S5A whereA(r,z) now satisfies the, y components
of

1
Fi== 2, G; Xa,k)|8(q,k)|2. (50
2 aK

Here (g,k) is a 3D wave vectorz is the direction perpen-
dicular to the plane of layers and

VXVXA(r,z)= d > CDOV A S d
(r,Z)—)\—gb TRy én(r)—A(r,z) | 6(z—nd) B2 1 1

) G,(a.k)= a2 IR (6a)
and then fluctuations idA decouple from those op,(r).
The partition sum at temperatufeis now
Ha.K) = d sinhqd
zZ= J Depp(r)exd — FIT] 3) a 4N sinr?(qd/2)+sin2(kd/2)(' )
6b
with A(r,z) in Eq. (1) given by the solution of Eq2). Note
that since Eq.(2) is gauge invariant underA—A 1673d2 4\2, kd
—(Po/27) V x(r,nd) and ¢,(r)— ¢,(r) — x(r,nd) one can Gi(q,k)= Y. (1 3 sinZ?)
in fact choose any gauge. od (60
We now decomposeé,(r) to
(1= + 2, sy(r)a(r—r'), (4a) For deviationsu;' of 2D vortices on thenth layer from
A T equilibrium positionsR, of a hexagonal lattice, the function
o o sy(r) is
an(r):¢n(r)_¢n—l(r)v (4b)
where qbﬂ(r) is the nonsingular part ofg,(r), «(r) 1 if r=R+ul
=arctang/x) with r=(x,y), s,(r)=1 at pancake vortex Sp(r)=

sites ands,(r) =0 otherwise. The sum in E¢4a is then a 0 otherwise.

sum onr’ being the vortex positions on theh layer.
Solving Eq.(2) for A in terms of6,,(r) ands,, substitut- The Fourier transform
ing in Eq. (1) yields®

F=Fy+ Fy+ Fi,

where F, is the vortex-vortex interaction via the 3D mag-
netic field, F; is interlayer Josephson coupling term afgd
is an energy due to fluctuations of the nonsingular phase: jqentifies longitudinalu'(g,k) =q- u(qg,k)/q and transverse

u(q,k) =[x z]-u(q,k)/q components ofi(q,k)

u(q,k)=2I u expigR;+iknd)

fv:%E > (NG, (r—r';n—n")s,(r'), (58

rn ¢ p

]—"J=—EJ§n: szr(cos[ 0“(r)+2 [sy(r”)

u(g,k)=u'(q,k)a/q+u(g,k)[axz]/q.

If the free energy can be expanded to second order in
u(g,k) then the compressior,,, shearcgg and tilt cyy
: (5b)  moduli for the vortex lattice are identified by

—sn_l(r’)]a(r—r’)}—l

1 wld d?qdk
F=3 fBZ f (21)3(da2>2{[q2cn<q.k>+kicim(q,k)]lu'(q,k>|2+[q2c66<q,k>+kicmq,k)]lu“(q,k)lz}, )

wherek?= (4/d?)sir? (kd/2), a? is the area of a unit cellal®=®,/B) and| g is for q integration over the Brillouin zone. We
assume below that<a,\,, as is the case for higli; compounds:

Note that forg=0 there should be no distinction between transverse and Iongitm:ijg(él,k)zcg“(o,k), however for
q#0, c\,(q,k) andci,(q,k) may differ.

Ill. ELASTIC CONSTANTS OF THE FLUX LATTICE

A. Magnetic coupling
We consider first the case with no Josephson couphijg; 0. The vortex-vortex interaction has then the form
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mld 2
1 (l 5||,)j J MG (g,k)e'aRI—Rr +uf-u, glk(n—n")d

1 =ld d?qdk
E E 1 5nn )J J (2(1_)3G (q k)elq ul ul )elk(n n )
I nn’

The first and the second terms can be expanded with respeagtutsince in absence of the=I', n=n’ term they
converge. It is importantot to decompose the (16, ,/) or (1—46,,) factors until all integrals converge; tHe=1", n
=n’ terms produce then the integral terms in the following elastic matrix:

=ld dqd B
fBZf (27 )3(daz)zd’”(q'k)ui(q,k)u?(q,k)

N 1
¢l(ak)=| 52 E[G (1Q=al.k)(Q-)'(Q-a)~G,(Q.0Q'Q]
= d*pa’ [ j ini
~| g2 f 2meLlCollP=al.k)(p=) (P~ a)' =G, (p.OP'P']
Si 2 ro d2pa?
Uzl [ picuph-c.p0),

whereQ are 2D reciprocal vectors of the hexagonal lattice.
Consideringg— 0 we use the symmetry of the hexagonal lattice

1
> 9(Q)QiQ=5 X 9(Q)Q?, (8a)
Y 249
;l 9(Q)QiQ;Q=0, (8b)
1
9(Q)QIQIQQN=5 (8 din* didim+ Smd) 2 9(QAQ", (80)

i,j,l,m

and separate thQ=0 andXq., parts. We consider flux-line spacir@>d, so that theQ sums involve many terms
[~ (a/d)?] and the sums can be approximated by integrals

% | ad ©
Q;&o
whereQ3=47B/®,=4x/a? ie., wQZ is the area of a Brillouin zone.
Note that forg—0:
2d2

G (ak ; 1 k2 1
v(qv )‘> 4

. 10
TnZy @2+ kD) T @ THnZy( g2 k) (19

The first term of Eq(10) contributes to the compression modayi; Whlle the second term to the longitudinal part of the tilt
moduli c9. Therefore theE;=0 compressiort,;, shearcgs and tilt cy?, ci;® moduli for q<Q, are

B2 1 11 2 2 ) J_
C1a(0,K) = 7 — W 5\ ga2 QaQ[QG (Q.K)]- f (Z—FE%[pG(pk)]
3 1 »a’d’p 1 ¢ d

" 16| & QaQ[Qa aQ & k)} (2w>2pap{ BT (pk)D

_B? 1 Bd,

T AT 1N2(P KD (8Thap)? (13

21 1 4 3G, (q,k) =a’d’pl d [ ,dG,(p,k)||  Bdg
Sl 4107 g2 16(50 e N o D‘(fmawz’ (1
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2
— tr,0,

cig(a.k)= Ar T (P D) +Cu4(0,K), (119

1/ 1\21 2B®, 1 1+Kk2/Qj

tr,0 ==, 2_ 0 0
cilak=3|gz2| iz &, (G -CUQOIR*= G757 12N Tz (11d

|
with 1/¢ a cutoff on theQ summation. (r)y=~—2Va(r—RM-p".
Note thatc,%(q,k) #cl;%(q,k) even forq—0 due to the

singular form of the vortex-vortex interactidd, (q,k) [Eq. Each pair of vortices, displaced by and u,”‘l, respec-

(10)] At q=0 the c,, terms combine |nt05k2[ctr °(0.k)

tively, defines a p circle” in space wherév]'(r)|<p|', see

+c44(0 k)]|u(0k)|?, which can also be verified by direct Fig. 1. Within ap circle #'(r) has a 2r discontinuity and
expansion foru(0k). As shown below, a finite Josephson therefore cannot be expanded. The expan§igris reason-

coupling restores the equahtm(q k)= c (9,k) atg—0.

B. Josephson coupling: “naive” expansion

We consider now the contribution of the Josephson cou-
pling Eq. (5b) to the elastic constants by a conventional ex-

pansion, reproducing the results of GK.

The singular part of Josephson phase difference in the
interlayer Josephson coupling term can be written(see

Fig. D
P(r)=a(r=R'=p)—a(r—R'+p)). (12
Here we defined
] ut+uft
R'=R/+ — (139
Couteupt
=5 (13b)
vi(r)=r—R/. (130

The usual way for treatment of the cosine term in &ip) is
by using a “naive” double expansion:

(i) Expansion of the cosine with respect to the phase dif-

ference

0”(r)+2 Yi(r)

(i) Expansion of the singular phase differengf(r) with
respect top|'

FIG. 1. The singular phase differengg'(r) and thep circle
where|r—R['|<p/".

able only in the region far from the circle whereuv/\(r)

>[pf].
Within the approximationgi) and (ii) we can write

> fdzr cos{¢9“<r>+2I «M‘(r)}—l)

1 2
—Egj {e“<r)+2 ¢P<r>}

1 [ d?qdk .
~— 55 W(w(q,kn +6*(q,k)B(q,k)

+c.c+|B(q.k)[?), (14

where we define

B(q,k)=d§n‘, fdzreiq”‘k“dZ BI'(r)

_ 4mid[2xd]-p(a.k)
q

2[P| XV'(r)];

Bl(r)=—2Va(r—Rl)pl P

(15
and use the Fourier transform
2mi[zXq]

q .

Note, that merely the use of the expansid@n leads to an
error of orderp? since the differencéy'(r))>— (Bf(r))? is
of order 1 in thep circle with area~ p?.

Combining Eqg.(14) with F; of Eq. (5¢) yields

f d’rVa(r)e'd=

=ld  d?qdk
FytFi= f f_ o 2m) S(Gf (q.,k)+Ey/d)[6(q.k)

=id  d?qdk
— 0%k *+ 55 f f
(q )| ol (277)3

|47Tld[Z><Cﬂ p(q k)|?

T oY, (16)

Here we introduced



9528 T. RUTH GOLDIN AND BARUCH HOROVITZ PRB 58

2 2
o . TeB(EK) 00y B 1
6°(q,k) e Caa(d.K)=cys ta- SR
kd d? 2B® 2r 2 2,2
7]k:4)\3 Slr\2—+ -7 - (877)\0)2"] E [QO+(1+)\ bk )/)\c]
2 NG
where the Josephson length is (18D
Where)\ «=\aphy/d. The result forcl,(q,k) was obtained
. Do by GK?
7‘3_4)\ab\/m‘ It is interesting to note that faq— 0 and finite Josephson

coupling E; the tilt moduli are equal. Note also that the

Sinced <\ gy, typically 7,~2/\; for mostk averages below.  |imits g—0 andE;—0 do not commute in the second term

The last term |n EQ(lﬁ) contributes to the longitudinal of Eq. (18b). In fact we show below that the expansion of
c44 and transversey, part of the tilt moduli. Rewriting the Josephson term breaks down wHep— 0.

integrand in the form In summary, the “naive” expansion needs a revision to

correct two aspectdi) short scale behavior—expansion is

e QO H I H %] . H
f dzqg(q,k)=2 J d2qg(q+Q,k), (17) not allowed in the p circle”, and (ii) long scale behavior—
Q generation of arkE; independent term wheg— 0.

using the symmetry of the hexagonal lattice E@.as well

as Eq.(9) with an upper cutoff 4, the tilt moduli[including C. Josephson coupling: proper expansion

the magnetic contribution, Eq§l1g), (11d)] can be written We proceed now to a method which avoids the “naive”
as expansion by expanding the cosine term in Edp) directly
in terms of p.

We defined"(r)= 6"%(r) + €"(r) and expand the Joseph-

Cha(Q,K)=Cla— In €[ Q5+ (1+N2 K2/,

(87 )2 son coupling term in Eg5b) with respect tae"(r) to find an
(189  optimal #™(r) for which the expansion is allowed:
|
F=7 f T )3 G QL 402+ (@ 0]+ 6 k) e () + c.cd

—1—%e”(r)2—e”(r)sin +0(e*,e%p?). (19

—EJ; fdzrrco{e”'l(rﬁil‘, (1)

0”'1<r)+2 Yp(r)

We show below that terms of ordee?{cog6™(r) o ier s ikndoan
+3yl(r)]—1} contribute theD(e?p?) correction to the free C,(q,k)zd; fd re'd Ci(r)
energy after integration over.

The expansion is most efficient when the term linear in [pMx q]z .
€(g,k) vanishes. This determing8(q,k) to be the solution =47i dE [qp['K(qp)]e'dRi*iknd,
of
(23
6% (q,k)=— —dE f d?r sm( o l(r)+z Yi(r) and #™(r)==,6M(r). In the rest of this section we iden-
tify expansion parameterdEq. (26) below] which allow a
« glar +iknd (20) solution of Eq.(20), and derive the free-energy expansion
' [Eq. (31) below].
To solve Eq.(20) we introduce the functions Since the functiorC\(r) is close to
_ 2[p X Vv(r)]
|(r) a| (r)+¢|(r)] 1, (22) sin y"(1) = | | 2 ”
L T e P LT fo P

_ 1
S1(r) =6 (r)+Ci(r), (22 for bothu!'<p!" andw!'>p", the difference between imagi-

nary part ofD{'(r), ImDJ\(r), and &/(r) is only on thep

whereC['(r) is defined as .
circle, so that

N 2[p<Vvi(1)],
C.(Y)ZW, j d?r|Im D(r)— &](r)|~O(p?), (253
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) . N whereK,, J; are conventional Bessel functions. The func-
j d VE, Im Dy (r)Im Dy,(r) tion 87(r), in terms ofv'=r—R[", decays slowly as &' for
7! a<v|'<\e Where N ;<A<\, depends on the configura-
zf @S 5(r)8(r)+0(p%a). (25b) tion of p{‘_, but for v'>\¢g it decays as exp{v|/\¢q). The
(21 exponential decay allows the convergence of ltteamma-
tions inside the sine in E¢20); however, since the exponen-
We show now that an expansion i is possible if the tial decay sets in at the scade which diverges when

following expansion parameters are small E;—0, we expect the expansion paramejasf Eq. (263 to
od (1 2 i diverge, i.e., the expansion is invalid wh&y— 0.
Y= — _qu dk(|p'"(q.k)|2)<1, if A,>a, The convergence 0E|5,”(r_) implies that slilﬁ2|5|“(r)).
ma® Jip, —w/d can be expanded. More precisely, as shown in Appendix B,

(263  the condition of Eq(26a leads to Eq(B3), which together

) . with Eq. (259 yields

(=([pMANDIN(N/E)<1, if Ny<a, (26D

where(p?) is an average g5 which is diagonal irg, k. The

case of thermal average is evaluated in Sec. IV. The param-

etery controls the expansion of the sine term in E2p) and f 2 i ont n igr+iknd

is evaluated in Appendix B, whilée)=0O(p?) results from dEn: d*r sin 0 (r)+§|: vi(r) |e

the solution of Eq(20) which is to leading order ip, so that

the term linear ine in Eq. (19) survives and leads to higher- _ f 2 n igr+iknd

order corrections. d}n: §|: d’r Im Dy(r)e [1+0(x0)]
We claim then that the solution of E(R0) [compare with

6™%r) from the naive expansioris =d> > f d?r 87(r)e' K 14+ 0(x) ]+ O0(p?)
n o

7E=iCi(a.k)
9°+ i

al<q,k>=2| o1(q,k)=— . @D

[1+0(01+0(p?). (29

=[el<q,k>+2 Ci(a,k)
so that with Eq.(22)

d wld = g3p"K1(gpMIi(qo™)
am=23 J ko dqq pi Ky(ap;)Jdi(qu)
—ld 0

T ‘m q+ nﬁ Substituting in Eq.(20) shows that Eq(27) is indeed the
Ao m ik(nemyd solution for EQ.(20), i.e., it is the optimab"*. Furthermore
X[ X p']e : (28)  we have from Eq(B4), using Eq.(25b)

f dr cos( 0”'1(r)+2 sz(r))—l}:f d%(Z ReD{‘(r)—% > ImD](r)im DJ\(r) |[1+O(x)]
1#1'
1
:fdzr(El ReD{‘(r)—E > 86 (r) |[1+0(x)], (30)
11’
where ReD|\(r) is the real part oD|'(r). Substituting in Eq(19) we obtain
3 1 ( d’qdk__ E, [ d?qdk g?|C(q,k)|?
f—fﬁ(zf W[Gf (a.k)+Ey/d]|e(a,k)[*+ 55 2m® o
E, 1
—7% fdzf cog 0™ H(r)+ ¢i(r) ]+ 5(5{‘(0)2—1} [1+0(e, €%, )], (31

whereC(q,k)=Z,C(q,k).

The balance between the fifei(q,k)|? term in Eq.(31) and theO(¢) term leads td e)~(p?). The O(€?) term depends
on the distribution ofe(q,k); for thermal average it has a comparable val8ec. V).

We have identified two types of expansion parameters. The firstyoierelated to the convergence of theummation of
singular vortex phases while the second oaeis related to the response of the nonsingular phase. For weak Josephson
coupling\ ;>a we find y>(e) so that the expansion parameteryiswhile for A ;<a we find from Eq.(B6) xy<(e) so that
the expansion parameter (s).

Consider now the functiod"(r)==,5/'(r). Sinceq=1/p" (due toK, function for p"<\; the dominant integral range
with g~1/p hasg?+ 72=q?. Hences"(r)—C"(r)=0([ p/\,]?) and the last term in Eq31) for p<\, can be replaced by
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1
f dzr(cos¢{‘(r)—1+§cr(r)2 =— In[4e](pM)?. (32

It is straightforward to see that the integral is convergent and therefore must be proportioptatife coefficient can be
found after some algebra.
The contribution to the second term in E&1) from different flux lines can be written in the form

2 J'oo'[ﬂ'/d qudk q2C|(qak)Cr'(qvk)

ot g (27)° 9°+ 7

, ((w/d , . ,
20?3, 3 ool |7 akko(mdRI-R] ek e
nn" 1#1’ I

1+0

pz
a?
whereg]' is the angle betweeg' andR}'— Rln,’ . Sincel #1’, the argument of the Bessel functiokg, K, is always finite and

the limit p'—0 in this argument can be taken; hereel’ terms have a harmonic expansion.
The contribution to the second term in E&1) from single flux lines, i.el=1", can be computed analytically far<A ;

’ , ld , ) )
_2d22 E pi'pl COS(B,n-l-,Bln, )f dkKy( 7 RI"_RI”, |)elk(nfn )d
—ald

nn’ 1#1l’

: (33

. . . " 3 ’ ’
f f a d*qdk 0|2|C|(q,k)|2:20I22 m”-m”'f /d dkf o KON T KAV 100 0
n,n’ 0

—md 213 QPR x?+ neplpf

— T

n
|

Ay
p

+amd Y, pl-ple NN n—n’|+0(p*N2).  (39)

n#n’

=47d>, (pP)?In

The last line is obtained by introducing=q\/p,“p,’" and writing the integra(34) as

dx ;
o X*+ ppl'pl

3 n; n’ n'; ony_ 2
fﬂr/d kol X eik(n_r1,)d+f1x [Ki(xVplp] YKi(xNp| Ip)') —1Ix ]eik(n—n’)d

e 0 X2+ mcpi'pl

eik(nfn’)d

’

N f dxx%(xJpr/p.“dKl(xJpP’/pr)
1 X2+ mepl'pf

In the last two terms one can put @l —0 since both integrals converge. After separatingrthen’ andn#n’ terms and
integrating ovek the result Eq(34) is obtained. In Appendix C we consider displacement of a single pancake vortex in one
flux line and demonstrate the agreement between a numerical exact evaluatio(2ff)EEqd the analytic expansidsee Fig.

2). We also show in Appendix C that for the single pancake displacement an expangia possible also foi ;<p<a.

We have shown in Eq34) that in general there are){()z In p" terms in the energy expansion, confirming the anticipation
by GK? Thus, strictly speaking the elastic constants are ill defined. Howevef, i a slowly varying function so that
replacing it by an average value grshould yield the main nonlinear correction. At finite temperatyreg p2)Y? would be a
thermal average. This procedure is tested for the single pancake displadémppandix Q and is found to be in a good
agreement with the exact thermal average.

D. Effective elastic constants

Effective elastic constants are obtained by replacing anharmonic terms by an average vaIuE which is to be

determined self-consistently, e.g., by a thermal averﬁge{pzﬂ’z. We introduce the effective singular phase difference
#1(r) " which leads to effective*"(r) functions

. 2L % V(1]
sin ¢(r)®= — —,
A L en s 22— a0 2T
2[v(n)Xpil,
Cn,eff — il
R

Amid[zxq]-p(a.k) — —
cof(g k) = ST C?] PN K50, (35)
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This approximation simplifies significantly all computations of averages because the energy can be written in the harmonic
form

1 [ d?qdk
FFy | 2 q)s(Gf (a.k)+E; /)] 6(a,K)— 6+ k) |2

|[2><a]~p<q,k>|2q2?r<i<qp>

1 ® (ald mE; [Qo
+ —(4w)2Ede f d2qdk(2m)? f f 3da In(4e)|p(q,k)|?,
2 — wld (2 )

q°+ 7
(36)
|
where we define | ol @,
C44(qlk):C421(qlk)_ A \2
2ceff g k (87\¢)
01,eff(q k) [ W—(q’) _
! *tmy X In[(p?/4e)(Qg+ (1+ N3k,
To derive Eq.(36) the proper expansion is used with the (383
sin yf(r)®". The result is similar to replacing by p into the B2 1
coefficients of anharmonic terms in E@1). chii(a.k) =co'(q,k) + P A
Using Egs.(9), (17) the second term in Eq36) can be Tr 1+7‘cq +Napks

written as

B(I) 2 2,2
~ B2 L (P7140) (@5 (1+ Sk,

f F,d d2qdk [[2xq]- p(a,k)|?a%p?K2(qp)
ad (27)3 9>+ 7t

JQon/d d?qdk
(2m)°
1 foc 3Kf(x)dx
2Q3

where the last integral has the analytic fit

(38b

S a O 12aZ02K2 0 It is seen thatcy(q,k) of the naive expansion is now cor-
Lz q]~p(q,2 )I"a’p*Ki(ap) rected by replacing? with p?/4e. We have assumed implic-
Q°+ i itly that p> &, otherwise the circle is within the vortex core

area wherd is reduced and the starting model Et). should
(37) be modified.

+|p(q, k)l

Qo X2+ 77 p

IV. THERMAL AVERAGES

To determine the effective tilt moduli Eq&8), as well as
(p 77k(1+Q077k )) the conditions for the expansion Eq26) we need to evalu-
ate the thermal average of the relative displacement of pan-
cake vortices

Qo X2+ 72p? 2

jw X*KI)dx 1
P 77k 1

The effective free energy of the vortex lattice can now be

2 . .
written in the harmonic form with effective transverse, —2 J’Qof”/d d?qdk [ sirf(kd/2) sir?(kd/2)

c'(q,k), and longitudinalcl,(q,k), tilt moduli P (2m)° |0%cyytkiCy, 0%CestkiChy
(39
£[x]
0.03 . For weak magnetlc fields whehg<a the Josephson contri-
. bution tocl,, andcl, is dominant and the latter dominate the
0.025 . integrals, leading to
0-02 . - T er In(4e) N a@?
204\ 2 G
. . pP 4 r )\J/In( T ) a2 ’ )\gb ’ (40)
b o wherer=®2d/(47?\2,) andT<r is assumed. The expan-
sion parameter fok ;<a [Eq. (26b)] together with Eq(40)
0.005 yields, in fact, the expansion condition<r. We also find

by numerical integration that the displacement average is

z ~
0.002 0.004 0.006 0.008 0.01 u "‘p .

FIG. 2. Contribution of the Josephson coupling to the energy of We note thap? is nonllnear inT due to the InT factor in
one displaced pancake vortex in one vortex line in units@Er?  Ed. (40). Thus data op?, e.g., by a Debye-Waller term in
[f=F,/(2mE;\2), see Appendix ¢ Numerical resultgdotg and ~ neutron scattering may probe theTrfactor in weak fields,
the analytic form Eq(C2) (line) are shown forr:2p2/)\§< 1. i.e, \;<a.
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For strong magnetic fields whekg,> \ ;>a the Joseph- perature dependence may be observable via a Debye-Waller
son contribution to the last terms in E@8) can be ignored, factor in neutron scattering.
i.e., cl~ch,~c, leading to The second deficiency of the naive expansion is thaj a
independent term is generated from the Josephson term when
T 9m\? a? A5 ) q— 0. This difficulty relates to the expansion parametef
N5 Aap

2~—a%ln
pr=Ta N o2

' (42) Appendix B—the summation on flux lines converges only

o beyond a scale-\; so thaty~p? In \;. WhenE;—0 the
wherek=7/d dominates the integral; here alsé~p?. In range where thep expansion is valid,y<<1, vanishes as
this case the thermal averagedf has the usual linear tem- 1/INE;. Thus atg—0 a long-range effect of many flux lines
perature dependence invalidates thep expansion. In practice one neelg>\ .,

We proceed to evaluate the expansion parameters Eqir this effect to be noticeable, and the harmonic expansion
(26) which determine the validity range of our expansion.is then limited toT<3T4/IN(2\;/\4p).

For \ ;>a we needy of Eq. (263, The gq—0 difficulty is in fact resolved by either a self-
) consistent harmonic approximatfoor by a renormalization-
__|_27T2d2 va (a/d d?qdk k2 group method. In both cases the cosine function is not ex-
X= at Wy —mid (2m)°3 q2[066q2+05{4(q,k)k§]’ panded[although P(r) is expaljded asy(r)=—2Va(r
(420  —R)-p[] leading to a decoupling temperatufg. For T

<Tq E; is renormalized to a finite valueJR

while for A ;<a we evaluatg €) directly with Eq.(40). We ~T(£E,/T)Y" 7T which can be expanded whef

note that the thermal average yies’) = (2T/7)In A,/ so <T4/In(T/£E;), equivalent to our expansion parameter. For

that (e?)~(e). : . S
We find then that the effective harmonic expansion iszlz;?ytir;i;ﬁgormahzec& vanishes and thp expansion is

valid at temperatures belot, The expansion parameter is related Tg only for \;
TP~ L1T4/IN(2\y/Ngp),  if @ Nap<hy, (433  >a, while for A;<a the expansion is valid forT
<z7/In(\;/€). We expect that in the latter case Josephson

TP~ ra/(m\;), if a<N;=<\gp, (43b) fluxons with width\ ; can form loops in between layers and
lead to melting of the flux lattice. Thus far;<<a the domi-
Tb~17/In(\;/8), if \y<a. (430 nant instability is melting, while fok ;>a it is decoupling;

in the latter case the lattice &t>T (held by magnetic cou-

Here we define® the decoupling temperatureTy pling) melts at a higher temperature.

= ra? In(a/d)/(4m\2,) for the rangea, \ ,,<\ ;. We note that In recent experiments on Bi-Sr-Ca-Cu{®ef. 12 the

the form of y Eq. (268 involves precisely the fluctuations ;

that lead toXtheq d(ecoa?Jpling trangitié'ﬁ.lt }i/s therefore ex- pﬂase dl?gr%m hgs s(?gwn hal nun_;bedtooé Iovr;/-tem;r)]erature
ected thafT® is related toTy for the case whery is the phasedrelated to disordey, while atT> , where ther-

b . d ™= X mal fluctuations dominate, the transition to a vortex-liquid
relevant expansion parameter, i@=\,. For both cases of j a6 is of two typesi) At B<500 G a first-order transition

Eqsb(43a, (43b) the decoupling temperature is indeed closeyish ng further transitions at higher temperatures, éindat
to T° (even fora<\,=A\,, where the decoupling transition 540 G-g<900 G a first order transition followed by an-

becomes first ordér. Fora>\, we expect that fluctuations  giper transition where surface barriers are reduced. For Bi-
of the non-singular part of the Josephson phés@.k)) gy ca.cu-O\, is estimated ds800—2400 A, while aB
dominate so that the low temperature instability |nvoIves:500 G. a=2000 A. It is then consistent to consider the
melting rather than decoupling. B<500 G transition as melting A\;j<<a), while at B
>500 G decoupling dominates\ (>a) with melting at a

V. CONCLUSION higher temperature.
We present in this work a proper expansion for defining
elastic constants. Both deficiencies of the naive expansion, ACKNOWLEDGMENTS

when corrected, lead to interesting physical consequences.

The first difficulty is that a simple expansion at short scales

the p circle in Fig. 1, is not possible. The proper expansion

shows a anharmonig? In p term so that, strictly speaking,

C44 is ill defined for displacementg> ¢ [for p<¢ the Jo-

sephson couplinge; should be modified by the reduced or-

der parameter in the vortex core, an effect which is neglected Let consider two superconducting layers with Josephson

in the Lawrence-Doniach model, E€L)]. coupling between them and only one pancake vortex on each
We find that effective elastic constants can be defined byayer. The Lawerence-Doniach free energy in the simple case

replacing Inp by Inp, where p is thermal averagep  of e~0 has the form:

=(p?)Y2 This leads to replacing of the naive expansion by

pl\/4e in the effectivecy,, Egs.(39). Since(p?)~T this 52] dzr( > [Vea(r)]?—1\;?2

effect can show up as a Thfactor in a direct measurement n=12

of c44. Furthermore, wheh ;<<a the Josephson contribution

dominates in the tilt moduli an¢p?)~T/In(#/T). This tem- X[coddy(r)— pq(r))—1]]. (A1)
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APPENDIX A: TUTORIAL EXAMPLE
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We now decompose the superconducting pha%g) to  where thef, part contains magnetic interaction between vor-

the nonsingulakpg(r) and singular part: tices (we do not consider it hefeand 3 [d?r[V(¢5(r)
0 + ¢3(r))]? part which can be integrated out.
én(r)=n(r)+a(r—Ry), We can perform an expansion of the cosine term with

wherea(r) =arctang/x) andR,, is the vortex position on the réspect to thmonsingularpzhasgez(r% since it can be shown
=a(r—Ry) — a(r —Ry) to write the free energy in the form: displacements of vortices:

€=Jdzr(;[Va(r)]z—)\jz[cos(e(rHw(r))—l] +&, P[RRy /2.

(A2)  So we can write:

1
€=§Jdzr{[Va(r)]ZJr)\jz[G(r)]z—2)\32[cos¢(r)—1]+2)\320(r)sin Y)Y+ E+O(6%p?,6%),
where

. 2[pXxv],
SO [z )7 (v p)

2]1/21

v=r—[R;+R,]/2.
After shifting the square o and substituting sig{r) by C(r)=2[pxv],/(p?>+v?) we obtain

1 dq C(a) [? d’lC(f? 1
— T 2 -2 oy =2 2 _ 2_ 2
& 2 f (277)2 (q +)\J ) a(q)+(1+q2)\§) + 1+q2)\§ )\J fd r COS¢(r)+2(C(r)) 1 +O[0P ]+801
(A3)
where thed[sin y—C] term contributes #@(6p?) correction to the energy.
It can be calculated analytically that
1
f d?r| cosy(r)+ E(C(r))2—1}= —ar In[4e]p?, (A4)
1 d2 2 C 2 1 )\—2 2
1 a g°/C(q)l ol e Mo (A5)

2) (2m? 1+9\5 8w 1+\; %p?

This shows the presence of the anharmonic tpfnin p in the energy expansion for two superconducting layers. We obtain
in Sec. Il C this anharmonicity in the more general case of a vortex lattice in a layered superconductor.

APPENDIX B: PARAMETER OF EXPANSION

Let us introduce a 2D lattice withthe unit-cell index and use definitions Ed3¢) and Eq.(22) for v{' andD}\(r).
Considerr in thel* unit cell with r =R« + v}, , so that|v,|<a. Sinced]'(r)=&'(v) depends om only throughv}'=r
—R,, [see Eq.(28)], we can write

X'=2 ImD(n=2 &M+ > [ImD(r)—s\(n]

| #1% 1#1% 1#1%
d wld VX (K) 1, ( { % ) p®

=—— dkn K R —Ry«|)ek"d———————"x| 1+ 0| =———| | +O| =, B1

2 3 |7 dondatndR-Rihet s |0l % ®Y)
n n 1 Ny, 2 p2
xk=2> ReD/'=5 X [§'(V)]*+0| =
1 #1* 2|¢|* a

_ @ D J-W/ddk Ka(mRi—Rye]) R R XP g w10 )+o 7 e

2w S | ) - U IR — Ry«| IR — Ry+| a®)’

Using the expansion
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H (1+DN)= 1+Z D“+—Z 2 DP D|,+3| > > > DDD}+-

1#17#1"

we obtain for the right-hand side of EQO)

iqr

fdzr Im[H [1+D](r)]|e

Iqr_E f d V|~k Im

(1+D3) [ (a+DY) e
p#1*

=3 (et m D."*[1+O([XP]2,XE)]+(1+R6DP*)(IEl im D+ O(Lx{1 X217 |
: S
2
derZ Im DJ'e'%| 1+ 0 2,[X|]2,XR> (B3)
|
Here [2d%v, ReD,=0(p?) is used and'® means integration x~(xD~([p"?)/4a2, (B6)

over the unit cell.

For the real part of Eq(B2) we obtain
P 4B2) which is much smaller than the other expansion parameter of

Eq. (26b. Thus forA ;<a the relevant expansion parameter

is (€).

APPENDIX C: ONE DISPLACED VORTEX POINT
IN ONE VORTEX LINE

1
2 ReD,—= 2, ImD,Im D,

5 In the case of one displaced pancake vortex on the layer
I#1’

f dzr(ReH (1+D|)—1)
zf d?r
n=0, in one vortex linel =0, so onlypg —po p are exist,
we use Eq(27) in Eq. (31) to evaluate the energy numeri-
X{1+O([x1'% xR)}- (B4)  cally. The result for the energgF; (without magnetic part
F,) is shown by the dots in Fig. 2.
The numerical result can be fitted as:

Note, that the expansion parameter depends on the con-
figurationp!'. We consider averages pf|']?> and yg which
are diagonal irp(q,k), e.g., as in thermal average. We de- F1=2mE;
fine the expansion parameter=([ x[']2) and obtain the form

p?I(\5)

2p2I(\5)+1 €Y

1.6p2—1.04° In(

For p<\; we can write the energywithout magnetic
par) analytically by using Eq(33)
_ 2d d2q fﬂ'/d dk<| tr( k)|2>
X ma? Joz o Jomg @

FrMN=27E, (In Z)pZ— p? |n(2p2/()\§))}. (C2)
X[Jo(aq) = Jo(a/ 7)1,
We compare in Fig. 2 the analytic resyline) with nu-
merical calculationgdots.
which for \ ;>a reduces to Eq(26a. For \ ;>a this is the If we put thermal average qgf?, p?, into the anharmonic
relevant expansion parameter since from b x> (e); coefficient ofp?,
furthermore, the other expansion parameter

2p%I(\3)
F1=27E, 1.62—1.042 In| ———2| | (C3
(=2 (Lol ]2> ©s 2p2/(\2)+1
R Az and compute the average pf using either effectiveif-"iff or

exact F; energy we find very similar results. Indeed, the
approximation is good because most contribution to the av-
is seen to satisfyxp)<x. erage is from the region of displacements near the average
In the case oh ;<a the average yields displacement.
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