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Anharmonicity of flux lattices and thermal fluctuations in layered superconductors
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Department of Physics, Ben-Gurion University, Beer-Sheva 84105, Israel
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We study elasticity of a perpendicular flux lattice in a layered superconductor with Josephson coupling
between layers. We find that for flux displacementsr the energy containsr2 ln r terms, so that elastic
constants cannot be strictly defined. Instead we define effective elastic constants by a thermal average. The tilt
moduli have terms; ln T which for lJ!a, wherelJ is the Josephson length anda is the flux-line spacing,
lead to^r2&;T/u ln Tu. The expansion parameter indicates that the dominant low-temperature phase transition
is either layer decoupling at high fields (lJ@a) or melting at low fields (lJ!a). @S0163-1829~98!09237-6#
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I. INTRODUCTION

The properties of Abrikosov flux lattices in layered sup
conductors are of considerable interest in view of numer
experiments on high-Tc compounds.1 For magnetic field per-
pendicular to the layers, the flux lattice can be considere
two-dimensional~2D! point vortices in each superconductin
layer which are stacked one on top of the other. Each p
vortex, or a pancake vortex, represents a singularity of
superconducting order parameter, i.e., the superconduc
phase in a given layer changes by 2p around the vortex.
These pancake vortices are coupled by their magnetic fiel
well as by the Josephson tunneling between nearest la
The fluctuations of the displacements of pancake vortices
manifested by a variety of experiments,2 and affect phase
transitions such as melting of the flux lattice and layer
coupling, i.e., vanishing of the interlayer Josephson coup
on long scales.3–5

A harmonic expansion of the flux lattice energy to seco
order in displacements of the flux lines, defines in general
elastic constants.8 For anisotropic layer systems a harmon
expansion was studied by Glazman and Koshelev~GK!.9

This expansion is, however, nontrivial, since it involves e
panding the nonlinear Josephson couplingJ cosfn,n11
where fn,n11 is the relative phase of neighboring layer
When two pancake vortices which are one on the top of
other are separated by a distance 2r ~parallel to the layers!
o
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then fn,n11 has large variations in a circle of radiusr be-
tween these pancake vortices. This effect has led GK~Ref. 9!
to anticipate ar2 ln r term in the energy expansion whe
r.j wherej is the in-layer coherence length. This term w
also found by Kramer10 for a single vortex line and indepen
dently by us.11

In this work we present the detailed energy expansion
addition to the difficulty at short scales, leading to ther2 ln r
term, we find that the convergence parameter of the exp
sion vanishes as 1/u ln EJu when the Josephson couplingEJ
→0. Thus theEJ50 elastic constants are not recovered b
EJ→0 limit. We then show~Sec. III D! how to define effec-
tive elastic constants and apply our results~Sec. IV! to ther-
mal averages of̂r2&. In particular we find̂ r2&;T/u ln Tu for
lJ!a, wherelJ is the Josephson length anda is the flux-
line spacing. The expansion parameter indicates the typ
dominant fluctuation with a related instability, i.e., forlJ
@a the decoupling transition dominates while forlJ!a the
melting transition dominates. The relevance to experime
data is discussed in Sec. V.

II. THE MODEL

We start from the Lawrence-Doniach7 free energy in
terms of superconducting phasesfn(r ) on then-th layer and
the three-component vector potentialAW (r ,z):
F5
1

8p E d2rdzF @¹W 3AW ~r ,z!#21
d

lab
2 (

n
S F0

2p
“fn~r !2A~r ,z! D 2

d~z2nd!G
2EJ(

n
E d2r cosFfn~r !2fn21~r !2

2p

F0
E

~n21!d

nd

Az~r ,z!dzG , ~1!
rgy
wherelab is the penetration length parallel to the layers,d is
the spacing between layers,F05hc/2e is the flux quantum,
andA5(Ax,Ay).

In Appendix A we consider a simplified model with tw
layers in thee→0 @i.e., AW (r ,z) decouples fromfn(r )] limit
and two pancake vortices, one at the bottom layer atR1 , and
the other at the top layer atR11r. It is rather straightfor-
ward, as shown in Appendix A, to show that the free-ene
expansion has ar2 ln r term.

We proceed with the partition sum for Eq.~1! which in-
9524 © 1998 The American Physical Society
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volves integrating overfn(r ) andAW (r ,z), subject to a gauge
condition. SinceAW (r ,z) is a Gaussian field~choosing the
axial gaugeAz(r ,z)50, AW (r ,z)5@A(r ,z),0#) we can shift
A→A1dA whereA(r ,z) now satisfies thex, y components
of

¹W 3¹W 3A~r ,z!5
d

lab
2 (

n
F F0

2p
“fn~r !2A~r ,z!Gd~z2nd!

~2!

and then fluctuations indA decouple from those offn(r ).
The partition sum at temperatureT is now

Z5E Dfn~r !exp@2F/T# ~3!

with AW (r ,z) in Eq. ~1! given by the solution of Eq.~2!. Note
that since Eq. ~2! is gauge invariant underA→A
2(F0/2p) “x(r ,nd) andfn(r )→fn(r )2x(r ,nd) one can
in fact choose any gauge.

We now decomposefn(r ) to

fn~r !5fn
0~r !1(

r8
sn~r 8!a~r2r 8!, ~4a!

un~r !5fn
0~r !2fn21

0 ~r !, ~4b!

where fn
0(r ) is the nonsingular part offn(r ), a(r )

5arctan(y/x) with r5(x,y), sn(r )51 at pancake vortex
sites andsn(r )50 otherwise. The sum in Eq.~4a! is then a
sum onr 8 being the vortex positions on thenth layer.

Solving Eq.~2! for A in terms ofun(r ) andsn , substitut-
ing in Eq. ~1! yields6

F5Fv1FJ1Ff ,

whereFv is the vortex-vortex interaction via the 3D ma
netic field,FJ is interlayer Josephson coupling term andFf
is an energy due to fluctuations of the nonsingular phase

Fv5
1

2 (
r ,n

(
r 8,n8

sn~r !Gv~r2r 8;n2n8!sn8~r 8!, ~5a!

FJ52EJ(
n
E d2r S cosH un~r !1(

r8
@sn~r 8!

2sn21~r 8!#a~r2r 8!J 21D , ~5b!
Ff5
1

2 (
q,k

Gf
21~q,k!uu~q,k!u2. ~5c!

Here (q,k) is a 3D wave vector,ẑ is the direction perpen-
dicular to the plane of layers and

Gv~q,k!5
F0

2d2

4plab
2

1

q2

1

11 f ~q,k!
, ~6a!

f ~q,k!5
d

4lab
2 q

sinh qd

sinh2~qd/2!1sin2~kd/2!
,

~6b!

Gf~q,k!5
16p3d2

F0
2q2 S 11

4lab
2

d2 sin2
kd

2 D .

~6c!

For deviationsul
n of 2D vortices on thenth layer from

equilibrium positionsRl of a hexagonal lattice, the functio
sn(r ) is

sn~r !5H 1 if r5Rl1ul
n

0 otherwise.
.

The Fourier transform

u~q,k!5(
n,l

ul
n exp~ iqRl1 iknd!

identifies longitudinalul(q,k)5q•u(q,k)/q and transverse
utr(q,k)5@q3 ẑ#•u(q,k)/q components ofu(q,k)

u~q,k!5ul~q,k!q/q1utr~q,k!@q3 ẑ#/q.

If the free energy can be expanded to second orde
u(q,k) then the compressionc11, shearc66 and tilt c44
moduli for the vortex lattice are identified by
F5
1

2 E
BZ
Ep/d d2qdk

~2p!3 ~da2!2$@q2c11~q,k!1kz
2c44

l ~q,k!#uul~q,k!u21@q2c66~q,k!1kz
2c44

tr ~q,k!#uutr~q,k!u2%, ~7!

wherekz
25(4/d2)sin2(kd/2), a2 is the area of a unit cell (a25F0 /B) and*BZ is for q integration over the Brillouin zone. We

assume below thatd!a,lab as is the case for high-Tc compounds.1,2

Note that forq50 there should be no distinction between transverse and longitudinalc44
l (0,k)5c44

tr (0,k), however for
qÞ0, c44

l (q,k) andc44
tr (q,k) may differ.

III. ELASTIC CONSTANTS OF THE FLUX LATTICE

A. Magnetic coupling

We consider first the case with no Josephson coupling,EJ50. The vortex-vortex interaction has then the form
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Fv5
1

2 (
n,l

(
n8,l 8

~12d l ,l 8!E`E
2p/d

p/d d2qdk

~2p!3 Gv~q,k!eiq~Rl2Rl 81ul
n
2u

l 8
n8

!eik~n2n8!d

1
1

2 (
l

(
n,n8

~12dn,n8!E`E
2p/d

p/d d2qdk

~2p!3 Gv~q,k!eiq~ul
n
2ul

n8!eik~n2n8!d.

The first and the second terms can be expanded with respect toq•u since in absence of thel 5 l 8, n5n8 term they
converge. It is importantnot to decompose the (12d l ,l 8) or (12dn,n8) factors until all integrals converge; thel 5 l 8, n
5n8 terms produce then the integral terms in the following elastic matrix:

Fv5
1

2 E
BZ
Ep/d d2qdk

~2p!3 ~da2!2f i j ~q,k!ui~q,k!uj* ~q,k!

f i j ~q,k!5S 1

da2D 2

(
Q

@Gv~ uQ2qu,k!~Q2q! i~Q2q! j2Gv~Q,0!QiQj #

2S 1

da2D 2E` d2pa2

~2p!2 @Gv~ up2qu,k!~p2q! i~p2q! j2Gv~p,0!pipj #

1
d i j

2 S 1

da2D 2E` d2pa2

~2p!2 p2$Gv~p,k!2Gv~p,0!%,

whereQ are 2D reciprocal vectors of the hexagonal lattice.
Consideringq→0 we use the symmetry of the hexagonal lattice

(
i , j

g~Q!QiQj5
1

2 (
Q

g~Q!Q2, ~8a!

(
i , j ,l

g~Q!QiQjQl50, ~8b!

(
i , j ,l ,m

g~Q!QiQjQlQm5
1

8
~d i j d lm1d i l d jm1d imd j l !(

Q
g~Q!Q4, ~8c!

and separate theQ50 and (QÞ0 parts. We consider flux-line spacinga@d, so that theQ sums involve many terms
@;(a/d)2# and the sums can be approximated by integrals

(
QÞ0

'
2

Q0
2 E

Q0

`

QdQ, ~9!

whereQ0
254pB/F054p/a2, i.e., pQ0

2 is the area of a Brillouin zone.
Note that forq→0:

Gv~q,k!→
F0

2d2

4p F 1

11lab
2 ~q21kz

2!
1

kz
2

q2

1

11lab
2 ~q21kz

2!G . ~10!

The first term of Eq.~10! contributes to the compression modulic11 while the second term to the longitudinal part of the t
moduli c44

l ,0 . Therefore theEJ50 compressionc11, shearc66 and tilt c44
l ,0 , c44

tr ,0 moduli for q!Q0 are

c11~q,k!5
B2

4p

1

11lab
2 ~q21kz

2!
1

1

2 S 1

da2D 2S (
QÞ0

1

Q

]

]Q
@Q2Gv~Q,k!#2E` a2d2p

~2p!2

1

p

]

]p
@p2Gv~p,k!# D

1
3

16d2a4 S (
QÞ0

1

Q

]

]Q FQ3
]

]Q
Gv~Q,k!G2E` a2d2p

~2p!2

1

p

]

]p Fp3
]

]p
Gv~p,k!G D

5
B2

4p

1

11lab
2 ~q21kz

2!
2

BF0

~8plab!
2 , ~11a!

c66~q,k!5S 1

da2D 2 1

16S (
QÞ0

1

Q

]

]Q FQ3
]Gv~q,k!

]Q G2E` a2d2p

~2p!2

1

p

]

]p Fp3
]Gv~p,k!

]p G D 5
BF0

~8plab!
2 , ~11b!
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c44
l ,0~q,k!5

B2

4p

1

11lab
2 ~q21kz

2!
1c44

tr ,0~q,k!, ~11c!

c44
tr ,0~q,k!5

1

2 S 1

da2D 2 1

kz
2 (

QÞ0
@Gv~Q,k!2Gv~Q,0!#Q25

2BF0

~8plab
2 !2

1

kz
2 ln

11kz
2/Q0

2

11j2kz
2 . ~11d!
t
n

ou
x

th

di
with 1/j a cutoff on theQ summation.
Note thatc44

l ,0(q,k)Þc44
tr ,0(q,k) even forq→0 due to the

singular form of the vortex-vortex interactionGv(q,k) @Eq.
~10!#. At q50 the c44 terms combine into1

2 kz
2@c44

tr ,0(0,k)
1c44

l ,0(0,k)#uu(0,k)u2, which can also be verified by direc
expansion foru(0,k). As shown below, a finite Josephso
coupling restores the equalityc44

l (q,k)5c44
tr (q,k) at q→0.

B. Josephson coupling: ‘‘naive’’ expansion

We consider now the contribution of the Josephson c
pling Eq. ~5b! to the elastic constants by a conventional e
pansion, reproducing the results of GK.9

The singular part of Josephson phase difference in
interlayer Josephson coupling term can be written as~see
Fig. 1!

c l
n~r !5a~r2Rl

n2rl
n!2a~r2Rl

n1rl
n!. ~12!

Here we defined

Rl
n5Rl1

ul
n1ul

n21

2
, ~13a!

rl
n5

ul
n2ul

n21

2
, ~13b!

vl
n~r !5r2Rl

n . ~13c!

The usual way for treatment of the cosine term in Eq.~5b! is
by using a ‘‘naive’’ double expansion:

~i! Expansion of the cosine with respect to the phase
ference

un~r !1(
l

c l
n~r !.

~ii ! Expansion of the singular phase differencec l
n(r ) with

respect tor l
n

FIG. 1. The singular phase differencec l
n(r ) and ther circle

whereur2Rl
nu,r l

n .
-
-

e

f-

c l
n~r !'22“a~r2Rl

n!•rl
n .

Each pair of vortices, displaced byul
n andul

n21, respec-
tively, defines a ‘‘r circle’’ in space whereuvl

n(r )u,r l
n , see

Fig. 1. Within ar circle c l
n(r ) has a 2p discontinuity and

therefore cannot be expanded. The expansion~ii ! is reason-
able only in the region far from ther circle wherev l

n(r )
@url

nu.
Within the approximations~i! and ~ii ! we can write

(
n
E d2r S cosFun~r !1(

l
c l

n~r !G21D
'2

1

2 (
n
E d2r Fun~r !1(

l
c l

n~r !G2

'2
1

2d E d2qdk

~2p!3 ~ uu~q,k!u21u* ~q,k!B~q,k!

1c.c.1uB~q,k!u2!, ~14!

where we define

B~q,k!5d(
n
E d2reiqr1 iknd(

l
Bl

n~r !

52
4p id@ ẑ3q̂#•r~q,k!

q
,

Bl
n~r !522“a~r2Rl

n!•rl
n5

2@rl
n3vl

n~r !#z

v l
n~r !2 , ~15!

and use the Fourier transform

E d2r“a~r !eiqr5
2p i @ ẑ3q̂#

q
.

Note, that merely the use of the expansion~ii ! leads to an
error of orderr2 since the difference„c l

n(r )…22(Bl
n(r ))2 is

of order 1 in ther circle with area;r2.
Combining Eq.~14! with Ff of Eq. ~5c! yields

FJ1Ff5
1

2 E`E
2p/d

p/d d2qdk

~2p!3 ~Gf
21~q,k!1EJ /d!uu~q,k!

2u0~q,k!u21
EJ

2d E`E
2p/d

p/d d2qdk

~2p!3

3
u4p id@ ẑ3q̂#•r~q,k!u2

q21hk
2 1O~r4!. ~16!

Here we introduced
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u0~q,k!52
hk

2B~q,k!

q21hk
2 ,

hk
254lJ

22S sin2
kd

2
1

d2

4lab
2 D ,

where the Josephson length is

lJ5
F0d

4labAEJdp3
.

Sinced!lab typically hk'2/lJ for mostk averages below
The last term in Eq.~16! contributes to the longitudina

c44
l and transversec44

tr part of the tilt moduli. Rewriting the
integrand in the form

E`

d2qg~q,k!5(
Q

EQ0
d2qg~q1Q,k!, ~17!

using the symmetry of the hexagonal lattice Eqs.~8! as well
as Eq.~9! with an upper cutoff 1/j, the tilt moduli@including
the magnetic contribution, Eqs.~11c!, ~11d!# can be written
as

c44
l ~q,k!5c44

l ,02
2BF0

~8plc!
2 ln j2@Q0

21~11lab
2 kz

2!/lc
2#,

~18a!
in
c44
tr ~q,k!5c44

tr ,01
B2

4p

1

11lc
2q21lab

2 kz
2

2
2BF0

~8plc!
2 ln j2@Q0

21~11lab
2 kz

2!/lc
2#,

~18b!

where lc5lablJ /d. The result forc44
tr (q,k) was obtained

by GK.9

It is interesting to note that forq→0 and finite Josephson
coupling EJ the tilt moduli are equal. Note also that th
limits q→0 andEJ→0 do not commute in the second ter
of Eq. ~18b!. In fact we show below that the expansion
Josephson term breaks down whenEJ→0.

In summary, the ‘‘naive’’ expansion needs a revision
correct two aspects:~i! short scale behavior—expansion
not allowed in the ‘‘r circle’’, and ~ii ! long scale behavior—
generation of anEJ independent term whenq→0.

C. Josephson coupling: proper expansion

We proceed now to a method which avoids the ‘‘naive
expansion by expanding the cosine term in Eq.~5b! directly
in terms ofr.

We defineun(r )5un,1(r )1en(r ) and expand the Joseph
son coupling term in Eq.~5b! with respect toen(r ) to find an
optimal un,1(r ) for which the expansion is allowed:
F5Fv1
1

2 E d2qdk

~2p!3 Gf
21~q,k!@ uu1~q,k!u21ue~q,k!u21u1~q,k!e* ~q,k!1c.c.#

2EJ(
n
E d2r H cosFun,1~r !1(

l
c l

n~r !G212
1

2
en~r !22en~r !sinFun,1~r !1(

l
c l

n~r !G J 1O~e4,e2r2!. ~19!
-

n

-

We show below that terms of ordere2$cos@un,1(r )
1(c l

n(r )#21% contribute theO(e2r2) correction to the free
energy after integration overr .

The expansion is most efficient when the term linear
e(q,k) vanishes. This determinesu1(q,k) to be the solution
of

u1~q,k!52
hk

2

q2 d(
n
E d2r sinS un,1~r !1(

l
c l

n~r ! D
3eiqr1 iknd. ~20!

To solve Eq.~20! we introduce the functions

Dl
n~r !5ei [u l

n,1
~r !1c l

n
~r !]21, ~21!

d l
n~r !5u l

n,1~r !1Cl
n~r !, ~22!

whereCl
n(r ) is defined as

Cl
n~r !5

2@rl
n3vl

n~r !#z

v l
n~r !21~r l

n!2 ,
Cl~q,k!5d(
n
E d2reiqr1 ikndCl

n~r !

54p id(
n

@rl
n3q̂#z

q
@qr l

nK1~qr l
n!#eiqRl

n
1 iknd.

~23!

and un,1(r )5( lu l
n,1(r ). In the rest of this section we iden

tify expansion parameters@Eq. ~26! below# which allow a
solution of Eq.~20!, and derive the free-energy expansio
@Eq. ~31! below#.

Since the functionCl
n(r ) is close to

sin c l
n~r !5

2@rl
n3vl

n~r !#z

@„v l
n~r !21url

nu2
…

224„vl
n~r !•rl

n
…

2#1/2 ~24!

for both v l
n!r l

n andv l
n@r l

n , the difference between imagi
nary part ofDl

n(r ), Im Dl
n(r ), and d l

n(r ) is only on ther
circle, so that

E d2r uIm Dl
n~r !2d l

n~r !u;O~r2!, ~25a!
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E d2r (
lÞ l 8

Im Dl
n~r !Im Dl 8

n
~r !

5E d2r (
lÞ l 8

d l
n~r !d l 8

n
~r !1O~r3/a!. ~25b!

We show now that an expansion inr l
n is possible if the

following expansion parameters are small

x5
2d

pa2 E
1/lJ

1/a d2q

q2 E
2p/d

p/d

dk^ur tr~q,k!u2&!1, if lJ@a,

~26a!

^e&&~^@r l
n#2&/lJ

2!ln~lJ/j!!1, if lJ!a, ~26b!

where^r2& is an average ofr2 which is diagonal inq, k. The
case of thermal average is evaluated in Sec. IV. The par
eterx controls the expansion of the sine term in Eq.~20! and
is evaluated in Appendix B, whilêe&5O(r2) results from
the solution of Eq.~20! which is to leading order inr, so that
the term linear ine in Eq. ~19! survives and leads to highe
order corrections.

We claim then that the solution of Eq.~20! @compare with
un,0(r ) from the naive expansion! is

u1~q,k!5(
l

u l
1~q,k!52

hk
2( lCl~q,k!

q21hk
2 , ~27!

so that with Eq.~22!

d l
n~r !5

d

p (
m

E
2p/d

p/d

dkE
0

`

dq
q3r l

mK1~qr l
m!J1~qv l

m!

q21hk
2

3@ v̂l
n3rl

m#ze
ik~n2m!d, ~28!
-

whereK1 , J1 are conventional Bessel functions. The fun
tion d l

n(r ), in terms ofvl
n5r2Rl

n , decays slowly as 1/v l
n for

a,v l
n,leff where lJ,leff,lc depends on the configura

tion of rl
n , but for v l

n.leff it decays as exp(2vl
n/leff). The

exponential decay allows the convergence of thel summa-
tions inside the sine in Eq.~20!; however, since the exponen
tial decay sets in at the scaleleff which diverges when
EJ→0, we expect the expansion parameterx of Eq. ~26a! to
diverge, i.e., the expansion is invalid whenEJ→0.

The convergence of( ld l
n(r ) implies that sin„( ld l

n(r )…
can be expanded. More precisely, as shown in Appendix
the condition of Eq.~26a! leads to Eq.~B3!, which together
with Eq. ~25a! yields

d(
n
E d2r sinS un,1~r !1(

l
c l

n~r ! Deiqr1 iknd

5d(
n

(
l
E d2r Im Dl

n~r !eiqr1 iknd@11O~x!#

5d(
n

(
l
E d2rd l

n~r !eiqr1 iknd@11O~x!#1O~r2!

5Fu1~q,k!1(
l

Cl~q,k!G @11O~x!#1O~r2!. ~29!

Substituting in Eq.~20! shows that Eq.~27! is indeed the
solution for Eq.~20!, i.e., it is the optimalu l

n,1 . Furthermore
we have from Eq.~B4!, using Eq.~25b!
phson
E d2r FcosS un,1~r !1(
l

c l
n~r ! D 21G5E d2r S (

l
Re Dl

n~r !2
1

2 (
lÞ l 8

Im Dl
n~r !Im Dl 8

n
~r !D @11O~x!#

5E d2r S (
l

Re Dl
n~r !2

1

2 (
lÞ l 8

d l
n~r !d l 8

n
~r !D @11O~x!#, ~30!

where ReDl
n(r ) is the real part ofDl

n(r ). Substituting in Eq.~19! we obtain

F5Fv1S 1

2 E d2qdk

~2p!3 @Gf
21~q,k!1EJ /d#ue~q,k!u21

EJ

2d E d2qdk

~2p!3

q2uC~q,k!u2

q21hk
2

2
EJ

2 (
l ,n

E d2r Fcos@un,1~r !1c l
n~r !#1

1

2
„d l

n~r !…221G D @11O~e,e2,x!#, ~31!

whereC(q,k)5( lCl(q,k).
The balance between the firstue(q,k)u2 term in Eq.~31! and theO(e) term leads tô e&;^r2&. TheO(e2) term depends

on the distribution ofe(q,k); for thermal average it has a comparable value~Sec. IV!.
We have identified two types of expansion parameters. The first one,x, is related to the convergence of thel summation of

singular vortex phases while the second one,e, is related to the response of the nonsingular phase. For weak Jose
couplinglJ@a we find x@^e& so that the expansion parameter isx, while for lJ!a we find from Eq.~B6! x!^e& so that
the expansion parameter is^e&.

Consider now the functiondn(r )5( ld l
n(r ). Sinceq&1/r l

m ~due toK1 function! for r l
m!lJ the dominant integral range

with q'1/r hasq21hk
2.q2. Hencedn(r )2Cn(r )5O(@r/lJ#

2) and the last term in Eq.~31! for r!lJ can be replaced by
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E d2r S cosc l
n~r !211

1

2
Cl

n~r !2D52p ln@4e#~r l
n!2. ~32!

It is straightforward to see that the integral is convergent and therefore must be proportional to (r l
n)2; the coefficient can be

found after some algebra.
The contribution to the second term in Eq.~31! from different flux lines can be written in the form

(
lÞ l 8

E`E
2p/d

p/d d2qdk

~2p!3

q2Cl~q,k!Cl 8
* ~q,k!

q21hk
2

52d2(
n,n8

(
lÞ l 8

rl
n
•rl

n8E
2p/d

p/d

dkK0~hkuRl
n2Rl 8

n8u!eik~n2n8!d

22d2(
n,n8

(
lÞ l 8

r l
nr l

n8 cos~b l
n1b l 8

n8!E
2p/d

p/d

dkK2~hkuRl
n2Rl 8

n8u!eik~n2n8!dF11OS r2

a2D G , ~33!

whereb l
n is the angle betweenrl

n andRl
n2Rl 8

n8 . SincelÞ l 8, the argument of the Bessel functionsK0 , K2 is always finite and
the limit r l

n→0 in this argument can be taken; hencelÞ l 8 terms have a harmonic expansion.
The contribution to the second term in Eq.~31! from single flux lines, i.e.l 5 l 8, can be computed analytically forr!lJ

E`E
2p/d

p/d d2qdk

~2p!3

q2uCl~q,k!u2

q21hk
2 52d2(

n,n8
rl

n
•rl

n8E
2p/d

p/d

dkE
0

`

dx
x3K1~xAr l

n/r l
n8!K1~xAr l

n8/r l
n!

x21hk
2r l

nr l
n8

eik~n2n8!d

54pd(
n

~r l
n!2 lnS lJ

r l
nD 14pd (

nÞn8
rl

n
•rl

n8e2un2n8ulJ /lc/un2n8u1O~r4/lJ
2!. ~34!

The last line is obtained by introducingx5qAr l
nr l

n8 and writing the integral~34! as

E
2p/d

p/d

dkE
0

1

dx
x

x21hk
2r l

nr l
n8

eik~n2n8!d1E
0

1 x3@K1~xAr l
n/r l

n8!K1~xAr l
n8/r l

n!21/x2#

x21hk
2r l

nr l
n8

eik~n2n8!d

1E
1

`

dx
x3K1~xAr l

n/r l
n8!K1~xAr l

n8/r l
n!

x21hk
2r l

nr l
n8

eik~n2n8!d.

In the last two terms one can put allr l
n→0 since both integrals converge. After separating then5n8 andnÞn8 terms and

integrating overk the result Eq.~34! is obtained. In Appendix C we consider displacement of a single pancake vortex i
flux line and demonstrate the agreement between a numerical exact evaluation of Eq.~31! and the analytic expansion~see Fig.
2!. We also show in Appendix C that for the single pancake displacement an expansion inr is possible also forlJ,r,a.

We have shown in Eq.~34! that in general there are (r l
n)2 ln rl

n terms in the energy expansion, confirming the anticipat
by GK.9 Thus, strictly speaking the elastic constants are ill defined. However, lnrl

n is a slowly varying function so tha

replacing it by an average value lnr̄ should yield the main nonlinear correction. At finite temperaturesr̄5^r2&1/2 would be a
thermal average. This procedure is tested for the single pancake displacement~Appendix C! and is found to be in a good
agreement with the exact thermal average.

D. Effective elastic constants

Effective elastic constants are obtained by replacing anharmonic terms inr l
n by an average valuer̄, which is to be

determined self-consistently, e.g., by a thermal averager̄5^r2&1/2. We introduce the effective singular phase differen
c l

n(r )eff which leads to effectiveCl
n,eff(r ) functions

sin c l
n~r !eff5

2@rl
n3vl

n~r !#z

@~v l
n~r !21 r̄2!224~vl

n~r !• r̂ l
n!2r̄2#1/2

,

Cl
n,eff~r !5

2@vl
n~r !3rl

n#z

v l
n~r !21 r̄2

,

Ceff~q,k!5
4p id@ ẑ3q̂#•r~q,k!

q
r̄qK1~ r̄q!. ~35!
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This approximation simplifies significantly all computations of averages because the energy can be written in the h
form

F5Fv1
1

2 E d2qdk

~2p!3 ~Gf
21~q,k!1EJ /d!uu~q,k!2u1,eff~q,k!u2

1
1

2
~4p!2EJdE`E

2p/d

p/d

d2qdk~2p!3
u@ ẑ3q̂#•r~q,k!u2q2r̄2K1

2~qr̄ !

q21hk
2 1

pEJ

d EQ0E
2 p/d

p/d d2qdk

~2p!3 da2 ln~4e!ur~q,k!u2,

~36!
e

b
e,

-
-

an-

-
e

-

is

o

where we define

u1,eff~q,k!52
hk

2Ceff~q,k!

q21hk
2 .

To derive Eq.~36! the proper expansion is used with th
sincl

n(r )eff. The result is similar to replacingr by r̄ into the
coefficients of anharmonic terms in Eq.~31!.

Using Eqs.~9!, ~17! the second term in Eq.~36! can be
written as

E`E
2p/d

p/d d2qdk

~2p!3

u@ ẑ3q̂#•r~q,k!u2q2r̄2K1
2~qr̄ !

q21hk
2

5EQ0E
p/d

p/d d2qdk

~2p!3 F u@ ẑ3q̂#•r~q,k!u2q2r̄2K1
2~qr̄ !

q21hk
2

1ur~q,k!u2
1

2

1

Q0
2 E

Q0r̄

` x3K1
2~x!dx

x21hk
2r̄2 G , ~37!

where the last integral has the analytic fit

E
Q0r̄

` x3K1
2~x!dx

x21hk
2r̄2

52
1

2
lnS r̄2hk

2~11Q0
2hk

22!

r̄2hk
211

D .

The effective free energy of the vortex lattice can now
written in the harmonic form with effective transvers
c44

tr (q,k), and longitudinal,c44
l (q,k), tilt moduli

FIG. 2. Contribution of the Josephson coupling to the energy
one displaced pancake vortex in one vortex line in units of 2pEJlJ

2

@f 5F1 /(2pEJlJ
2 ), see Appendix C#. Numerical results~dots! and

the analytic form Eq.~C2! ~line! are shown forr 52r2/lJ
2!1.
e

c44
l ~q,k!5c44

0,l~q,k!2
2BF0

~8plc!
2

3 ln@~ r̄2/4e!~Q0
21~11lab

2 kz
2!/lc

2!#,

~38a!

c44
tr ~q,k!5c44

0,tr~q,k!1
B2

4p

1

11lc
2q21lab

2 kz
2

2
2BF0

~8plc!
2 ln@~ r̄2/4e!~Q0

21~11lab
2 kz

2!/lc
2!#.

~38b!

It is seen thatc44(q,k) of the naive expansion is now cor
rected by replacingj2 with r̄2/4e. We have assumed implic
itly that r̄.j, otherwise ther circle is within the vortex core
area whereJ is reduced and the starting model Eq.~1! should
be modified.

IV. THERMAL AVERAGES

To determine the effective tilt moduli Eqs.~38!, as well as
the conditions for the expansion Eqs.~26! we need to evalu-
ate the thermal average of the relative displacement of p
cake vortices

r̄25TEQ0Ep/d d2qdk

~2p!3 F sin2~kd/2!

q2c111kz
2c44

l 1
sin2~kd/2!

q2c661kz
2c44

tr .G
~39!

For weak magnetic fields wherelJ!a the Josephson contri
bution toc44

l andc44
tr is dominant and the latter dominate th

integrals, leading to

r̄2'4
T

t
lJ

2/lnS et ln~4e!

T D F11OS lJ
2

a2 ,
a2

lab
2 D G , ~40!

wheret5F0
2d/(4p2lab

2 ) andT!t is assumed. The expan
sion parameter forlJ!a @Eq. ~26b!# together with Eq.~40!
yields, in fact, the expansion conditionT!t. We also find
by numerical integration that the displacement average
ū2'r̄2.

We note thatr̄2 is nonlinear inT due to the lnT factor in
Eq. ~40!. Thus data onr̄2, e.g., by a Debye-Waller term in
neutron scattering may probe the lnT factor in weak fields,
i.e., lJ!a.

f
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For strong magnetic fields wherelab@lJ@a the Joseph-
son contribution to the last terms in Eq.~38! can be ignored,
i.e., c44

tr 'c44
l 'c44

0,l , leading to

r̄2'
T

t
a2 ln

9plJ
2

32a2 F11OS a2

lJ
2 ,

lJ
2

lab
2 D G , ~41!

wherek5p/d dominates the integral; here alsoū2'r̄2. In
this case the thermal average ofr̄2 has the usual linear tem
perature dependence

We proceed to evaluate the expansion parameters
~26! which determine the validity range of our expansio
For lJ@a we needx of Eq. ~26a!,

x5T
2p2d2

a4 E
1/lJ

1/a E
2p/d

p/d d2qdk

~2p!3

kz
2

q2@c66q
21c44

tr ~q,k!kz
2#

,

~42!

while for lJ!a we evaluatê e& directly with Eq.~40!. We
note that the thermal average yields^e2&5(2T/t)ln lJ /j so
that ^e2&'^e&.

We find then that the effective harmonic expansion
valid at temperatures belowTb,

Tb' 1
2 Td / ln~2lJ /lab!, if a,lab!lJ , ~43a!

Tb'ta/~plJ!, if a!lJ&lab , ~43b!

Tb' 1
2 t/ ln~lJ /j!, if lJ!a. ~43c!

Here we defined4,5 the decoupling temperatureTd

5ta2 ln(a/d)/(4plab
2 ) for the rangea,lab!lJ . We note that

the form of x Eq. ~26a! involves precisely the fluctuation
that lead to the decoupling transition.4,5 It is therefore ex-
pected thatTb is related toTd for the case whenx is the
relevant expansion parameter, i.e.a!lJ . For both cases o
Eqs.~43a!, ~43b! the decoupling temperature is indeed clo
to Tb ~even fora!lJ&lab where the decoupling transitio
becomes first order4!. For a@lJ we expect that fluctuation
of the non-singular part of the Josephson phase„e(q,k)…
dominate so that the low temperature instability involv
melting rather than decoupling.

V. CONCLUSION

We present in this work a proper expansion for defin
elastic constants. Both deficiencies of the naive expans
when corrected, lead to interesting physical consequen
The first difficulty is that a simple expansion at short scal
the r circle in Fig. 1, is not possible. The proper expansi
shows a anharmonicr2 ln r term so that, strictly speaking
c44 is ill defined for displacementsr.j @for r,j the Jo-
sephson couplingEJ should be modified by the reduced o
der parameter in the vortex core, an effect which is neglec
in the Lawrence-Doniach model, Eq.~1!#.

We find that effective elastic constants can be defined
replacing lnr by ln r̄, where r̄ is thermal averager̄
5^r2&1/2. This leads to replacingj of the naive expansion by
r̄/A4e in the effectivec44, Eqs. ~38!. Since ^r2&;T this
effect can show up as a lnT factor in a direct measuremen
of c44. Furthermore, whenlJ!a the Josephson contributio
dominates in the tilt moduli and̂r2&;T/ ln(t/T). This tem-
qs.
.

s

s

n,
s.
,

d

y

perature dependence may be observable via a Debye-W
factor in neutron scattering.

The second deficiency of the naive expansion is that aEJ
independent term is generated from the Josephson term w
q→0. This difficulty relates to the expansion parameterx of
Appendix B—the summation on flux lines converges on
beyond a scale;lJ so thatx;r2 ln lJ . WhenEJ→0 the
range where ther expansion is valid,x!1, vanishes as
1/ln EJ . Thus atq→0 a long-range effect of many flux line
invalidates ther expansion. In practice one needslJ@lab
for this effect to be noticeable, and the harmonic expans
is then limited toT, 1

2 Td / ln(2lJ /lab).
The q→0 difficulty is in fact resolved by either a self

consistent harmonic approximation4 or by a renormalization-
group method.5 In both cases the cosine function is not e
panded@although c l

n(r ) is expanded asc l
n(r )522“a(r

2Rl
n)•rl

n] leading to a decoupling temperatureTd . For T
,Td EJ is renormalized to a finite value JR

'T(j2EJ /T)1/(12T/Td) which can be expanded whenT
!Td / ln(T/j2EJ), equivalent to our expansion parameter. F
T.Td the renormalizedEJ vanishes and ther expansion is
clearly invalid.

The expansion parameter is related toTd only for lJ
@a, while for lJ!a the expansion is valid forT
, 1

2 t/ ln(lJ /j). We expect that in the latter case Josephs
fluxons with widthlJ can form loops in between layers an
lead to melting of the flux lattice. Thus forlJ!a the domi-
nant instability is melting, while forlJ@a it is decoupling;
in the latter case the lattice atT.Td ~held by magnetic cou-
pling! melts at a higher temperature.

In recent experiments on Bi-Sr-Ca-Cu-O~Ref. 12! the
phase diagram has shown a number of low-tempera
phases~related to disorder5!, while at T.40 K, where ther-
mal fluctuations dominate, the transition to a vortex-liqu
phase is of two types:~i! At B,500 G a first-order transition
with no further transitions at higher temperatures, and~ii ! at
500 G,B,900 G a first order transition followed by an
other transition where surface barriers are reduced. For
Sr-Ca-Cu-OlJ is estimated as1 800– 2400 Å, while atB
5500 G, a52000 Å. It is then consistent to consider th
B,500 G transition as melting (lJ,a), while at B
.500 G decoupling dominates (lJ.a) with melting at a
higher temperature.
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APPENDIX A: TUTORIAL EXAMPLE

Let consider two superconducting layers with Joseph
coupling between them and only one pancake vortex on e
layer. The Lawerence-Doniach free energy in the simple c
of e→0 has the form:

E5E d2r S (
n51,2

@“fn~r !#22lJ
22

3@cos„f2~r !2f1~r !…21# D . ~A1!
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We now decompose the superconducting phasefn(r ) to
the nonsingularf0

n(r ) and singular part:

fn~r !5fn
0~r !1a~r2Rn!,

wherea(r )5arctan(y/x) andRn is the vortex position on the
nth layer. Define newu(r )5@f2

0(r )2f1
0(r )# and c(r )

5a(r2R2)2a(r2R1) to write the free energy in the form

E5E d2r S 1

2
@“u~r !#22lJ

22@cos„u~r !1c~r !…21# D1E0 ,

~A2!
where theE0 part contains magnetic interaction between v
tices ~we do not consider it here! and 1

2 *d2r @“„f2
0(r )

1f1
0(r )…#2 part which can be integrated out.

We can perform an expansion of the cosine term w
respect to thenonsingularphaseu(r ) since it can be shown
self-consistently thatuu(r )u2;lJ

22r2!1 for small relative
displacements of vortices:

r5@R22R1#/2.

So we can write:
tain
E5
1

2 E d2r$@“u~r !#21lJ
22@u~r !#222lJ

22@cosc~r !21#12lJ
22u~r !sin c~r !%1E01O~u2r2,u4!,

where

sin c~r !5
2@r3v#z

@~r21v2!224~v•r!2#1/2,

v5r2@R11R2#/2.

After shifting the square ofu and substituting sinc(r ) by C(r )52@r3v#z /(r21v2) we obtain

E5
1

2 E d2q

~2p!2 S ~q21lJ
22!Uu~q!1

C~q!

~11q2lJ
2!
U2

1
q2uC~q!u2

11q2lJ
2 D 2lJ

22E d2r Fcosc~r !1
1

2
„C~r !…221G1O@ur2#1E0 ,

~A3!

where theu@sinc2C# term contributes aO(ur2) correction to the energy.
It can be calculated analytically that

E d2r Fcosc~r !1
1

2
„C~r !…221G52p ln@4e#r2, ~A4!

1

2 E d2q

~2p!2

q2uC~q!u2

11q2lJ
2 52

1

8p
r2 ln

lJ
22r2

11lJ
22r2 1O@lJ

24r4#. ~A5!

This shows the presence of the anharmonic termr2 ln r in the energy expansion for two superconducting layers. We ob
in Sec. III C this anharmonicity in the more general case of a vortex lattice in a layered superconductor.

APPENDIX B: PARAMETER OF EXPANSION

Let us introduce a 2D lattice withl the unit-cell index and use definitions Eq.~13c! and Eq.~21! for vl
n andDl

n(r ).

Considerr in the l * unit cell with r5Rl* 1vl*
n , so thatuvl*

n u,a. Sinced l
n(r )5 d̄ l

n(vl
n) depends onr only throughvl

n5r
2Rl , @see Eq.~28!#, we can write

x I
n5 (

lÞ l*
Im Dl

n~r !5 (
lÞ l*

d̄ l
n~vl

n!1 (
lÞ l*

@ Im Dl
n~r !2d l

n~r !#

52
d

p (
lÞ l*

E
2p/d

p/d

dkhkK1~hkuRl2Rl* u!eiknd
@vl

n3rl~k!#z

uRl2Rl* u
3S 11OF v l*

uRl2Rl* uG D1OS r2

a2D , ~B1!

xR
n5 (

lÞ l*
Re Dl

n5
1

2 (
lÞ l*

@ d̄ l
n~vl

n!#21OS r2

a2D
5

d2

2p2 (
lÞ l*

F E
2p/d

p/d

dkhkK1~hkuRl2Rl* u!
@~Rl2Rl* !3rl~k!#z

uRl2Rl* u
eikndG2

3S 11OF v l*
uRl2Rl* uG D1OS r2

a2D . ~B2!

Using the expansion
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)
l

~11Dl
n!511(

l
Dl

n1
1

2! ( (
lÞ l 8

Dl
nDl 8

n
1

1

3! ( ( (
lÞ l 8Þ l 9

Dl
nDl 8

n Dl 9
n

1¯ ,

we obtain for the right-hand side of Eq.~20!

E d2r ImF)
l

@11Dl
n~r !#Geiqr5(

l*
Ea

d2vl* ImF ~11Dl*
n

! )
pÞ l*

~11Dp
n!Geiqr

5(
l*
Ea

d2vl* F Im Dl*
n

@11O~@x I
n#2,xR

n !#1~11Re Dl*
n

!S (
lÞ l*

Im Dl
n1O~@x I

n#2,@xR
n #2!D Geiqr

5E d2r(
l

Im Dl
neiqrF11OS r2

a2 ,@x I
n#2,xR

n D G . ~B3!
co

e-

r of
er

yer

i-

e
av-
rage
Here*ad2vl ReDl5O(r2) is used and*a means integration
over the unit cell.

For the real part of Eq.~B2! we obtain

E d2r S Re)
l

~11Dl !21D
5E d2rF(

l
Re Dl2

1

2 (
lÞ l 8

Im Dl Im Dl 8G
3$11O~@x I

n#2,xR
n !%. ~B4!

Note, that the expansion parameter depends on the
figurationrl

n . We consider averages of@x I
n#2 andxR

n which
are diagonal inr(q,k), e.g., as in thermal average. We d
fine the expansion parameterx5^@x I

n#2& and obtain the form

x5
2d

pa2 E
BZ

d2q

q2 E
2p/d

p/d

dk^ur tr~q,k!u2&

3@J0~aq!2J0~q/hk!#
2,

which for lJ@a reduces to Eq.~26a!. For lJ@a this is the
relevant expansion parameter since from Eq.~26b! x@^e&;
furthermore, the other expansion parameter

^xR
n&52p

^@r l
n#2&

a2 ln
lJ

a
~B5!

is seen to satisfŷxR
n&!x.

In the case oflJ!a the average yields
n-

x'^xR
n&'^@r l

n#2&/4a2, ~B6!

which is much smaller than the other expansion paramete
Eq. ~26b!. Thus forlJ!a the relevant expansion paramet
is ^e&.

APPENDIX C: ONE DISPLACED VORTEX POINT
IN ONE VORTEX LINE

In the case of one displaced pancake vortex on the la
n50, in one vortex line,l 50, so onlyr0

052r0
15r are exist,

we use Eq.~27! in Eq. ~31! to evaluate the energy numer
cally. The result for the energyF1 ~without magnetic part
Fv) is shown by the dots in Fig. 2.

The numerical result can be fitted as:

F152pEJF1.6r221.04r2 lnS 2r2/~lJ
2!

2r2/~lJ
2!11D G . ~C1!

For r!lJ we can write the energy~without magnetic
part! analytically by using Eq.~33!

F 1
r!lJ52pEJF S ln

8

eD r22r2 ln„2r2/~lJ
2!…G . ~C2!

We compare in Fig. 2 the analytic result~line! with nu-
merical calculations~dots!.

If we put thermal average ofr2, r̄2, into the anharmonic
coefficient ofr2,

F 1
eff52pEJF1.6r221.04r2 lnS 2r̄2/~lJ

2!

2r̄2/~lJ
2!11

D G . ~C3!

and compute the average ofr2 using either effectiveF 1
eff or

exactF1 energy we find very similar results. Indeed, th
approximation is good because most contribution to the
erage is from the region of displacements near the ave
displacement.
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