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Disorder in two-dimensional Josephson junctions
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An effective free energy of a two-dimensionak., large areaJosephson junction is derived, allowing for
thermal fluctuations, random magnetic fields, and external currents. We show by using replica-symmetry-
breaking methods that the junction has four distinct phases: disordered, Josephson ordered, a glass phase, and
a coexisting Josephson order with the glass phase. Near the coexistence to glass trarssﬁi%)matcritical
current is~ ( area) "2 wheres is a measure of disorder. Our results may account for junction ordering at
temperatures well below the critical temperature of the bulk in High-rilayer junctions.
[S0163-18207)13617-1

I. INTRODUCTION ¢l /2c<T, a condition valid for the relevant dataee Sec.
V); ¢g=hcl2e is the flux quantum.

Recent advances in the fabrication of Josephson junctions The energy of a 2D junction, in terms of the Josephson
have led to junctions with large area, i.e., the junction lengttPhasee;(x,y) where ,y) are coordinates in the junction
L (in either direction in the junction plahés much larger Plane, was derived by Josephsbh has the form
than\, the magnetic penetration length in the bulk supercon- . E,
ductors. Experimental studies of trilayer junctions tike fo=f dx dy(@(V%)ZﬁL yz(1-cospy) |, 1)
YBa,Cu;0, /PrBa,Cu;0,/YBa,Cu;O, (YBCO junction or ) ) _
like?  Bi,Sr,CaCyOg/Bi,Sr,CaCugO,0/Bi,S,,CaCyOg whereE; is the Josephson coupling energy in akéa

(BSSCO junction have shown anomalies in the temperature. qu?anor;(%r)]i\:]vﬁ ?r(]er:vera (IJnVaanel?nv-vfleld lr:avv(\e/h Il?\"vf/m\l/y i
dependence of the critical curreht. In particular in the s value a um 1s reevant. as snown, however,

) . . 9 . (see Ref. 9 and Appendix)Ahat Eq.(1) is valid in a much
YBCO junctiort with an area of 50m?, a zero resistance oo general sense, i.e., it describes thermal fluctuations of

state was achieved only below 50 K, although the%(x,y) so that a partition function at temperataré<T,)
YBa,Cu;0, layers were superconducting alreadyTats 85

K. More recent data on similar YBCO junctichs with
junction areas of 19-10* um? show a measurable only
at 20-60 K below T; of the superconducting layers. An g yalid.

even larger junctich of area~10° um? shows a well- Equation (2) implies a Berezinskii-Kosterlitz-Thouless-
defined gap structure in theV curve, while a critical current  type phase transitidf at a temperaturdl ;~7 so that at
is not observed. In the BSCCO junctfor supercurrent T>T, the phasep, is disordered, i.e., the cgs correlations
through the junction could not be observed above 30 K, aldecay as a power law, while @t<T; cosp, achieves long-
though the BjSr,CaCyOg layer remained superconducting range order. For the clean system, howeviess 7 is too
up toT,~80 K. close toT, for either separating bulk from junction fluctua-
These remarkable observations are significant both as bgons or for accounting for the experimental d&i.consis-
sic phenomena and for junction applications. In particulartent description of this transition, as shown in the present
these data raise the question of whether thermal fluctuationgork, can be achieved by allowing for disorder at the junc-
or disorder can significantly lower the ordering temperatureion, a disorder which reducés; considerably.
of two-dimensional2D) junctions. Equation(1) with disorder is related to Coulomb gas and
We note that for both YBCO and BSCCO junctions typi- surface roughening models which were studied by replica
cally \~0.2 um at low temperatures where the junctions and renormalization-groufRG) methods-**?>We find, how-
order, so that the junctions above are 2D in the sense thaljer, that the RG generates a nonlinear coupling between
disorder and spatial fluctuations on the scalexo€an be replicas and therefore standard replica symmetric RG meth-
important. The qualitative effect of these fluctuations de-ods are not sufficient. In fact, related systéité were
pends on the Josephson length (A;>\) which is the shown to be unstable towards replica symmetry breaking
width of a Josephson vortefsee Sec. )l For A\<L<\; (RSB
junction parameters are renormalized and becanuepen- In our system we find a competition between long-range
dent, while more significant renormalizations which corre-Josephson-type ordering and formation of a glass-type RSB
spond to 2D phase transitions occur in the regimecL. phase. The phase diagram has four phases a disordered
From magnetic-field dependeffcand L dependendeof |, phase, a Josephson phdse., ordered with finite renormal-
junctions with\ ;<<L can be realized. The studied junctions ized Josephson couplijiga glass phase, and a coexistence
are 2D also in the sense the thermal fluctuations at temperghase. The coexistence phase is unusual in that it has
ture T do not lead to uniform large phase fluctuations, i.e.,Josephson-type long-range order coexisting with a glass

2- [ Dosext-Fley¥ @

0163-1829/97/521)/1449914)/$10.00 55 14 499 © 1997 The American Physical Society



14 500 BARUCH HOROVITZ AND ANATOLY GOLUB 55

order parameter. This phase is distinguished from the usual v
ordered phase, presumably, by long relaxation phenomena
typical to glasse$®

In the disordered and glass phases fluctuations reduce the x N
critical current by a power of the junction area, while in the
Josephson and coexistence phases the fluctuation effect satu
rates when the (areHj is larger than either the Josephson
length (in the Josephson phaser larger than both the Jo-
sephson length and a glass correlation lerfgthihe coexist-
ence phase These predictions can serve to identify these --
phases. We show that a transition between the glass phase -
and the coexistence phase can occur well below the critical W, d W,
temperaturel ;. of the bulk, a result which may account for

the experimental data on trilayer junctiohs. FIG. 1. Geometry of the 2D Josephson junction. The various
In Sec. Il we define the model and study the pure case. IBomponents are superconducté®, insulating barrier(), normal

Sec. lll we study the system with random magnetic fieldsmetal(N) for the external leads, and vacuu). The dashed rect-

due to, e.g., quenched flux loops in the bulk and show thaéngle serves to derive boundary conditions in Appendix A 1.

the RG generates a coupling between different replicas. The

system with disorder is solved by the method of one-stepgvhich are introduced in Sec. JlIThus Eq.(3) is valid below

RSB (Refs. 13,16 in Sec. IV. Appendix A derives the free the fluctuation(or Ginzburg region aroundr.. (ii) It shows

energy of a 2D junction. In particular, Appendix A 2 allows that Eq.(3) is valid for all configurations ofp; and not just

for space-dependent external currents, a situation which, aRose which solve the mean-field equation.

far as we know, was not studied previously. Appendix B [t is instructive to consider the mean-field equation

extends the one-step solution of Sec. IV to the general hiersG,/s¢;=0, i.e.,

archical case, showing that they are equivalent.

SC

=
il
I
I
I
|

Esin = y2 Jrﬁ""X (5)
Il. THERMAL EFFECTS AL ARG P L
Appendixes A 1-A 4 derive the effective free energy of aThis equation can also be derived by equating the current
2D junction, in presence of an external currgfi(x,y), for  j,=(—clAm\?)A, at z=d/2 [given, e.g., in case | by
the geometry shown in Fig. 1. The presencg¥fx,y) dic-  Egs. (A18), (A23)] with the Josephson tunneling current
tates that the relevant thermodynamic function is a Gibbg ;= (27c/ ¢o) (E;/\?)sing;. Equation(5), however, is not
free energy, Eq(A10) which for the junction becomd&qgs.  on a level of conservation law or a boundary condition since
(A26),(A39)] configurations which do not satisfy E(p) are allowed in the
partition sum. More generally, E@5) is satisfied only after
; thermal average(sG;/d¢;)=0. An equivalent way of
g3{¢3}:f0{¢3}_(¢0/2”c)f dxdy FOGy) ea(xy), studying therm::ell< average>s is to add to E®) time-
3 dependent dissipative and random force terms. The time av-
L . , erage, whichincludes configurations which do not satisfy
whereF, is given by Eq(1). The cosine term is the Joseph- £4 (5 is by the ergodic hypothesis equivalent to the parti-
son tunneling valid for weak tunnelingE;<<7 and 7 is  (ion sum, i.e., a functional integral over; with the weight
found in two casefEgs.(A24),(A36)]: Case | of long super- ext —G,/T].

conducting banksV,,W,>X and case Il of short banks,  Equation(1) is the well-known 2D sine-Gordon syst&h

Wi, Wo<h, which for j*=0 exhibits a phase transition. Since the renor-
5 malization group(RG) proceeds by integrating out rapid
b0 case IW; ,W,>\ variations ing;, j*# 0 is not effective if it is slowly varying
42\ (e.g., asin case)l
T= #2 W W (4) RG integrates fluctuations ap; with wavelengths be-
2—02 % case [IW; ,\W,<<\. tween¢ and&+d¢, the initial scale being.. The parameters
7= MW+ AW, t=T/7 andu=E;/T are renormalized, to second order in
10
Note that in case Il the derivation allows for an asymmetricu’ via
junction with different penetration lengths ,A, and differ- du/u=2(1—t)dé&/
ent lengthsw, ,W. uu=2(1-tdels,
It is of interest to note thaf®* breaks the symmetry dt=22u2t3dél & (6)

o3— @3+ 2, i.e., the external current distinguishes between

different minima of the cosine term in E€L). For a uniform  where vy is of order 1(depending on the cutoff smoothing

j® the Gibbs term reduces to the previously known fdfm. procedurg¢ Equation (6) defines a phase transition at
Appendixes(A1)—(A4) present detailed derivation of Eq. 1t=1—yu. Note, however, that itself is temperature de-

(3). This derivation is essential for the following reasotiy: pendent since)\(T)z)\'(l—T/Tg)’1’2, where Tg is the

It shows that the fluctuations ap; decouple from phase mean-field temperature of the bulk. Thus the solution of

fluctuations in the bulk(excluding flux loops in the bulk 7(T)/T=1-yE;/T defines a transition temperaturg,
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which is belowT?. However,T; is too close toT? and is in  (including the area integratioris larger then temperature,
fact within the Ginzburg fluctuation region aroufd. To  i.e., interms ofl ¢, ¢ol /2c>T. This condition is consistent
see this, consider a complex order parameter] 4|exp(e)  With experimental datésee Sec. Y.
with a free energy of the form

Ill. DISORDER AND RG

]::f d*r[aly|?+blyl*+ag? v yl?]. There are various types of disorder in a large area junc-
tion. An obvious type are spatial variations in the Josephson
The Ginzburg criterion equates fluctuations whik=0,  couplingE;. A random distribution of; with zero mean is
i.e.,(8y?)~T/agd with | ¢|2(=|al/2b) in the ordered phase. equivalent to known systerlis™* and produces only a glass
Since |Vy|?~|y|3(Ve)? Eq. (Al4) identifies ag?|y|>  phase. The more general situation is to allow a finite mean of

= (¢o/27\)?%/87, so that the Ginzburg temperature is E;, and allow for another type of disorder, i.e., random cou-
. a2 ) pling to gradient terms. Since the magnetization of the junc-
T =ag®|y|“= &(pol2mN)*/8r. (7)  tion is proportional t8 V¢, we propose that the most inter-

] ) Ginz esting type of disorder are random magnetic fields. Such

Since{<\,W in both cases | and IIT™"™<T,. The ne-  fie|ds can arise from magnetic impurities, or more promi-
glect of flux-loop fluctuations, as assumed in Appendixesently from random flux loops in the bulk.

A3, A4 is therefore not justified af;. Thus the relevant A flux loop in the bulk with radius , has a magnetic field
range@irgf temperatures for the free energy EAS.(3) is  of order ¢py/27\2 in the vicinity of the loop. A straightfor-
T<T"<7, e, t<1. ) ward solution of London’'s equation shows that the field far

The RG Egs.(6) can, however, be used in the range fom the loop depends on the ratig/\. For large loops,
T<T, to study fluctuation effects in the ordered region. Ex-r0>)\, the field at distance>r, decays exponentially while
cluding a narrow interval nearT; where [7/T—1]  tor small loops ro<\, it decays slowly as t?
<yI_EJ IT<1 renormalization of can be neglected and intv_a- (A>r>z,r,, wherer is in the loop plane and is perpen-
grRatlon of Eq.(6) yields a renormalized Josephson couplingyicular to it or as 123 (\>z>1,1,). Thus, the local mag-
EF=E,(&/\)?17Y. Scaling stops at the Josephson lengthnetic field has contributions from all flux loops of sizes
Ny at which the coupling becomes strorig§~ /8 (the  r <\. If P(r,) is the probability of having a flux loop of
8w is chosen so that;=\} at T=0, where\§ is the con-  sizer, then the local average magnetic field is of order
ventional Josephson lengthThus \ ;=\ (7/87E ) 2(1-V1:
the T=0 value is\$=\(7/87E;)*2 The scaling process is ) o [
equivalent to replacingH;/\?){cosp;) by 7/87\?% so that Hs=~ | (dof2mh )J P(ro)dro
(cosp;)=(\Y/\,)? is the reduction factor due to fluctuations.

The free energy Eq$1),(3) with renormalized parameters ~ The last equality defines a measure of disorslevhich
yields a critical current by a mean-field equati@®e com- increases with the, integration, say as~\* with a«>0.
ment below Eq(10)]. The renormalized junction is either an The distribution of Hg is therefore of the form
effective point junction L<\;) with the current flowing exg —7H2\*4s¢3].
through the whole junction area, or a strongly coupled Consider a dimensionless random fieldj(x,y)
(Ey~7/8m) 2D junction where the current flows near the =\ \/8H(x,y)/4¢, so that its distribution is
edges of the junction with an effective area;. The mean-
field critical current®® are

2
=4sp3/m\t. (11

(12

exp{—)\ZE q2(x,y)/2s =ex;{—J g2(x,y)dx dy/2s
Xy

19, =(2mcl po) E5(LIN)?,  L<\;

0 _ 0
lca=C7Li2goh;,  L>Ay. ®) The coupling of magnetic fields to the Josephson phase is

The effect of fluctuations is to reduég so that the criti- g Egs.(A23),(A43) and for 7 of case I[Eq. (4)]
cal current is

le=12(L/IN) 72, L<);. 9 fsz—(r/ﬂ)fdxd;{ixv%(x,y)]-q(x,y). (13)
In the second casd,>\j, the fluctuations reduce the
current density by{cosp;) but enhance the effective area by

L . The fields in Eq(11) are in fact relevant only to case I. In
\3/\S=(cosp;)~ Y2 The critical current is then atl y

case Il image flux loops across the superconducting-normal
(SN) surface reduce the contribution of loops with<<W.
Thus Eq.(11) is valid with ther integration limited byW.
Thus even it<1 in Egs.(9),(10) a sufficiently smalE; can  Since nowr= ¢p3W/4w*\? [Eq. (4) for symmetric junctiof
lead to an observable reduction If. we defineq(x,y) = V8mA2H4(X,y)/4¢,W so that the cou-
Note that thermal fluctuations act to renormalizgwhich  pling Eg. (13) has the same form. The distribution of
then determines a critical current by the mean-field equatiomy(x,y) has the same form as in E¢L2) except that now
This neglects thermal fluctuations in whigh fluctuates uni-  s~\2. Since\ is T dependents is also T dependent, a
formly over the whole junction. These fluctuations can befeature which is relevant to the experimental daee Sec.
neglected when the coefficient of the cosine term in @y. V).

1= 10(47E;/r)VA1 >\, (10)
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s
We o Mo =5 =%~ a2 (16)
proceed to solve the random magnetic-field problem 8t 8t
by the replica methof We raise the partition sum to a
power n, leading to replicated Josephson phases,
a=1,...n. The factorq(x,y) in Eq. (13) is then integrated
with the weight Eq(12), leading to

(From here onT is absorbed in the definition of free ener-
gies, i.e.,. F— FIT).

We use Eq(15) to test for relevance of terms of the form
v(/)cos(zi/=177i<pai). These terms are generated from powers

2 of the X ,cosp,, interaction in the presence of disorderA
Z(”)~ex;{(372/1677T2)(§ V‘Pa) } (14 first-order RG is obtained by integrating a high momentum
field £, with momentum in the rangg '+d(¢ 1)<q
In this section we attempt to solve the system by RG<¢ 1. The Green’s function, averaged over these high mo-
methods'»'?We find, however, that RG generates nonlinearmentum terms in Eq(15), is
couplings between replicas which eventually lead to replica

symmetry breakingSec. IV). Thus the direct application of Ga,p(=({a(r)£4(0))
RG is not sufficient.
Consider first the Gaussian part =(M *1)%5[ d’gexp(—iq-r)/(2q)?
]_«Om:%J dxdy;ﬁ M, sV 0.V ep (15 = (MY, gdo(r/§)del2mé. 17)
' Defining ¢ ,= x.t {., RG to first order is obtained by inte-
with grating¢,,

/ / 1 / 2
2 (cog 2 meg | ) =2 cog 2 mixa, |exd 5| | 2 mid,
r =1 i=1 2 i=1
' / d 1
=2 cos(E MiXa, 1+2—§—Tel<0>——_2 mmszw)} (18)
r i=1 § 2 2|¢J

where ¥’ denotes summation on a unit cell larger by Note that thev term is also generated by disorder in the

1+2dé/¢ and Josephson coupling, corresponding to a distribution with a
mean value-u. If u=0 Eq.(21) reduces to the well studied
8ws | dé casé>!with a glass phase at low temperatures. We consider
G1(0)=G, 4(0)=| 87t + 1-ngt) 2mé’ here the more general casew# 0, which indeed leads to a
much more interesting phase diagram.
8ms  dé The initial values for RG flow arei=E;/T,v=0. Stan-
G2(0)=G,xp5(0)= Tonat 2—775 (19 dard RG method§ to second order im,v lead to the fol-
lowing set of differential equations:
The most relevant operators in E4.8) are whenZ; ., 7; 7;
is minimal, i.e.,=;%;=0 for even/ or Z;p=*1 folr ode du=[2u(1—t—s)—2y'yvt]d In¢,
/. Thus,

dv=[2v(1-2t)+(1/2)y'sW?—2y'tv?]d In¢,
dv=2v)(1-/1)d In¢, / even
dt=—2y?(t+s)t?u?d Iné,
dvV=20")(1-/t—s)d In¢, / odd. (20)

2\ _ 2: 2
Thus, as temperature is lowered, successiVé terms be- d(s/t)=16y"tv"d Ing, (22

come relevant at<1// (/ even and att<(1-s)// (" where y,y' are numbers of order tdepending on cutoff
odd. o _ , smoothing proceduye
We consider in more detail the=v(? term, the lowest- Note that anyu#0 generates an increase iy so that
order term which mixes different replica indices. The free, —g cannot be a fixed point. In contrast# 0 allows for a
energy of this model has the form u* =0 fixed point(ignoring for a moment the flow of),
1 u with u* =0, v* =(1-2t)/y't. This fixed point is stable in
f(m:J dxdyl =2 M, sV, Veos— —> CoSp, the (u,v) plane if t<1/2,s; however,s increases without
y 2;,/; BY Pa¥ Pp ng s bound. This indicates that the term is essential for the
behavior of the system.
v We do not explore Eq(22) in detail since it assumes
- co - 21 ] ) L .
\? 2,3 4¢a %)} @1 replica symmetry, i.e., the coefficient is common to all
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a,B. In the next section we show that the system favors to
break this symmetry, leading to a different type of ordering. S

IV. REPLICA SYMMETRY BREAKING

The possibility of replica symmetry breakif®SB) has
been studied extensively in the context of spin glaSsasd Glass Disorder
applied also to other systems. In particular, the free energy
Eqg. (21) with u=0 was studied in the context of flux-line ,
lattices and of arXY model in a random fiel>* In this .
section we use the method of one-step replica symmetry e
breakind®!¢for the Hamiltonian Eq(21); in Appendix B we Coexistence
present the full hierarchical solution, which for our system 7 Josephson
turns out to be equivalent to the one-step solution. ’

Consider the self-consistent harmonic approximatiom % 1 t
which one finds a harmonic trial Hamiltonian

o]
~

1 1 . FIG. 2. Phase diagram of a 2D junction in termsspthe spread
HO:E; azﬁ G (D earp(a), 23 i random magnetic fields artd which is proportional to tempera-
’ ture. The various phases, in terms of the Josephson araed the
such that the free energy glass orden\ are: (i) Disordered phase witha=A=0, (ii) Joseph-
son phase witte#0, A=0, (iii) coexistence with botlz#0, A
Fyar= f0+<H_HO>O (24) #0, and(iv) glass phase witz=0, A#0. The dashed line within

is minimized.H=F"/T is the interacting Hamiltonian, Eq. the coexistence phase is whexechanges sign.

(21), F, is the free energy corresponding tH, and . R
(...)ois a thermal average with the weight exi#(,). The wherel is the unit matrix,L is a matrix with all entries

interacting terms lead to =1,ie,L,p=1, ando is given by
f d?r(cosp,(r))o=exp(—A,/2) aaﬁ:exp(—gsaﬁ)—aaﬁ; exq—3B,,). (29
_ 2\ Note that the sum on each row vanishBgg, ;=0.
Aa Eq {leal@l®) Eq Gaa: Consider first briefly the replica symmetric solution. A

single parameters, defines o so that the constraint
2 =0 yields
jd2r<005(<0a—¢ﬁ)>o=exp(—Ba,B/2), Bap=YY

&:Uol:_ngoi. (29)

Ba,;;:Eq: (|ea(@)—eg(a)]?) Using L2=nL it is straightforward to find the inverse in Eq.
(27). In terms of an order paramﬂete# uoexp(—Aa/22), Eq.
_ (28) with n—0 yieldsog=(z/A.)"" whereA (~1/\°) is a
_zq: [Gaa®Cpp~Cup™Cpual: @9 cutoff in the g? integration so thaz<A, is assumed. The
definition of z yields
Therefore
z

t+s
—) exp(s—tvgog/z).

Z=Ug A
C

1 N N - A
Fear== 52 TING(a)+ (G (@) +Ma*)G(q)]

u 1 v 1 Fortvgog/z<1 a consistent<A. solution is possible at
- > expg — _Aa) - > exg —=B, B), t<l-s. (Indeedtvgog/z<1 sinceoy<1, except az—0,
NG 2 N a7 2" i.e., att—1—s.) Hence,[neglecting an exsf factor]
26
A 29 ZIA g~ (ug/Ag) A1), (30)
where the Trl&(q) term corresponds td, (up to an addi-

tive constant and the” sign denotes a matrix in replica '€ replica symmetric solution thus reproduces the first-
space. order RG solutiofEq. (20) with /'=1]. The order parameter

We define nowuo=_8mtu/\2, vy=167tv/\2 and using Z corresponds to A% of Eq. (20) where the Josephson length

Eq. (16) the minimum conditions %,/ 5G,, s=0 becomes A, iS the scale at which strong coupling is achieved,
v®(\;)~1, and RG stops.

-1 Consider now a one-step RSB solution of the fbth}

G(a) =8| [0+ upexp— A - 2o’ —voi|
(27) o=0oL+(o1—0g)C—[aon+m(ai—a)]l, (3D
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where C is a matrix with entries of 1 irmxm matrices
which touch along the diagonal and O otherwisels treated

as a variational parameter. The coefficient o fixed by the
constraint2 go, s=0.
Equation(31) corresponds to two order parameters,
z=Uugexp(—A,/2),
szo[o'on+m((71_0'0)]. (32)

The inverse matrix in EQ.(27) is obtained by using
L2=nL, CL=mL, andC?=mC. It has the form

é:[a<q>i+b<q>£+c<q>é]-1=a<q>i+ﬂ<q)£+y(qzséé)

and is solved by
a(q)=1/a(q),

B(q)=—b(q)[a(q)+mc(q)]*
X[a(q)+nb(q)+mc(q)] 1,

y@)={-a Yo +[a(@)+mca)] }/m. (34

Identifying a(q),b(q),c(q) from Egs.(27),(31) we obtain
(aftern—0)

a=>, a(q)=2t In[A /(z+A)],
q
B=2, B(qQ)=2s In(A./2)+ (2/2)tvgog— 25,
q

‘yE% y(@)=—(2t/m) In[z/(z+A)]. (35)

The definitions ofs andz identifies the parameters
o1=exp—a),
go=exp—a—vy),
z=Upexd — (a+ B+ v)/2]. (36

These equations determine the order parameteds in
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Performing the trace and expressidg,dy in terms of
dz,dA [from Eg. (35] we obtain for the free energy per
replica, f=F"/n,

f 1 A Z dz z
d 3= 1—E d(Z+ )+ E—Uoo'o Y—Z_tdﬁ
(38)
Integrating ofs(z,A’)/9A" from O to A, and then
df4(z',0)/9z" from 0 toz adds up to
8m[f3(z,A)—13(0,0)]
=(1-1/m)A—veexd —a(z,A)—y(z,A)]
+(1+s/t)z (39

Theu andv terms in Eq.(26) lead, by using Eq(25), to
~exgd—(a+B+7)] and to ~2,0, ,=[01— (01— 0g)M],
respectively. Finally, we have

87f(z,A)=87f(0,00+(1—1/m)A+(1+s/t)z
e Vo _
—vo(l—m/2t)e ¢ 7+z(1—m)e «

_ %ef[a+ﬁ+y]/2 (40)

wherea, B, y are functions oz andA from Eq.(35). Since
Egs. (36) are already minimum conditions, it must be
checked thavf/dz=df/dA=0 reproduces these equations
so thatm in Eq. (40) can be taken as an independent varia-
tional parameter. The latter statement is indeed correct and
af/lom=0 leads to the relation

B 2tA+2tzIn[z/(z+A)]
M= A+ 2togogin[2(z+ A)]

(41)

Rewriting Eq. (36) with Eg. (35), we have the following
relations:

terms ofm and the parameters of the Hamiltonian. The value

of m must be determined by minimizing the free energy

Fuar- [However, in the hierarchical scheme with(m) as
functionof m, the variation with respect tG, ; is sufficient
to determine the position of a step x(m), see Appendix
B].

z s+t/m 74+ A t(1—1/m)
z= uoes<A—C) A e oo’z (42
z+A 2t Z 2t/m
szom( A, ) [ |73 A ) (43
7+ A 2t Z 2t/m
7=\, ) \Z7a 49

The solutions foz andA of Egs.(41)—(44) determine the

) . ) _ . phase diagram. Consider first the Josephson ordered phase
Conadey first the Gaussian terifig, |.e.,.the tracetermin 7 0A=0. Expectingoo<1 an expansion of Eq41) in
Eq. (26). Since this term contains the uninteresting vacuuMyowers of A/z yields m~tA/z so thatoy~e?(Z/Ao)% is
energy ¢=A=0) itis useful to find the differential 73 and  ingeed small. The solution farwhenA—0 is equivalent to
then integrate. Using E¢33) for dG(q) we have the replica symmetric case, Eq80) and is possible for
t<l-—o.
_ 1 A1 ~ o Consider next an RSB solutior=0,A #0. Equation(41)
dFs=- 5% THIG (@)~ Ma] yields m= 2t and Eq.(43) leads to )

x[Tda(q)+Lda(q)+Cdy()]}. (3D AlA=(2tvg/ A Y2, (45)
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TABLE I. Correlations in junctions of size; c(L) determined . via Egs.(50), (51).

Phase G.,.(9) o(L); L<Nj\g c(L); L>min(A\j,\g)
Disorder 8m(t+s) L —4(t+9)

q A
Josephson 8m(t+s) 8wsz (I__)‘“”S) (E>4(t+s)

’+z  (q7+2)? N N
Glass 4m(1+2s) 4m(2t—1) ( E)“Ws) ( L| 2129 g 22D
q2 * q2+ A A A A
Coexistence 47(2t—1) 4m(1+2s) (I—_)‘WS) (min(l—,)\'e))_Z(Zt_l>(min(L,>\J))2<1+2s>
q2+Z+A Y q2+z A )\_ —)\
47z
(a°+2)°

Thus a glass-type phase is possibletfarl/2. [Curiously, a and the system size appears as a low momentum cutoff.
similar result is obtained for the term in first-order RG, Using G, ,(9)=«a(q)+ B(q)+ v(q), the various correla-
/=2 in Eq.(20), however,GC,,,fl/q4 atg—0, while here tions are summarized in Table I. The ordered phases have
Ga.a~ 10?]. finite correlation lengths defined ag=z"?for the Joseph-

Finally consider a coexistence phase, where lmotih son length\g=A "2 for the glass correlation length and
#0. It is remarkable that= 2t is an exact solution even in \;=(z+A) Y2 in the coexistence phase. It is curious to
this case, as can be checked by substitution in Eqsiote that in the coexistence phas6&,, has a

(41),(43),(44). The resulting solutions are (2t—1)/(g?>+z+A) term. Sincez+ A— 0 much faster than
U1-21) 2t—1—0 at the boundary=1/2, this leads to an apparent
ﬂ:( tﬂ) divergence ofAg; however,¢.. is finite att—1/2 and the
A A ' transition is of first order.

The phases witle=0 have power-law correlations; for
z w2 |\ Y2 L—w, c(r)~r % % in the disordered phase, while
2t oA, (46) c(r)~r~27%in the glass phase. The glass phase leads to
stronger decrease ofr) then what would have bearfr) in

This coexistence phase is therefore possiblé<at/2 and a disordered phase at<1/2; a prefactor X;/\)?(1~2)
$<1/2, as shown in the phase diagram, Fig. 2. It is interestsomewhat compensates for this reduction.
ing to note thatA=0 on some line within the coexistence  The phases witlz# 0 have long-range order. Note in par-
phase, i.e.,A changes sign continuously across this line.ticular the z/(q*+2)? terms inG, ,; these terms do not
Whenuy~wv, this line iss=t, as shown by the dashed line in arise in RG since they are of higher orderzrand are of
Fig. 2. This line is not a phase transition as far as the correinterest away from the transition line. Note that in the Jo-
lation c(r) [Eq. (47) below] or the critical currents are con- sephson phase,~ug is assumed, so thaty,<z; other-
cerned. We expect, however, that the slow relaxation phewise the coefficient of *+z) 2 is modified.
nomena, associated with the glass order, will disappear on The correlationc(L) measures the fluctuation effect on
this line. (cospy) in a finite junction, i.e.,(cosp;)~+c(L), which is

The boundarys=1/2 of the coexistence phase is a con-therefore related to the Josephson critical curignt The
tinuous transition withz—0 at the boundary. On the other results forc(L) are summarized in Table I. Consider first a
hand, the boundary at=1/2 is a discontinuous transition, junction with L<\; (which is always the case in the=0
z+A—0 from the left, whileA=0,z#0 on the right, i.e., phases The current flows through the whole junction and

both A andz are discontinuous. the system is equivalent to a point junction with an effective
To identify the various phases we consider the correlatiorGibbs free energy,
function

GS"=Ey(L/N)2Ve(L)cosp,— (¢ol2mC) ¥g;.  (49)

Here we assuméas at the end of Sec.)lthat point junction
fluctuations can be ignored, i.ebyl /2c>T and the critical
where current of Eq(49) can be deduced by its mean-field equation
(see Sec. V for actual dataThus, the mean-field valui,

b= f\mq dq(1=3o(qr)]1G, (q)/2m (48) [Eq. (8)] is reduced by the fluctuation factor, leading to a
=) o ' critical current

c(r) =(Cosp,(r)cosp,(0)) =[exp(— ¢ ) +exp— ¢7)](2f27,)
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le=12Vc(L), L<);. (50)  cal behavior of (s) near this transition depends on the ratio

L/\;; not too close tes= 3 whereL >\ ; we have from Eq.

For L<\j,\g the parameterd andz are no longer related (46),(51) Inl.~1/(1—2s) while closer tes= 3 the divergence

to \j or to Ag; instead they ard. dependen{Eq. (35) of \; implies L<\; with .~ (L/\)Y"25. The junction or-

should be reevaluated leading to power lawd ¢f In par-  dering temperaturé&; corresponds te(T;) = 3 so that either

ticular z affectsc(L) via the @>+2) 2 terms by either a Inlg~—(T,—T)~" (not too close tdT;) or Inlc~(T;—T)InL/X

factor exp2szL)L?] (in the Josephson phaseor closetoT;. )

exz(L)L?] (in the coexistence phaseilthough of unusual We reconsider now the experimental dafawhere the

form, these factors are neglected in Table | simté<1. Jjunctions order at temperatures well below the of the

The dominant dependence in a small area junctionbUIk' In our scheme, this can correspond to a transition be-

L<X\;\g (for all phases is a power-law decrease of fween the glass phase and the coexistence phase, a transition

o(L) Jlie;ding to] 22t 25 which may occur even at low temperatutesl provideds

For systems withL >\ 3, the current flows in an area dec:jeases with tem&er{;\ture. Asldlscusszefd In hSecs_ -
T : > ends on a power of, in particulars~\< for short junc-

:_O)\J[Eear(st)h]eisdr?azsuc(g dthfowngt'og‘ fZQ;RT/G;\an f"j’ls?nvalu ions, the experimentally relevant case. Thuglecreases

c2 LEQ- y o I g with temperature sinck is temperature dependent. We pro-

(cospp=yc(L) and z=ug(cosp)=1/\; we obtain oee then that junctions with random magnetic filakss-

Ny=AJc V(L) with \§=\(7/8mE;)"? as in Sec. Il. The ing, e.g., from quenched flux loops in the butkay order at

critical current is then temperatures well below, of the bulk.
0 4 From critical currents? at 4.2 K 1,~150-400 uA we
le=lcz Ve(L), L>A;. (1)  inferEy;~1—4 K and\$~2-4 um, the latter is somewhat

below the junction sizek~5—-50 um. For the more recent
data on YBCO junction’s® with | ,~0.4—6 mA we obtain

\)<L and Eq. (51) applies. In fact, magnetic-field
dependende and 1.~L dependence show directly that

cw<L is feasible.

We note also that mean-field treatment of the effective
free energy Eq(49) is valid since thermal fluctuations of the
effective point junction are wealas assumed in Secs. Il and
IV), i.e., ¢gl J2c>T. E.g., at 80 K¢yl /2c=T corresponds
to I;~1uA, while the mean fieldl. at the temperatures
wherel . disappears, i.e., at 040.8T., should be compa-
rable to its low-temperature valules of 1,=0.1-6 mA.
Thus ¢yl /2c>T and point-junction-type fluctuations can be
neglected.

Other interpretations of the data assume that the compo-
V. DISCUSSION sition of the barrier material is affected by the superconduct-
ing material and becomes a métaN or even a

We have derived the effective free energy for a 2D Jo qUCHEIS’ . ion th h | h
sephson junctiofAppendix A) and studied it in the presence supercon uctdrS'. In an SNS junction the coherence lengt

of random magnetic fields. We show that a coupling betweel! the metal is temperature dependent and affectavhile
replicas of the form cog(,—¢) is essential for describing the onset of an SS'S junction obviously aﬁe(tlt,g‘_ Note,
the system. This coupling is generated by RG from the JoloWever, that the SNS interpretation withdr —T-is con-
sephson term in presence of the random fields, or also frorsistent with theT dependence but leads to an inconsistent

disorder in the Josephson coupling, a disorder whose finit¥&/ue¢ of the — coherence Ieng"_ih.ln our scheme,
mean isE, . Inle~(T,—T)InL/\ is consistent with the dataof the

2 . . . .
We find the phase diagram, Fig. 2, with four distinct 100X100 um® junction showing a cusp i (T) near
phases defined in terms of a Josephson ordezingcosp,) T;~25 K. Further exper|mentql data, and in parupular the
and a glass order parameter At high temperatures thermal L dependence df;, can determine the appropriate interpre-

fluctuations dominate and the system is disorderedt@tion of the data. o _
z=A=0. Lowering temperature at weak disorderx(}) al- The increasing research on large area junctions is moti-

lows formation of a Josephson phage:0,A=0. Further vated by deyice applicgtions. The desilgn of these.junptions
decrease of temperature leads by a first-order transition to $10uld consider the various types of disorder studied in the
coexistence phase where bath\ #0. The Josephson and Présent work. Furthermore, we believe that disordered large
coexistence phases have similar diagonal correlatispe ~ 2r€@ junctions deserve to be studied since they exhibit glass
Table ). The main distinction between these phases is thef€nomena. In particular the coexistence phase with both
the slow relaxation times typical of glasses. Finally, at strond®Ng-range order and glass order is an unusual type of glass.

disorder and low temperatures the glass phase witld,
A+#0 corresponds to destruction of the Josephson long-range
order by the quenched disorder. We thank S. E. Korshunov for valuable and stimulating

Our main result, relevant to experimental data withdiscussions. This research was supported by a grant from the
t<1, is the coexistence to glass transitiorsat;. The criti-  Israel Science Foundation.

The relevant range of temperaturés r (see Sec. )| for
typical junction parameters, is most of the ralge T, ex-
cluding only T very close toT.. Thust<1 and our main
interest is the coexistence to glass transitiorsat;. This
transition can be induced by a temperature change sin
s=s(T) (see Sec. I). Thus we considet<s for which
z<A and\;>\g~=\§. When the transition at=3 is ap-
proached\ ; diverges and for a giveh the system crosses
into the regime\ g<L <<\ (which includes the glass phase
where c(L)~ (L/N) "*S(Ag/L)? and I~ (L/\)1"25. Since
L>\ we predict a sharp decreaselgfat some temperature
T, for whichs(T ;) = 3; this is the finite-size equivalent of the
L— o phase transition.
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APPENDIX A: FREE ENERGY OF A 2D 2. Gibbs free energy

JOSEPHSON JUNCTION In the presence of a given external currgfit passing

In this Appendix we derive the effective free energy of athrough the junction we separate the system into the sample
large area Josephson junction. In Appendix A 1 boundaryvith relevant fluctuationge.g., superconductors with barnier
conditions and the Josephson phase are defined. In Append#ad an external environment in whigfi is given. Thermo-

A 2 the Gibbs free energy in presence of an external currerlynamic quantities are then given by a Gibbs free energy
is derived. In Appendixes A 3, A 4 the Gibbs free energy isG(H) whereH is the field outside the sample which deter-
derived explicitly for superconductors in the Meissner stateminesj®*. The situation which is usually studied is such that
i.e., no flux lines in the bulk; Appendix A 3 considers long j® does not flow through the sampleso that it is uniquely
junctions, i.e. W=\ (see Fig. ], while Appendix A 4 con- defined everywhere. We need to generalize this situation to
siders short onedV<\. Finally, in Appendix A5 the free the case in which® flows through the sample, a generaliza-
energy in presence dfjuenchedl flux loops in the bulk is tion which to our knowledge has not been developed previ-
derived. ously.

In standard electrodynamié$,in addition to the space-
and time-dependent electric and magnetic fieldsaind H,

) ) o respectively, one defines a free currg¢nt a displacement

The barrier between the superconduct@eion | in Fig.  field D and an induction fiel® such that
1) is defined by allowing currentg,(x,y) in the z direction
so that Maxwell's relation for the vector potential(x,y,z) VXH=(4x/c)j;+ (1lc)oDlét,
is

1. Boundary conditions

V XE=—(1/c)dBlat, (A7)

VXVXA=(4mlc)j.2, (A1) and only outside the samplz=E, B=H, andj;=j®. When

the various electrodynamic fields change by a small amount,
the change in the sample’s energy is the Poynting vector
integrated over the sample surfaBe(with normal ds) in
time dt

whereZz is a unit vector in the direction. There is no addi-
tional relation betweer, and A (e.g., as in superconduct-
ors). This allowsj, to be a fluctuating variable in thermody-
namic averages.

Equation(Al) implies that the magnetic field in the bar- c
rier H(X,y)=V XA is z independent andiH,=0; thus the —dt4—f ExXH ds=f
currentsj,, j,=0 as required. /s v

Considering the superconductors in Fig. 1 we denote all
2D fields(i.e., x, y componentsat the right and left junction + E~jfdt}dv, (A8)
surfaces (i.e., z==*=d/2) with indices 1,2, respectively.

Boundary conditions are derivBtiby integrating VXA  where integration is changed from the surf&#o the en-
around the dashed rectangle in Fig. 1, which singe0, closed volumeV by Eq. (A7). When j* does not flow

1HdB+1EdD
arH 0BT E

yields continuity of the parallel magnetic fields through the samplej;=0 and neglect ofD (for low-
frequency phenomehdeads to the usual energy chahye
Hi(X,y)=Ha(X,y). (A2)  dE=[H- dB/4m.

. . The general situation is described by keeping the surface
IntegratingA along the same rectangle yields for the vec’[orintegral in Eq.(A8) and in terms of the vector potential
potentials on the junction surfaces i '

whereE= —(1/c)dAdt,

di2
Arx—Aaxt f PRl Ix)dz=dH,, (A3) dE= f dAXH dg/4. (A9)
s
and a similar relation interchangingandy. Introducing the  Thys the surface values &f andH (parallel to the surfage
phasesg;(r), i=1,2 for the two superconductors and a determine the energy exchand& and there is no need to
gauge-invariant vector potential specify anH or aj; inside the sample, where in fact they are
not uniquely determined.
Al (N)=Ai(r)— (¢ol2m)V ¢i(r) (A4) Since H (on the surfaceis determined by [via Eq.

(A7) outside the samplewe define a Gibbs free energy

yields for A{ (x,y) on the junction surfaces G(H) by a Legendre transform

AL(X,Y)—ALX,Y)=dH(X,y) X 2— (do/2m)V 05(X,Y),
1(%,Y) = Ax(X,y) (x,y) (ol27)V @ yzAS) g(H):]:_(lmﬂ-)foH ds. (A10)
S
where¢,(x,y) is the Josephson phase, A is determined now by a minimum conditiobG/ SA=0
o which indeed reproduces EGA9).
_ _ _ We apply now Eq(A10) to the Josephson-junction sys-
] - ’ ’ 2 / A d . . . . .
ealxy)=eu(xY) = @xlxy) = (27l o) f—d/z 4 tem. We assume a time-independent currgfit ie.,

(A6)  VXH=(4m/c)j* outside the sample and that the same cur-
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rentj® flows through both superconductor-norn@N) sur-

faces(e.g., the superconductors close into a loop or that the

current source is symmetjicdConsider now the surfac® of

BARUCH HOROVITZ AND ANATOLY GOLUB

Z=J DAg(rS)J DA"(r)exd — FA"(r),AL(ro HT].
(A15)

superconductor 1, which includes the superconductor-normal

(SN) surface and the superconductor-vacu(8WV) surface.
The boundary of5; is a loopJ which encircles the junction
surface, oriented with normatz. In terms of the gauge-
invariant vectorA’ = A—(¢o/2m)V ¢4, assuming ** is time
independentgE/dt=0 and using

Vo xH=VX(@;H)—(4m/c) @™

we obtain

J AXH d5=@ éJQDlHdl_(4’7T/C)J' (Pljex'ds
$1

2

+f A’ XH-ds. (A11)
Sy

The j**-ds term for both superconductors involves the .
difference ¢, — ¢, of the phases on the two SN surfaces.] =

This differencé’ is related to the chemical potential differ-

ence in the external circuit so that the corresponding term i

¢; independent.
Consider next the insulator-vacuu(tV) surface. Since
H,=0 in the insulator only thé\,H, or A,H, terms contrib-

ute with
dr2
f AXH ds=— §;JH-dIJ A dz
v —d/2

Combining Eq.(A11), the similar term for superconductor 2
and Eq.(A12), (ignoring ¢; independent termsve obtain,

(A12)

1 bo
Hy=F-—— A’><H~ds——zé H-dl.
GH) A Jsv+sn gn? J ¥

(A13)

3. Long superconductors

We shift now the integration field frorA” to 6A" where
A"=A"+SA" andA’ is the solution oféF/SA’'=0, i.e.,
VXVXA'=—A"/\? (A16)

with A’=A/ at the boundaries; thu$A’ (rs) =0. SinceF is
GaussianF(A’'+5A")=F(A")+F(5A") and the integra-
tion on SA’ is a constant independent Af(r). Thus

Z~f DAL(rg)exd — F{A'(r)}HT],

where
f{A'}zif d3r i(A'2+V><A’)2 (A17)
8w A2 )

Note that Eg. (A16) implies V-A'=0 and therefore
V2A’=A’/\%2. Note also that the currents obey
j=—(clAm\?)A".

We are interested in boundary fields at the barrier which

are 2D vectors, e.g.,

A1) =[AL(X,Y), AL (X,)].

The effect of these fields decays on a scaleso that for
z>N, A’~Zj®(x,y) also obeys London’s equation
A\2V2j®= (e Thereforej®* is confined to a layer of thick-
nessk near the SV surface. The solution foed/2 has the
form

[AL(r),Ay(N]=A1(x,y)exd — (z—d/2)/\],

AL(r)=\VAL(x,y)exd —(z—d/2)/N]—(4m\2c)|®(x,y).
(A18)

This ansatz is a solution of London’s equatiohl6) pro-
vided thatA(x,y) is slowly varying on the scale of. The
corresponding magnetic fields are

(VXA)=(UN)A,~ (4m\%[C)dyj ¥+ O(V?AY),

We derive here an explicit free energy, in terms of the

Josephson phase, for the ca¥&-\,\, (see Fig. 1, where

\; (i=1,2) are the London penetration lengths of the two
current

superconductors, respectively. The
i®(x,y) is parallel to thez axis.

Consider the free enerf}of superconductor {suppress-
ing the subscript 1 for now

incoming

1 2

F d3r

87 =2

1o
F(EVQD—A

+(V><A)2}.
(Al14)

(VXA)y=—(1N)A;—(4m\?/C) 34+ O(V?A]).

(A19)

Since eventuallyA;~V ¢, [Eq. (A23) below] we evaluate
F by neglecting terms with derivatives 8f; . Some care is,
however, needed in evaluating cross terms Withwhich is
not slowly varying. ThusfA,2(r) from Eq.(A18) involves

f j&V-Aldx dy=—f Al-Vj®dx dy,

which cannot be neglected. Note that the line integral on the

The superconductor is assumed to have no flux lines, i.eSV surface vanishes since on this surface the perpendicular

¢(r) is nonsingular. The vectoA”"=A—(¢o/2m)V ¢ has
then three independent componefri® gauge condition on
A”) andV X A”=V XA. The partition function involves in-
tegration on all vectorsA” and on its boundary values
Al(rs) on the boundary of the superconductor,

component ofA; is zero, i.e., no currents flowing into
vacuum. TheD(V?A]) terms in Eq.(A19) can be neglected
since their product withi®* cannot be partially integrated
without SV line integrals.

The cross terms from squaring E48.18),(A19) involve
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f [[®V-Al+Al Vj™]dx dyzf V- (j¥A)dx dy=0

For superconductor 2 with<<—d/2 the solution has the
form of Eq. (A18) with Aj(x,y) replacingA;(x,y), the z
dependence has dxXp+d/2)/x,] and —V-A, replaces
V-A] in the equation forA,. For both superconductors
(i=1,2), afterz integration, we obtain

fizf dx dyA!2(x,y)/8m\;+O(dA!)2.  (A20)

Next we use the boundary conditions E¢A2), (A5) to
relateA;r to ¢;. Equations(A2), (A19) yield

AN — (ATN2[C) V= — AL\, — (4mA3c) VS

+0O(dA/)?, (A21)

while Eq. (A5) yields

Aj—AL=d[ — AN+ (4mN2C) V]~ (ho/2m)V 0.
(A22)

Since Vj** is not slowly varying, the ansatz EGA18) is
consistenti.e.,A{ are slowly varying only if the junction is
symmetric,j 7(x,y) =j5(x,y), A\=N1=\, and that the limit
d/N—0 is taken. Thus,

Aj=—Ap=—(doldm)?V ;. (A23)

The magnetic energy in the barrier is neglected since it in-

volvesd/\. The total free energy, from Eq&A20),(A23) is
then

1 bo 2 2

If j¥*=0, Eqgs.(A20),(A23) are valid also for nonsymmetric
junctions andF has the form(A24) with 2\ replaced by
N+ N,+d.

We proceed to find the Gibbs terms in E&13). Since
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, _ 240 o d’oé>
LVA XH«ds—TJ ©3j ¥dx dy—ﬂ J<pJH-dI.

Finally we obtain,

1
g= fd d>{4 A(d’(’) (Vey?—
(A26)

Adding the Josephson tunneling teracosp; leads to Egs.

D).Q).

¢>o }
Py <PJJ

4. Short superconductors

Consider superconductors with lengil,; ,Wy<<\q X\,
(see Fig. L The expt2z/\,) in Eqg. (A18) can be expanded to
terms linear inz. Since now both expf{z/\,) are allowed at
z>0, there are two slowly varying surface fields, H,,

[ALAT=AL(X,Y)+ZH(X,y) X2+ 0O(Z?),

Al=A],—zV-A;+0(Z%), (A27)
and the magnetic field is
H=Hy(x,y)— (Z\2)Aj(X,y) X 2+ O(Z?,0A,1).
(A28)

The x,y components ofH=HS$*
boundary conditions,

at z=W, define the

Hax— (Wi /NDAL,=HS,

Hay+ (Wi /NDAL=HT), (A29)
and similarlyH$* at z= —W,.

Haxt (Wo/A3) AL =HE,

Hay— (W, /N5 A =H3) (A30)

Equations (A29),(A30) and the boundary conditions
(A2),(A5) at the junction determine all the fields' ,H; in

Eqg. (A19) and the constraint of no current flowing into the grms ofH™ and¢;, e.g.,

vacuum,A’ X z-dl=0 yield Hgy= — (4m\?/c)Vj®xz on
the SV surface, the loop integral becomes

jggoJH.d|=(4m\2/c) fﬁ<pJVjeX-d|><i. (A25)
J J

For the SV surface integration we use agHig, so that for
superconductor 1,

f A’><H-ds=—(47r)\4/c)f AlVj®.ds
SV SV

:(477)\2/C)f A}-Vj®dxdy

+O(V?A], @, independent terms

whereV . dsis replaced by ?j®dxdydzasj® has domi-
nantx,y dependence. Using E¢A23) and adding terms for
both superconductors leads to

N
X NEW,+ NSW, + AW, W,

X [(N5+W,0)H s = NSHSS — Wo( dol27) dyeps],

_)\g
N2W,+ N5W; +d W, W,

o
AZX_

XN+ Wi d)HS = NEH T — Wi ( pol27) dxe;],

NSW3H S+ N W,H S+ Wy Wol dho/27) an;J
N2W,+ N 2W; + d W, W,

1y~—
(A31)

The boundary field$1i™ need to be slowly varyingof order
Veo;) so that Eg.(A31) is slowly varying; thusH,,
A;,~ V2, can be neglected.

The free energyAl7), to leading order inN, /\; is
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f1=(wl/8m\§)J Ai%(x,y)dx dy

+O[(W1/N1)3(V @)%, (W1 /N1)2V @5- HT.
(A32)

Ignoring ¢; independent terms,
f1+f2=l%‘;2f dx dy

(Vey)? (A33)

%o W3(Wak 1) 2+ W,o(Wik )2
27 (N2W,+ N 5W; +d Wy W,)2

. NW,HSS + NSW;HS)
(NTW,+ NSW, + d W, W) 2

Iyt (Xe=y) (.
(A34)

The free energy in the barrier

flz(dlsw)f dx dyH3(x,y) (A35)

precisely cancels the terms linearVip; in Eq. (A34) so that

218

:8775

W1iW,

) O e

(A36)
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5. Junctions with bulk flux loops

Consider a junction with flux loops in the bulk of the
superconductors. These loops induce magnetic fields which
couple tog;. To derive this coupling we decompose the
superconducting phase into singuley and nonsingulatp,g
parts, i.e.,

VXV (pst @ =VXVep,#0.

We define a three-component vectdt=A— (¢o/27)V @pg
so that the free energy EGA14) is

2
F=

+(V><A")2]
(A40)

1 1/ ¢g
_ 3 Y N
87de r{F(Zﬂ'V(PS A

We shift the integration fieldA” by A"— A"+ SA” (as in
Appendix A 3 whereA"=0 at the boundaries andl” sat-
isfies SF/ A" =0, i.e.,

VXV XA"=[(¢pol2m)V os— A"]IN2. (A41)
SinceF is Gaussian iA”, the integration ordA” decouples
from that of ¢ and the boundary values. Define now

"=A'+ A, whereA; is a specific solution of EA41) and
A’ is the general solution of the homogeneous part of Eq.
(A41), VXV XA’'=—A’/\? which depends on boundary
conditions, i.e., onp;.
Substituting Eq(A41) for A in Eq. (A40) yields

Considering next the Gibbs term, the SV surface involves

A, or H, which are neglected. The SN surface involves

A’ (z=W;)=A;+O0(Wide;), hence

2 ex 2 ex
TWoH T+ NOW, HEY

NEW, + A 5W,

A'XH-dSZﬂf dx d 2
41 SN 8’772 Y

Xdypy—(Xemy)+ -

d’of ox
iy dx dyj~e;

%o

%J(PJHdI“F,

where higher-order terms iW,/\; and ¢; independent
terms are ignored, and the fact thtl is z independent on
the SV surface is use(his arises from zero current into the
vacuum and neglectingl,). The currentj®* is defined here
as an average of the currents on both siggs; (VX H),
(which locally may diffey, i.e.,

Cox_ NEW,j T4 NS Wij 5"
N2W,+ A5W,

(A38)
The Gibbs free energy is finally,

G- F—(gof2m0) [ dx dyFixyies(ny) (439

with F given by Eq.(A36).

F= if d’r i(>\2v><v><A —A")?
8 A2 S

+(V><A’+V><AS)2} (A42)

In the absence of flux loop¥ X A;=0 and Eq.(A42) re-
duces to the previous(A') as in Eqg.(Al7). The terms
which depend only o\ represent energies of flux loops in
the bulk and affect the thermodynamics of the bulk super-
conductors. Here we are interested in temperatures well be-
low T, of the bulk so that fluctuations of these flux loops are
very slow and are then sources of frozen magnetic fields. The
thermodynamic average is done only on the boundary fields
which determineA’, and are coupled té\s by the cross
terms in Eq.(A42),

]-'S=(1/87T)f d3r[—2A" - VXV XA +2VXA’"-VXA]]

:(1/4W)f (A’XVXA)-ds. (A43)
S

The surface values &’ are determined by;. The SV
surface involvesz integration of VXA with either
exp(xz/\), Eq. (A18), or a linear function, Eq(A27). In
either case the randomness¥Wnx Ag causes this integral to
vanish. The relevant surface in EQA43) is therefore the
junction surface.
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APPENDIX B: HIERARCHICAL REPLICA
SYMMETRY BREAKING

To find the invers8=A"! we solve forc=1, c(u)=0
and find

In this appendix we examine the full replica-symmetry-
breaking formalism(RSB) and show that it reduces to the — 1 fl dv

one-step symmetry-breaking solution, as studied in Sec. Iv.p—b(u)
The method of RSB is basEt®on a representation of hier-
archical matrice®\,,, in replica space in terms of their diag-

onal @ and a one-parameter functioa(u), i.e., Ay

—[a,a(u)]. In our caseh,, is related to the inverse Green'’s
function G_;> which was obtained by Gaussian variational

method(GVM).

T uE—(a)-[ajw] JuoEa—(a)-[a](v)]’
(B5)

To derive this representation, consider the hierarchical

form of a matrixA,

k
A:ZO ai(éi_éi+l)+5i. (Bl)

HereC; is nx n matrix whose nonzero elements are blocks
of size m;Xm; along the diagonal; each matrix element

.6:~ 1 l_J'l 2~dv[a](v) _~a(0) ,
a—(a) ovfa—(a)—[al(v)] a—(a)
B6)
[a](u)zua(u)—foudva(v). (B7)

The inverse Green'’s function is from EQ7)

Oan(z+ qz) ~U00ab™ qZS/t]1 (B8)

L1
476 M@= 5[

within the blocks is equal to one; the last matrix equals the

unit matrixC,.,;=1. The matrice<; satisfy relations which  hich for &—[&,o(u)] parametrizes a8, a,(u)] with
are useful for finding the representation of the product of

matricesAB . Since the hierarchy is fom,/m; . integers,
we have

k
éi:;i (C=Cjap+,

>

A m;

C|CJ = ~ i .
iji , 1=l

The matrix product with a matri,

k
B:ZO bi(Ci—Ciyq) +Di (B2

is found to be

k
Aé:jzo (éj—é]—Jrl)L:JZl (aibj+ajbi)dmi—ajb,-m,-+1

k

2 aibidmi+56
i=0

+1i , (B3)

j
+E aibidmi
i=0
wheredmy=m;—m;, . ;.

In the limit n—0 m; becomes a continuum variahlein
the range 8<u<1 anda; becomes a functioa(u); thus the

matrix A is represented bya,a(u)]. The product of two
matrices, using EqB3), becomesAB—[¢,c(u)] where

T=3b—(ab),
c(u)=(a—(a))b(u)+(b—(b))a(u)
—Jou[a(m—a(v)][b(u)—b(v)]dv, (B4)

and(a)= fJa(u)du.

~ 1 ~
aq=i[q2(1—5/t)+2—1)00']1

1
aq(u)=—z[qzs/t+voa(u)]. (B9)

Since the sum on each row of vanishe§Eq. (28)] we
obtaino = (o). Therefore the denominator under the integra-
tion in Egs.(B5),(B6) assumes the form

~ 1
ag—(ag) —[a4l(uw)= Z_t[q2+ z+A(w)], (B10

where the order parameteA(u) is defined by A(u)
=vo[o](u). From Eq.(B5) the representation of the Green’s
function takes the form (#)G,,—[bg,bg(u)] with

by—bg(u)=2t

1 1 dv
u[g?+z+A(u)] fu v[Q?+z+A(v)]|
(Bi1)

The GVM equation for o(u) is from Eqg. (28
o(u)=exd —B(u)], where from Eq(25)

d?q _g(w)  (idug(v)

B(u)=4wf(zT)Z[Eq—bq(u)]— ' fu pea
(B12)

Equation(B11), after summation o, identifies

c

A(u)+z°

g(u)=2tIn (B13)

Using o' (u)=d[exp(=B(u)/2)]/du=—a(u)g’(u)/u and
the definition ofA(u), A’ (u)=vquo’'(u) we obtain
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A’(u) d|[A’(u)
u  dulg'(u)] (B14
which from Eq.(B13) can be written as
(1 1\dA B15
u 2t/ du (B19

BARUCH HOROVITZ AND ANATOLY GOLUB
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The solution of this equation is a step function,
i.e.,, A(u) jumps from zero to a constant value at 2t,
which is precisely the one-step solution.

We note that keeping finite cutoff correctidispoils this
correspondence. The variational method is, however, de-
signed for weak-coupling systems and an infinite cutoff pro-
cedure is appropriate.
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