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Abstract. – We study a flux lattice which is parallel to superconducting layers, allowing for
dislocations and for disorder of both short wavelength and long wavelength. We find that the
long-wavelength disorder of strength ∆̃ has a significant effect on the phase diagram —it produces
a first-order transition within the Bragg glass phase and leads to melting at strong ∆̃. This then
allows a Friedel scenario of 2D superconductivity.

The phenomena of melting of the flux lattice and the influence of disorder are of considerable
interest [1]. Weakly disordered samples reveal ordered flux arrays [2], [3], consistent with the
“Bragg glass” phase of an elastic dislocation-free theory [4]-[6]. The Bragg glass phase exhibits
algebraic decay of the translational order and the existence of divergent Bragg peaks. It was
argued [5], [6] that the Bragg glass phase is stable against formation of dislocations in a finite
range of the phase diagram.

Melting has been observed [2], [3], [7]-[10] as either a transition into a flux liquid phase or into
a glass phase with a higher critical current. The latter transition occurs at low temperatures
and is therefore driven by disorder. A model for melting, allowing for both disorder and
dislocations [6], [11], was recently studied. The model considers flux lines parallel to and
confined between superconducting layers and allows for dislocations. This model was studied
without disorder [12] leading to flux melting at a critical temperature Tc which is about a
factor ∼ 2 from the solution of the more fundamental model in terms of superconducting
phases [13], [14] (the latter model allows also for flux loops and overhangs). Since disorder has
drastic effects on melting, we expect that the simplified model in terms of flux displacements
yields an adequate description of the phase diagram.

The solution of Carpentier, Le-Doussal and Giamarchi (CLG) [11] has shown explicitly that
short-wavelength disorder combined with dislocations leads to melting at a finite value of the
disorder strength. CLG have used Replica Symmetry Breaking (RSB) methods as well as
Renormalization Group (RG). They have also shown [11], [15] that this melting is compatible
with a Lindemann criterion.

In the present work we allow for an additional term in the CLG model. This term is generated
by RG within the CLG model and leads to significant effects on the phase diagram. Using RSB
methods, we show that long-wavelength disorder of strength ∆̃ leads to a first-order transition
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within the Bragg glass phase and as ∆̃ increases it leads to melting. We find that the ∆̃-induced
melting is inconsistent with a universal Lindemann criterion. Finally we consider the quest
for the Friedel scenario [16] in which a layered superconductor becomes a set of decoupled
two-dimensional (2D) superconductors. This scenario fails in pure superconductors [17], [18],
but is possible with some constraints in parallel fields [14] and in special models [19]. With
disorder which affects interlayer coupling the Friedel scenario becomes feasible in the presence
of a melted flux array.

The model [6], [11], [12] consists of layers with interlayer spacing l where modulation in the
flux line density couples to a random potential. We consider a Hamiltonian with two types of
random potentials,

H =

∫
d2r

∑
i

[
c

2
(∇Φi(r))2 − ηi(r)∇Φi(r)− µ cos(Φi(r) − Φi+1(r))−

− 2Re(ζi(r)eiΦi(r))

]
(1)

with Gaussian disorder correlations 〈ζi(r)ζj(r
′)〉 = 4Tgδi,jδ(r − r′) and 〈ηi(r)ηj(r

′)〉 =
T∆δi,jδ(r − r′), where T is the temperature. Here Φi(r) stands for in-plane displacement
of the vortex line in the i-th layer, c is an in-plane elastic constant, g measures disorder with
Fourier component ≈ 2π/a where a is the flux periodicity parallel to the layers, while ∆
measures long-wavelength disorder [5]. For point defects with scale much shorter than a (e.g.,
oxygen vacancies) we expect comparable magnitudes of ∆ and ga2. The µ term is the coupling
between layers which allows for dislocations. Melting is achieved when the renormalized value
of µ vanishes, i.e. melting is here a 3D-2D transition in which interlayer correlations are lost
while each layer maintains its correlations as an elastic medium.

It is important to note that the model eq. (1) assumes the presence of superconducting layers
which do not allow displacements of the flux lines perpendicular to them. Thus, melting as
found from eq. (1) is consistent at low temperatures where superconductivity in the layers is
maintained, i.e. a Friedel scenario. In particular, in the pure system [12] of eq. (1) thermal
fluctuations lead to melting at Tc = 4πc; this, however, is inconsistent since the superconducting
layers become normal [13], [14] at a lower temperature. We therefore look for a disorder-induced
melting at temperatures T � Tc, where eq. (1) is a consistent description.

Dimensional Imry-Ma arguments are useful to check the stability of an ordered phase which
is a d-dimensional elastic medium. In a domain of size L the elastic energy is ∝ Ld−2, the short-
wavelength disorder (after averaging the square) is ∝ Ld/2, while the long-wavelength disorder
is ∝ L(d−2)/2. Thus short-wavelength disorder is relevant at d < 4, while the long-wavelength
disorder is marginal only at d = 2, i.e. the latter is consistent with long-range order in d = 3.

To average over disorder we start with the replicated version of the Hamiltonian (eq. (1))
which includes all relevant terms generated by renormalization,

H =

∫
d2r

{
c

2

∑
i,a

[(∇Φai (r))2 − µ cos(Φai (r)− Φai+1(r))] −

−
∑
i,a,b

[
∆


∇Φai (r)∇Φbi (r) + γ cos(Φai (r)− Φai+1(r) − Φbi(r) + Φbi+1(r)) +

+ g cos(Φai (r)− Φbi (r))

]}
, (2)
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where a = 1 . . . n is the replica index. Note in particular the γ term which was not considered
by GLC; this term is generated in second-order RG from the µ term and we include it here
as an additional interaction parameter. Since it couples different replicas it can lead to RSB,
i.e. this term leads to distinct phenomena and should be included in the full Hamiltonian.

We consider the variational free energy Fvar = F0 + 〈H −H0〉 with

H0 =
1

2

∫
d2q

(2π)2

∫ π

−π

dqz
2π

G−1
ab (q, qz)Φ

a
i (q, qz)Φ

b
i (−q,−qz) , (3)

where the Greens’ function G−1
ab (q, qz) is determined by an extremum condition of Fvar and

q, qz are Fourier variables for r and i, respectively.
Defining the inverse Green’s function in the form G−1

ab (q, qz) = δabG
−1
0 (q, qz) − σab −∆q2

with
∑
a σab = 0 and σab = 2(1− cos qz)σ

γ
ab + σgab, we obtain the self-consistent equations in

the form

G−1
0 (q, qz) = cq2 + 2µ̃(1− cos qz) , (4)

σgab = 2g exp

[
−T

∑
q,qz

[Gaa(q, qz)−Gab(q, qz)]

]
, (5)

σγab = γ exp

[
−T

∑
q,qz

(1− cos qz)[Gaa(q, qz)−Gab(q, qz)]

]
, (6)

µ̃ = µ exp

[
−T

∑
q,qz

(1− cos qz)Gaa(q, qz)

]
. (7)

When µ̃, the renormalized coupling between layers, vanishes, it signals a 2D phase, i.e. corre-
lations in the z-direction are lost and the flux lattice has melted.

We study the full RSB solution of the saddle-point equations (5)-(7). The method of RSB [20]
employs a representation of hierarchical matrices such as σg,γab in terms of functions σg,γ(u) with
0 < u < 1.

We define two order parameters for RSB, m(µ) = µ̃ + uσγ(u) −
∫ u

0
σγ(v)dv and w(u) =

[uσg(u) −
∫ u

0
σg(v)dv]/2m(u). Using the inversion formula [20] for Gab, integrating cq2 up to

a high cut-off Λ (Λ� m(u), m(u)w(u)) and differentiating eqs. (5), (6) with respect to u, we
obtain two coupled differential equations:

2T̃

u

dm

du
=

d

du

[
mρ(1 + w + ρ)

ρ(1 + w + ρ) +Q(w + ρ)

]
,

T̃

u

dm

du
(Q+ w) =

d

du

[
mρ(Q+ w)

Q+ ρ

]
. (8)

Here Q(u) = m(dw/du)/(dm/du), ρ(u) = [w(u)(w(u) + 2)]1/2, and T̃ = T/Tc with Tc = 4πc.
A general solution of these equations is rather difficult, so at first we consider special limits.

When γ = 0 we recover the CLG solution [11] which exhibits a 3D Bragg glass phase with
〈[Φi(r) − Φi(0)]2〉 ∼ ln r, i.e. positional correlations decay algebraically and long-range order
is weakly destroyed. The Bragg glass phase undergoes a continuous melting transition (for
∆ = 0) at g/µ = 2/eT̃ as shown in the ∆̃ = 0 plane of fig. 1 (where ∆̃ = T∆/4πc2); for
∆ 6= 0 the transition becomes first order. Thus, the Bragg glass phase, due to both disorder
and dislocations, melts into a 2D phase with µ̃ = 0.

Consider next the case g = 0, hence w(u) = 0; the solution in this case is formally similar to
that of a 2D disordered Josephson junction [21]. Equation (8) then yields (1−2T̃ /u)m′(u) = 0,
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Fig. 1. – Phase diagram of layered flux lattices with disorder of short wavelength (with strength g) and

of long wavelength (with strength ∆̃). The dashed line is the line of first-order transition (discontinuity
of the interlayer coupling and of the glass order); the spaced dashed line is its approximate extension
to g 6= 0. The 3D glass regime at g = 0 has long-range order, while the 3D Bragg glass at g 6= 0 has
algebraically decaying positional order.

i.e. m(u) is a one-step function, with the step at u = 2T̃ . Since u < 1 the onset of this solution
is at T̃ = 1/2, i.e. at T = Tc/2 eqs. (6), (7) determine the jump in [σγ ](u) from zero (u < 2T̃ )

to a value σ0
γ at 2T̃ < u < 1, where

µ̃+ σ0
γ

Λ
= e−1

(
4eT̃

γ

Λ

)1/(1−2T̃ )

, (9)

µ̃

Λ
= e−1

[
e∆̃+1/2

(
4eT̃

γ

Λ

)−1/2 µ

Λ

]1/(1/2−∆̃)

. (10)

This solution is valid for ∆̃ < 1/2 and T̃ < 1/2, since weak coupling, γ ∼ µ � Λ (i.e. strong
anisotropy), is assumed. Near the T̃ = 1/2 transition µ̃ is finite, while µ̃ + σ0

γ vanishes; thus

σ0
γ < 0 is finite up to T̃ = 1/2 and vanishes at T̃ > 1/2, i.e. the transition is of first order.

When ∆̃ > T̃ within this phase σ0
γ changes sign and becomes positive.

The phase at ∆̃ < 1/2 and T̃ < 1/2 is an unusual coexistence phase —it has both long-range
order (µ̃ 6= 0) and glass order (σ0

γ 6= 0). (As noted above, this is consistent with the Imry-Ma

argument). At ∆̃ = 1/2, we find a disorder-driven transition where µ̃ vanishes continuously,
leading to a 2D glass phase at ∆̃ > 1/2.

We also note that a replica-symmetric solution is possible with µ̃/Λ ∼ (µ/Λ)1/(1−T̃−∆̃),
i.e µ̃ 6= 0 for T̃ + ∆̃ < 1, T̃ > 1/2 as shown in fig. 1. Comparison with eqs. (14), (15) shows
that µ̃ is also discontinuous at the T̃ = 1/2 transition.

Finally we consider the case where both g and ∆ are finite. We can demonstrate the existence
of a first-order transition at small g by showing a coexistence of two solutions. The first
solution is an expansion near the g = 0 solution, i.e. w(u)� 1 with [σg] = O(g), [σγ ] = O(1);

for u < T̃/2 the solution for [σg] is similar to the γ = 0 case, i.e. [σg](u) ∼ u2 for small u,
consistent with Bragg glass correlations. This solution is valid (assuming µ ∼ γ) if

g/Λ� (γ/Λ)
1−3∆̃+2T̃ ∆̃

(1−2T̃ )(1−2∆̃) , (11)
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i.e. for weak coupling g/Λ, γ/Λ � 1 this expansion breaks down close to the transitions at
T̃ = 1/2 and ∆̃ = 1/2. The second solution is an expansion around the γ = 0 solution with
[σγ ](u) � µ̃. This leads to [σg] = O(g2), [σγ ] = O(g) and is valid for ∆̃ < T̃ . Thus for small

g there is a two-solution regime which implies a first-order transition at some T̃ . 1/2. We
indicate this transition by a spaced dashed line in fig. 1, though we do not know its precise
location.

As shown in fig. 1, we find that the main feature of the CLG scenario is valid —for small
disorder the Bragg glass is stable, while at large disorder, which can have either short- or
long-wavelength, dislocations are enhanced by disorder and lead to melting.

These analytic results for melting allow us to test the Lindemann criterion, which is of
common use [1]. For the γ = 0 case, CLG consider a Lindemann criterion of the form [11], [15]
〈[Φi+1(r)−Φi(r)]2〉 = c2L, with average done in the elastic limit, i.e. the cosine of the µ term in
eq. (1) is expanded. This criterion leads [11] to a reasonable value of cL . 1. For the g = 0 case
an elastic limit leads to an expansion of both the µ and γ terms in eq. (2), so that RSB is not
induced. Since long-range order is present, the Lindemann criterion is 〈Φ2

i (r)〉 = c2L; however,
the replica-symmetric solution yields 〈Φ2

i (r)〉 = (∆̃+ T̃ ) ln(Λ/µ), i.e. at melting c2L ≈ ln(Λ/µ);
since Λ/µ depends on the anisotropy of the system, the Lindemann number cL is non-universal.

In order to relate the phase diagram to the actual magnetic field B we need to identify c

by the elastic constants [1], [22] which are dispersive, c
‖
44 ≈ c

‖
11 = (B2/4π)/(1 + λ2

cq
2 + λ2q2

z);

here λ, λc are penetration lengths and ε = λ/λc < 1 is the anisotropy (c
‖
44 has a smaller

second term which is neglected here). The behavior near melting is dominated by q → 0 and
qz ≈ 1/l (recall that 3D-2D melting involves only the interlayer periodicity l rather than the
periodicity a parallel to the layers). The lattice periodicities satisfy l = aε if l > d for weak
fields, i.e. B = φ0/a

2ε < φ0ε/d
2 (d is the spacing of the superconducting layers, which is the

lower bound on the interlayer spacing l of the flux lattice, and φ0 is the flux quantum), or l = d
for strong fields, B = φ0/ad > φ0ε/d

2. By rescaling the x, z coordinates, we identify

4πc ≈ aφ2
0/(4π

2λλc) ∼ B
−1/2 , B < φ0ε/d

2 ,

4πc ≈ dφ2
0/(4π

2λ2) , B > φ0ε/d
2 . (12)

Tc (= 4πc) is smallest for large fields, but even then the onset of 2D superconductivity [13], [14]
is below Tc, i.e. Tc is not a consistent description of 2D-3D melting. This reflects the result
of the more fundamental model (in terms of superconducting phases) for which the Friedel
scenario, in the pure case, usually fails. Thus we focus on the disorder-induced melting at
T � Tc which is also relevant to experimental data.

Since ∆ couples to ∇Φi(r) [5], it is B-independent so that ∆̃ = ∆/4πc2 ∼ B for small
fields and ∆̃ ∼ constant for strong fields. Thus the ∆-induced melting can be induced by
increasing the magnetic field if ∆̃ = 1/2 is achieved for weak fields. On the other hand, for
the g-induced melting [5] g ∼ 1/a2 , and by using the c66 elastic constant [23] we identify µ =
a2φ0Bε

3/[4π2l(8πλ)2]. For weak fields the melting temperature is T−1
m = eg/(8πcµ) ∼ B3/2,

while for strong fields T−1
m ∼ B3. In this case melting is induced by increasing B for both weak

or strong fields.
In conclusion we have shown that a new interaction term, generated by RG, leads to a

significant role of the long-wavelength disorder. This interaction extends the CLG results to
the more complex phase diagram of fig. 1. We find that the Bragg glass is stable for weak
disorder of either short or long wavelength. The long-wavelength disorder induces a first-order
transition within the Bragg glass phase; it also leads to melting which is inconsistent with a
Lindemann criterion. The phase diagram demonstrates a Friedel scenario [16], i.e. the melting
transition decouples the layers, while the latter maintain 2D superconductivity, at least at
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low temperatures and weak intralayer disorder. We propose that experiments with parallel
magnetic fields can test the present theory of melting as well as test the possibility of 2D
superconductivity.

***

We are grateful to E. Zeldov, Y. Y. Goldschmit, A. Kapitulnik, M. V. Feigel’man

and D. R. Nelson for useful discussions and to T. Giamarchi, T. Nattermann, P. Le

Doussal and V. M. Vinokur for discussions of their works and for illuminating comments.
This research was supported by a grant from the Israel Science Foundation.

REFERENCES

[1] For a review see Blatter G. et al., Rev. Mod. Phys., 66 (1995) 1125.

[2] Cubitt R. et al., Nature, 365 (1993) 407.

[3] Forgan E. M. et al., Czech. J. Phys., 46- suppl. S3 (1996) 1571.

[4] Korshunov S. E., Phys. Rev. B, 48 (1993) 3969.

[5] Giamarchi T. and Le Doussal P., Phys. Rev. Lett., 72 (1994) 1530; Phys. Rev. B, 52 (1995)
1242.

[6] Kierfeld J., Nattermann T. and Hwa T., Phys. Rev. B, 55 (1997) 626.

[7] Safar H. et al., Phys. Rev. Lett., 70 (1993) 3800.

[8] Kwok K. et al., Physica B, 197 (1994) 579.

[9] Zeldov E. et al., Nature, 375 (1995) 373.

[10] Yeshurun Y. et al., Phys. Rev. B, 49 (1994) 1548.

[11] Carpentier D., Le Doussal P. and Giamarchi T., Europhys. Lett., 35 (1996) 379.

[12] Mikheev L. V. and Kolomeisky E. B., Phys. Rev. B, 43 (1991) 10431.

[13] Korshunov S. E. and Larkin A. I., Phys. Rev. B, 46 (1992) 6395.

[14] Horovitz B., Phys. Rev. B, 47 (1993) 5964.

[15] Giamarchi T. and Le Doussal P., cond-mat/9609112 preprint.

[16] Friedel J., J. Phys. Condens. Matter, 1 (1989) 7757.

[17] Korshunov S. E., Europhys. Lett., 11 (1990) 757.

[18] Horovitz B., Phys. Rev. B, 47 (1993) 5947.

[19] Dzierzawa M., Zamora M., Baeriswyl D. and Bagnoud X., Phys. Rev. Lett., 77 (1996)
3897.
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