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Disorder in two-dimensional Josephson junctions

Baruch Horovitz and Anatoly Golub
Department of Physics, Ben-Gurion University, Beer-Sheva, 84105, Israel

~Received 18 July 1996!

An effective free energy of a two-dimensional~i.e., large area! Josephson junction is derived, allowing for
thermal fluctuations, random magnetic fields, and external currents. We show by using replica-symmetry-
breaking methods that the junction has four distinct phases: disordered, Josephson ordered, a glass phase, and
a coexisting Josephson order with the glass phase. Near the coexistence to glass transition ats5

1
2 the critical

current is;( area)2s11/2 wheres is a measure of disorder. Our results may account for junction ordering at
temperatures well below the critical temperature of the bulk in high-Tc trilayer junctions.
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I. INTRODUCTION

Recent advances in the fabrication of Josephson junct
have led to junctions with large area, i.e., the junction len
L ~in either direction in the junction plane! is much larger
thanl, the magnetic penetration length in the bulk superc
ductors. Experimental studies of trilayer junctions lik1

YBa2Cu3Ox /PrBa2Cu3Ox /YBa2Cu3Ox ~YBCO junction! or
like2 Bi2Sr2CaCu2O8 /Bi2Sr2Ca7Cu8O20/Bi2Sr2CaCu2O8

~BSSCO junction! have shown anomalies in the temperatu
dependence of the critical currentI c . In particular in the
YBCO junction1 with an area of 50mm2, a zero resistance
state was achieved only below 50 K, although t
YBa2Cu3Ox layers were superconducting already atTc'85
K. More recent data on similar YBCO junctions3–5 with
junction areas of 1022104 mm2 show a measurableI c only
at 20260 K below Tc of the superconducting layers. A
even larger junction6 of area'105 mm2 shows a well-
defined gap structure in theI -V curve, while a critical current
is not observed. In the BSCCO junction2 a supercurrent
through the junction could not be observed above 30 K,
though the Bi2Sr2CaCu2O8 layer remained superconductin
up toTc'80 K.

These remarkable observations are significant both as
sic phenomena and for junction applications. In particu
these data raise the question of whether thermal fluctuat
or disorder can significantly lower the ordering temperat
of two-dimensional~2D! junctions.

We note that for both YBCO and BSCCO junctions typ
cally l'0.2 mm at low temperatures where the junctio
order, so that the junctions above are 2D in the sense
disorder and spatial fluctuations on the scale ofl can be
important. The qualitative effect of these fluctuations d
pends on the Josephson lengthlJ (lJ.l) which is the
width of a Josephson vortex~see Sec. II!. For l,L,lJ
junction parameters are renormalized and becomeL depen-
dent, while more significant renormalizations which cor
spond to 2D phase transitions occur in the regimelJ,L.
From magnetic-field dependence4 andL dependence7 of I c ,
junctions withlJ,L can be realized. The studied junction
are 2D also in the sense the thermal fluctuations at temp
ture T do not lead to uniform large phase fluctuations, i
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f0I c/2c,T, a condition valid for the relevant data~see Sec.
V!; f05hc/2e is the flux quantum.

The energy of a 2D junction, in terms of the Josephs
phasewJ(x,y) where (x,y) are coordinates in the junctio
plane, was derived by Josephson.8 It has the form

F05E dx dyS t

16p
~“fJ!

21
EJ

l2 ~12coswJ! D , ~1!

whereEJ is the Josephson coupling energy in areal2.
Equation~1! was derived8 on a mean-field level, i.e., only

its value at minimum is relevant. It was shown, howev
~see Ref. 9 and Appendix A! that Eq.~1! is valid in a much
more general sense, i.e., it describes thermal fluctuation
wJ(x,y) so that a partition function at temperatureT(,Tc)

Z5E DfJexp$2F0@wJ~x,y!#/T% ~2!

is valid.
Equation ~2! implies a Berezinskii-Kosterlitz-Thouless

type phase transition10 at a temperatureTJ't so that at
T.TJ the phasefJ is disordered, i.e., the cosfJ correlations
decay as a power law, while atT,TJ cosfJ achieves long-
range order. For the clean system, however,TJ't is too
close toTc for either separating bulk from junction fluctua
tions or for accounting for the experimental data.9 A consis-
tent description of this transition, as shown in the pres
work, can be achieved by allowing for disorder at the jun
tion, a disorder which reducesTJ considerably.

Equation~1! with disorder is related to Coulomb gas an
surface roughening models which were studied by rep
and renormalization-group~RG! methods.11,12We find, how-
ever, that the RG generates a nonlinear coupling betw
replicas and therefore standard replica symmetric RG m
ods are not sufficient. In fact, related systems13,14 were
shown to be unstable towards replica symmetry break
~RSB!.

In our system we find a competition between long-ran
Josephson-type ordering and formation of a glass-type R
phase. The phase diagram has four phases a disord
phase, a Josephson phase~i.e., ordered with finite renormal
ized Josephson coupling!, a glass phase, and a coexisten
phase. The coexistence phase is unusual in that it
Josephson-type long-range order coexisting with a g
14 499 © 1997 The American Physical Society



su
e

he
sa
on
-

s
ha
tic
r

.
ld
th
T
te
e
s
,
B
ie

f a

bb

h-

,

tri

e

.
.

on

rent

nt

ce

av-
y
rti-

or-
d

in

g
t
-

of

us

14 500 55BARUCH HOROVITZ AND ANATOLY GOLUB
order parameter. This phase is distinguished from the u
ordered phase, presumably, by long relaxation phenom
typical to glasses.15

In the disordered and glass phases fluctuations reduce
critical current by a power of the junction area, while in t
Josephson and coexistence phases the fluctuation effect
rates when the (area)1/2 is larger than either the Josephs
length ~in the Josephson phase! or larger than both the Jo
sephson length and a glass correlation length~in the coexist-
ence phase!. These predictions can serve to identify the
phases. We show that a transition between the glass p
and the coexistence phase can occur well below the cri
temperatureTc of the bulk, a result which may account fo
the experimental data on trilayer junctions.1–5

In Sec. II we define the model and study the pure case
Sec. III we study the system with random magnetic fie
due to, e.g., quenched flux loops in the bulk and show
the RG generates a coupling between different replicas.
system with disorder is solved by the method of one-s
RSB ~Refs. 13,16! in Sec. IV. Appendix A derives the fre
energy of a 2D junction. In particular, Appendix A 2 allow
for space-dependent external currents, a situation which
far as we know, was not studied previously. Appendix
extends the one-step solution of Sec. IV to the general h
archical case, showing that they are equivalent.

II. THERMAL EFFECTS

Appendixes A 1–A 4 derive the effective free energy o
2D junction, in presence of an external currentj ex(x,y), for
the geometry shown in Fig. 1. The presence ofj ex(x,y) dic-
tates that the relevant thermodynamic function is a Gi
free energy, Eq.~A10! which for the junction becomes@Eqs.
~A26!,~A39!#

GJ$fJ%5F0$fJ%2~f0/2pc!E dx dy jex~x,y!wJ~x,y!,

~3!

whereF0 is given by Eq.~1!. The cosine term is the Josep
son tunneling8 valid for weak tunnelingEJ,,t and t is
found in two cases@Eqs.~A24!,~A36!#: Case I of long super-
conducting banksW1 ,W2@l and case II of short banks
W1 ,W2!l,

t55
f0
2

4p2l
case I:W1 ,W2@l

f0
2

2p2

W1W2

l1
2W21l2

2W1

case II:W1 ,W2!l.

~4!

Note that in case II the derivation allows for an asymme
junction with different penetration lengthsl1 ,l2 and differ-
ent lengthsW1 ,W2.

It is of interest to note thatj ex breaks the symmetry
wJ→wJ12p, i.e., the external current distinguishes betwe
different minima of the cosine term in Eq.~1!. For a uniform
j ex the Gibbs term reduces to the previously known form17

Appendixes~A1!–~A4! present detailed derivation of Eq
~3!. This derivation is essential for the following reasons:~i!
It shows that the fluctuations ofwJ decouple from phase
fluctuations in the bulk~excluding flux loops in the bulk
al
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which are introduced in Sec. III!. Thus Eq.~3! is valid below
the fluctuation~or Ginzburg! region aroundTc . ~ii ! It shows
that Eq.~3! is valid for all configurations ofwJ and not just
those which solve the mean-field equation.

It is instructive to consider the mean-field equati
dGJ /dwJ50, i.e.,

EJ

l2sinwJ5
t

8p
“

2wJ1
f0

2pc
j ex. ~5!

This equation can also be derived by equating the cur
j z5(2c/4pl2)Az8 at z5d/2 @given, e.g., in case I by
Eqs. ~A18!, ~A23!# with the Josephson tunneling curre
j J5(2pc/f0)(EJ /l

2)sinwJ . Equation~5!, however, is not
on a level of conservation law or a boundary condition sin
configurations which do not satisfy Eq.~5! are allowed in the
partition sum. More generally, Eq.~5! is satisfied only after
thermal averagê dGJ /dwJ&50. An equivalent way of
studying thermal averages is to add to Eq.~5! time-
dependent dissipative and random force terms. The time
erage, whichincludesconfigurations which do not satisf
Eq. ~5!, is by the ergodic hypothesis equivalent to the pa
tion sum, i.e., a functional integral overwJ with the weight
exp@2GJ /T#.

Equation~1! is the well-known 2D sine-Gordon system10

which for j ex50 exhibits a phase transition. Since the ren
malization group~RG! proceeds by integrating out rapi
variations inwJ , j

exÞ0 is not effective if it is slowly varying
~e.g., as in case II!.

RG integrates fluctuations ofwJ with wavelengths be-
tweenj andj1dj, the initial scale beingl. The parameters
t5T/t and u5EJ /T are renormalized, to second order
u, via10

du/u52~12t !dj/j,

dt52g2u2t3dj/j, ~6!

whereg is of order 1~depending on the cutoff smoothin
procedure!. Equation ~6! defines a phase transition a
1/t512gu. Note, however, thatt itself is temperature de
pendent sincel(T)5l8(12T/Tc

0)21/2, where Tc
0 is the

mean-field temperature of the bulk. Thus the solution
t(T)/T512gEJ /T defines a transition temperatureTJ

FIG. 1. Geometry of the 2D Josephson junction. The vario
components are superconductors~S!, insulating barrier~I!, normal
metal~N! for the external leads, and vacuum~V!. The dashed rect-
angle serves to derive boundary conditions in Appendix A 1.
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55 14 501DISORDER IN TWO-DIMENSIONAL JOSEPHSON JUNCTIONS
which is belowTc
0 . However,TJ is too close toTc

0 and is in
fact within the Ginzburg fluctuation region aroundTc

0 . To
see this, consider a complex order parameterc5ucuexp(iw)
with a free energy of the form

F5E d3r @aucu21bucu41aj2u“cu2#.

The Ginzburg criterion equates fluctuations withb50,
i.e., ^dc2&'T/aj3 with ucu2(5uau/2b) in the ordered phase
Since u“cu2'ucu2(“w)2 Eq. ~A14! identifies aj2ucu2
5(f0/2pl)2/8p, so that the Ginzburg temperature is

TGinz5aj3ucu25j~f0/2pl!2/8p. ~7!

Sincej,l,W in both cases I and II,TGinz,TJ . The ne-
glect of flux-loop fluctuations, as assumed in Appendix
A 3, A 4 is therefore not justified atTJ . Thus the relevant
range of temperatures for the free energy Eqs.~1!,~3! is
T!TGinz,t, i.e., t!1.

The RG Eqs.~6! can, however, be used in the ran
T,TJ to study fluctuation effects in the ordered region. E
cluding a narrow interval nearTJ where ut/T21u
,gEJ /T!1 renormalization oft can be neglected and inte
gration of Eq.~6! yields a renormalized Josephson coupli
EJ
R5EJ(j/l)

2(12t). Scaling stops at the Josephson leng
lJ at which the coupling becomes strong,EJ

R't/8p ~the
8p is chosen so thatlJ5lJ

0 at T50, wherelJ
0 is the con-

ventional Josephson length!. ThuslJ5l(t/8pEJ)
1/[2(12t)] ;

theT50 value islJ
05l(t/8pEJ)

1/2. The scaling process i
equivalent to replacing (EJ /l

2)^coswJ& by t/8plJ
2 so that

^coswJ&5(lJ
0/lJ)

2 is the reduction factor due to fluctuations
The free energy Eqs.~1!,~3! with renormalized parameter

yields a critical current by a mean-field equation@see com-
ment below Eq.~10!#. The renormalized junction is either a
effective point junction (L,lJ) with the current flowing
through the whole junction area, or a strongly coup
(EJ't/8p) 2D junction where the current flows near th
edges of the junction with an effective areaLlJ . The mean-
field critical currents18 are

I c1
0 5~2pc/f0!EJ~L/l!2, L,lJ

I c2
0 5ctL/2f0lJ

0 , L.lJ . ~8!

The effect of fluctuations is to reduceEJ so that the criti-
cal current is

I c5I c1
0 ~L/l!22t, L,lJ . ~9!

In the second case,L.lJ , the fluctuations reduce th
current density bŷcoswJ& but enhance the effective area b
lJ /lJ

05^coswJ&
21/2. The critical current is then

I c5I c2
0 ~4pEJ /t! t/[2~12t !] , L.lJ . ~10!

Thus even ift!1 in Eqs.~9!,~10! a sufficiently smallEJ can
lead to an observable reduction ofI c .

Note that thermal fluctuations act to renormalizeEJ which
then determines a critical current by the mean-field equat
This neglects thermal fluctuations in whichwJ fluctuates uni-
formly over the whole junction. These fluctuations can
neglected when the coefficient of the cosine term in Eq.~1!
s

-

h

d

n.

e

~including the area integration! is larger then temperature
i.e., in terms ofI c , f0I c/2c.T. This condition is consisten
with experimental data~see Sec. V!.

III. DISORDER AND RG

There are various types of disorder in a large area ju
tion. An obvious type are spatial variations in the Joseph
couplingEJ . A random distribution ofEJ with zero mean is
equivalent to known systems13,14 and produces only a glas
phase. The more general situation is to allow a finite mean
EJ , and allow for another type of disorder, i.e., random co
pling to gradient terms. Since the magnetization of the ju
tion is proportional to8 ¹wJ we propose that the most inte
esting type of disorder are random magnetic fields. S
fields can arise from magnetic impurities, or more prom
nently from random flux loops in the bulk.

A flux loop in the bulk with radiusr 0 has a magnetic field
of orderf0/2pl2 in the vicinity of the loop. A straightfor-
ward solution of London’s equation shows that the field
from the loop depends on the ratior 0 /l. For large loops,
r 0.l, the field at distancer@r 0 decays exponentially while
for small loops r 0!l, it decays slowly as 1/r 2

(l.r@z,r 0, wherer is in the loop plane andz is perpen-
dicular to it! or as 1/z3 (l.z@r ,r 0). Thus, the local mag-
netic field has contributions from all flux loops of size
r 0,l. If P(r 0) is the probability of having a flux loop o
size r 0 then the local average magnetic field is of order

Hs
2'F ~f0/2pl2!El

P~r 0!dr0G2[4sf0
2/pl4. ~11!

The last equality defines a measure of disorders which
increases with ther 0 integration, say ass;la with a.0.
The distribution of Hs is therefore of the form
exp@2pHs

2l4/4sf0
2#.

Consider a dimensionless random fieldq(x,y)
5lA8pHs(x,y)/4f0 so that its distribution is

expF2l2(
x,y

q2~x,y!/2sG5expF2E q2~x,y!dx dy/2sG .
~12!

The coupling of magnetic fields to the Josephson phas
from Eqs.~A23!,~A43! and fort of case I@Eq. ~4!#

Fs52~t/A8p!E dx dy@ ẑ3“wJ~x,y!#•q~x,y!. ~13!

The fields in Eq.~11! are in fact relevant only to case I. I
case II image flux loops across the superconducting-nor
~SN! surface reduce the contribution of loops withr 0,W.
Thus Eq.~11! is valid with ther 0 integration limited byW.
Since nowt5f0

2W/4p2l2 @Eq. ~4! for symmetric junction#,
we defineq(x,y)5A8pl2Hs(x,y)/4f0W so that the cou-
pling Eq. ~13! has the same form. The distribution o
q(x,y) has the same form as in Eq.~12! except that now
s;l2. Since l is T dependent,s is also T dependent, a
feature which is relevant to the experimental data~see Sec.
V!.
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We proceed to solve the random magnetic-field probl
by the replica method.15 We raise the partition sum to
power n, leading to replicated Josephson phaseswa ,
a51, . . . ,n. The factorq(x,y) in Eq. ~13! is then integrated
with the weight Eq.~12!, leading to

Z~n!;expF ~st2/16pT2!S (
a
“waD 2G . ~14!

In this section we attempt to solve the system by R
methods.11,12We find, however, that RG generates nonline
couplings between replicas which eventually lead to rep
symmetry breaking~Sec. IV!. Thus the direct application o
RG is not sufficient.

Consider first the Gaussian part

F0~n!5
1

2E dx dy(
a,b

Ma,b“wa“wb ~15!

with
by

ee
r
a

Ma,b5
8pt

da,b2
8pt2

. ~16!

~From here onT is absorbed in the definition of free ene
gies, i.e.,F→F/T).

We use Eq.~15! to test for relevance of terms of the form
v (l )cos((i51

l h iwa i
). These terms are generated from powe

of the (acoswa interaction in the presence of disorders. A
first-order RG is obtained by integrating a high momentu
field za with momentum in the rangej211d(j21),q
,j21. The Green’s function, averaged over these high m
mentum terms in Eq.~15!, is

Ga,b~r !5^za~r !zb~0!&

5~M21!a,bE d2qexp~2 iq•r !/~2pq!2

5~M21!a,bJ0~r /j!dj/2pj. ~17!

Definingwa5xa1za , RG to first order is obtained by inte
gratingza ,
(
r

K cosS (
i51

l

h iwa i D L 5(
r
cosS (

i51

l

h ixa i D expF2
1

2 K S (
i51

l

h iza i D 2L G
5(

r

8
cosS (

i51

l

h ixa i D F112
dj

j
2
m

2
G1~0!2

1

2(iÞ j
h ih jG2~0!G , ~18!
e
h a

ider

s

where (8 denotes summation on a unit cell larger
112dj/j and

G1~0!5Ga,a~0!5S 8pt1
8ps

12ns/t D dj

2pj
,

G2~0!5GaÞb~0!5
8ps

12ns/t

dj

2pj
. ~19!

The most relevant operators in Eq.~18! are when( iÞ jh ih j
is minimal, i.e.,( ih i50 for evenl or ( ih i561 for odd
l . Thus,

dv ~ l !52v ~ l !~12l t !d lnj, l even

dv ~ l !52v ~ l !~12l t2s!d lnj, l odd. ~20!

Thus, as temperature is lowered, successivev (l ) terms be-
come relevant att,1/l (l even! and at t,(12s)/l (l
odd!.

We consider in more detail thev5v (2) term, the lowest-
order term which mixes different replica indices. The fr
energy of this model has the form

F~n!5E dx dyH 12(a,b Ma,b“wa“wb2
u

l2(
a

coswa

2
v
l2 (

a,Þb
cos~wa2wb!J ~21!
Note that thev term is also generated by disorder in th
Josephson coupling, corresponding to a distribution wit
mean value;u. If u50 Eq.~21! reduces to the well studied
case13,14with a glass phase at low temperatures. We cons
here the more general case ofuÞ0, which indeed leads to a
much more interesting phase diagram.

The initial values for RG flow areu5EJ /T,v50. Stan-
dard RG methods10 to second order inu,v lead to the fol-
lowing set of differential equations:

du5@2u~12t2s!22g8yvt#d lnj,

dv5@2v~122t !1~1/2!g8su222g8tv2#d lnj,

dt522g2~ t1s!t2u2d lnj,

d~s/t2!516g2tv2d lnj, ~22!

where g,g8 are numbers of order 1~depending on cutoff
smoothing procedure!.

Note that anyuÞ0 generates an increase inv, so that
v50 cannot be a fixed point. In contrast,vÞ0 allows for a
u*50 fixed point ~ignoring for a moment the flow ofs),
with u*50, v*5(122t)/g8t. This fixed point is stable in
the (u,v) plane if t,1/2,s; however,s increases without
bound. This indicates that thev term is essential for the
behavior of the system.

We do not explore Eq.~22! in detail since it assume
replica symmetry, i.e., the coefficientv is common to all
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55 14 503DISORDER IN TWO-DIMENSIONAL JOSEPHSON JUNCTIONS
a,b. In the next section we show that the system favors
break this symmetry, leading to a different type of orderin

IV. REPLICA SYMMETRY BREAKING

The possibility of replica symmetry breaking~RSB! has
been studied extensively in the context of spin glasses15 and
applied also to other systems. In particular, the free ene
Eq. ~21! with u50 was studied in the context of flux-lin
lattices and of anXY model in a random field.13,14 In this
section we use the method of one-step replica symm
breaking13,16for the Hamiltonian Eq.~21!; in Appendix B we
present the full hierarchical solution, which for our syste
turns out to be equivalent to the one-step solution.

Consider the self-consistent harmonic approximation13 in
which one finds a harmonic trial Hamiltonian

H05
1

2(q (
a,b

Ga,b
21 ~q!wawb* ~q!, ~23!

such that the free energy

Fvar5F01^H2H0&0 ~24!

is minimized.H5F(n)/T is the interacting Hamiltonian, Eq
~21!, F0 is the free energy corresponding toH0, and
^ . . . &0 is a thermal average with the weight exp(2H0). The
interacting terms lead to

E d2r ^coswa~r !&05exp~2Aa/2!

Aa5(
q

^uwa~q!u2&5(
q

Ga,a ,

E d2r ^cos~wa2wb!&05exp~2Ba,b/2!,

Ba,b5(
q

^uwa~q!2wb~q!u2&

5(
q

@Ga,a1Gb,b2Ga,b2Gb,a#. ~25!

Therefore

Fvar52
1

2( Tr@ lnĜ~q!1~Ĝ21~q!1M̂q2!Ĝ~q!#

2
u

l2(
a

expS 2
1

2
AaD2

v
l2 (

aÞb
expS 2

1

2
Ba,bD ,

~26!

where the TrlnĜ(q) term corresponds toF0 ~up to an addi-
tive constant! and the ˆ sign denotes a matrix in replic
space.

We define nowu058ptu/l2, v0516ptv/l2 and using
Eq. ~16! the minimum conditiondFvar/dGa,b50 becomes

Ĝ~q!58ptH @q21u0exp~2 1
2Aa!# Î2

s

t
q2L̂2v0ŝJ 21

,

~27!
o
.

y

ry

where Î is the unit matrix,L̂ is a matrix with all entries
51, i.e.,La,b51, andŝ is given by

sa,b5exp~2 1
2Ba,b!2da,b(

g
exp~2 1

2Ba,g!. ~28!

Note that the sum on each row vanishes,(bsa,b50.
Consider first briefly the replica symmetric solution.

single parameters0 defines ŝ so that the constrain
(bsa,b50 yields

ŝ5s0L̂2ns0Î . ~29!

Using L̂25nL̂ it is straightforward to find the inverse in Eq
~27!. In terms of an order parameterz5u0exp(2Aa/2), Eq.
~28! with n→0 yieldss05(z/Dc)

2t whereDc('1/l2) is a
cutoff in the q2 integration so thatz!Dc is assumed. The
definition of z yields

z5u0S z

Dc
D t1s

exp~s2tv0s0 /z!.

For tv0s0 /z!1 a consistentz!Dc solution is possible at
t,12s. ~Indeedtv0s0 /z!1 sinces0!1, except atz→0,
i.e., att→12s.! Hence,@neglecting an exp(s) factor#

z/Dc'~u0 /Dc!
1/~12t2s!. ~30!

The replica symmetric solution thus reproduces the fi
order RG solution@Eq. ~20! with l 51#. The order paramete
z corresponds to 1/lJ

2 of Eq. ~20! where the Josephson leng
lJ is the scale at which strong coupling is achieve
v (1)(lJ)'1, and RG stops.

Consider now a one-step RSB solution of the form13,16

ŝ5s0L̂1~s12s0!Ĉ2@s0n1m~s12s0!# Î , ~31!

FIG. 2. Phase diagram of a 2D junction in terms ofs, the spread
in random magnetic fields andt, which is proportional to tempera
ture. The various phases, in terms of the Josephson orderz and the
glass orderD are: ~i! Disordered phase withz5D50, ~ii ! Joseph-
son phase withzÞ0, D50, ~iii ! coexistence with bothzÞ0, D
Þ0, and~iv! glass phase withz50, DÞ0. The dashed line within
the coexistence phase is whereD changes sign.
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where Ĉ is a matrix with entries of 1 inm3m matrices
which touch along the diagonal and 0 otherwise;m is treated
as a variational parameter. The coefficient ofÎ is fixed by the
constraint(bsa,b50.

Equation~31! corresponds to two order parameters,

z5u0exp~2Aa/2!,

D5v0@s0n1m~s12s0!#. ~32!

The inverse matrix in Eq.~27! is obtained by using
L̂25nL̂, ĈL̂5mL̂, andĈ25mĈ. It has the form

Ĝ5@a~q! Î1b~q!L̂1c~q!Ĉ#215a~q! Î1b~q!L̂1g~q!Ĉ,
~33!

and is solved by

a~q!51/a~q!,

b~q!52b~q!@a~q!1mc~q!#21

3@a~q!1nb~q!1mc~q!#21,

g~q!5$2a21~q!1@a~q!1mc~q!#21%/m. ~34!

Identifying a(q),b(q),c(q) from Eqs. ~27!,~31! we obtain
~aftern→0)

a[(
q

a~q!52t ln@Dc /~z1D!#,

b[(
q

b~q!52s ln~Dc /z!1~2/z!tv0s022s,

g[(
q

g~q!52~2t/m! ln@z/~z1D!#. ~35!

The definitions ofŝ andz identifies the parameters

s15exp~2a!,

s05exp~2a2g!,

z5u0exp@2~a1b1g!/2#. ~36!

These equations determine the order parametersz, D in
terms ofm and the parameters of the Hamiltonian. The va
of m must be determined by minimizing the free ener
Fvar. @However, in the hierarchical scheme withD(m) as
functionof m, the variation with respect toGa,b is sufficient
to determine the position of a step inD(m), see Appendix
B#.

Consider first the Gaussian termsF3, i.e., the trace term in
Eq. ~26!. Since this term contains the uninteresting vacu
energy (z5D50) it is useful to find the differentialdF3 and
then integrate. Using Eq.~33! for dĜ(q) we have

dF352
1

2(q Tr$@Ĝ21~q!2M̂q2#

3@ Î da~q!1L̂db~q!1Ĉdg~q!#%. ~37!
e

Performing the trace and expressingda,dg in terms of
dz,dD @from Eq. ~35!# we obtain for the free energy pe
replica, f5F(n)/n,

d f35S 12
1

mDd~z1D!1S zm2v0s0Ddzz 2
z

2t
db.

~38!

Integrating ] f 3(z,D8)/]D8 from 0 to D, and then
] f 3(z8,0)/]z8 from 0 to z adds up to

8p@ f 3~z,D!2 f 3~0,0!#

5~121/m!D2v0exp@2a~z,D!2g~z,D!#

1~11s/t !z. ~39!

The u and v terms in Eq.~26! lead, by using Eq.~25!, to
;exp@2(a1b1g)# and to ;(asa,a5@s12(s12s0)m#,
respectively. Finally, we have

8p f ~z,D!58p f ~0,0!1~121/m!D1~11s/t !z

2v0~12m/2t !e2a2g1
v0
2t

~12m!e2a

2
u0
t
e2[a1b1g]/2 ~40!

wherea, b, g are functions ofz andD from Eq.~35!. Since
Eqs. ~36! are already minimum conditions, it must b
checked that] f /]z5] f /]D50 reproduces these equation
so thatm in Eq. ~40! can be taken as an independent var
tional parameter. The latter statement is indeed correct
] f /]m50 leads to the relation

m5
2tD12tz ln@z/~z1D!#

D12tv0s0ln@z/~z1D!#
. ~41!

Rewriting Eq. ~36! with Eq. ~35!, we have the following
relations:

z5u0e
sS z

Dc
D s1t/mS z1D

Dc
D t~121/m!

e2tv0s0 /z, ~42!

D5v0mS z1D

Dc
D 2tF12S z

z1D D 2t/mG , ~43!

s05S z1D

Dc
D 2tS z

z1D D 2t/m. ~44!

The solutions forz andD of Eqs.~41!–~44! determine the
phase diagram. Consider first the Josephson ordered p
zÞ0,D50. Expectings0!1 an expansion of Eq.~41! in
powers ofD/z yields m'tD/z so thats0'e2(z/Dc)

2t is
indeed small. The solution forz whenD→0 is equivalent to
the replica symmetric case, Eq.~30! and is possible for
t,12s.

Consider next an RSB solutionz50,DÞ0. Equation~41!
yieldsm52t and Eq.~43! leads to

D/Dc5~2tv0 /Dc!
1/~122t !. ~45!
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TABLE I. Correlations in junctions of sizeL; c(L) determinesI c via Eqs.~50!, ~51!.

Phase Ga,a(q) c~L!; L,lJ ,lG c~L!; L.min~lJ ,lG!

Disorder 8p(t1s)
q2

SLlD24~t1s!

Josephson 8p(t1s)
q21z

2
8psz

(q21z)2
SLlD24~t1s! SlJl D24~t1s!

Glass 4p(112s)
q2

1
4p(2t21)
q21D

SLlD24~t1s! SLlD22~112s!SlGl D22~2t21!

Coexistence 4p(2t21)
q21z1D

1
4p(112s)
q21z

SLlD24~t1s! Smin~L,lG8 !

l D22~2t21!

(
min~L,lJ!

l
)22~112s!

2
4pz

(q21z)2
q

s
e
e
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r
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Thus a glass-type phase is possible fort,1/2. @Curiously, a
similar result is obtained for thev term in first-order RG,
l 52 in Eq. ~20!, however,Ga,a;1/q4 at q→0, while here
Ga,a;1/q2#.

Finally consider a coexistence phase, where bothz, D
Þ0. It is remarkable thatm52t is an exact solution even in
this case, as can be checked by substitution in E
~41!,~43!,~44!. The resulting solutions are

z1D

Dc
5S 2t v0Dc

D 1/~122t !

,

z

Dc
5e21S u0

2

2tv0Dc
D 1/~122s!

. ~46!

This coexistence phase is therefore possible att,1/2 and
s,1/2, as shown in the phase diagram, Fig. 2. It is intere
ing to note thatD50 on some line within the coexistenc
phase, i.e.,D changes sign continuously across this lin
Whenu0'v0 this line iss5t, as shown by the dashed line
Fig. 2. This line is not a phase transition as far as the co
lation c(r ) @Eq. ~47! below# or the critical currents are con
cerned. We expect, however, that the slow relaxation p
nomena, associated with the glass order, will disappea
this line.

The boundarys51/2 of the coexistence phase is a co
tinuous transition withz→0 at the boundary. On the othe
hand, the boundary att51/2 is a discontinuous transition
z1D→0 from the left, whileD50,zÞ0 on the right, i.e.,
bothD andz are discontinuous.

To identify the various phases we consider the correla
function

c~r !5^coswa~r !coswa~0!&5@exp~2f1!1exp~2f2!#/2,
~47!

where

f65E
1/L

ADc
q dq@16J0~qr !#Ga,a~q!/2p, ~48!
s.

t-

.

e-

e-
n

-

n

and the system sizeL appears as a low momentum cuto
Using Ga,a(q)5a(q)1b(q)1g(q), the various correla-
tions are summarized in Table I. The ordered phases h
finite correlation lengths defined aslJ5z21/2 for the Joseph-
son length,lG5D21/2 for the glass correlation length an
lG8 5(z1D)21/2 in the coexistence phase. It is curious
note that in the coexistence phaseGa,a has a
(2t21)/(q21z1D) term. Sincez1D→0 much faster than
2t21→0 at the boundaryt51/2, this leads to an apparen
divergence oflG8 ; however,f6 is finite at t→1/2 and the
transition is of first order.

The phases withz50 have power-law correlations; fo
L→`, c(r );r24t24s in the disordered phase, whil
c(r );r2224s in the glass phase. The glass phase lead
stronger decrease ofc(r ) then what would have beenc(r ) in
a disordered phase att,1/2; a prefactor (lJ /l)

2(122t)

somewhat compensates for this reduction.
The phases withzÞ0 have long-range order. Note in pa

ticular the z/(q21z)2 terms inGa,a ; these terms do no
arise in RG since they are of higher order inz and are of
interest away from the transition line. Note that in the J
sephson phasev0'u0 is assumed, so thats0v0!z; other-
wise the coefficient of (q21z)22 is modified.

The correlationc(L) measures the fluctuation effect o
^coswJ& in a finite junction, i.e.,̂ coswJ&'Ac(L), which is
therefore related to the Josephson critical currentI c . The
results forc(L) are summarized in Table I. Consider first
junction with L,lJ ~which is always the case in thez50
phases!. The current flows through the whole junction an
the system is equivalent to a point junction with an effect
Gibbs free energy,

GJ
eff5EJ~L/l!2Ac~L !coswJ2~f0/2pc!I exwJ . ~49!

Here we assume~as at the end of Sec. II! that point junction
fluctuations can be ignored, i.e.,f0I c/2c.T and the critical
current of Eq.~49! can be deduced by its mean-field equati
~see Sec. V for actual data!. Thus, the mean-field valueI c1

0

@Eq. ~8!# is reduced by the fluctuation factor, leading to
critical current
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I c5I c1
0 Ac~L !, L,lJ . ~50!

For L,lJ ,lG the parametersD andz are no longer related
to lJ or to lG ; instead they areL dependent@Eq. ~35!
should be reevaluated leading to power laws ofL#. In par-
ticular z affectsc(L) via the (q21z)22 terms by either a
factor exp@2sz(L)L2# ~in the Josephson phase! or
exp@z(L)L2# ~in the coexistence phase!. Although of unusual
form, these factors are neglected in Table I sincezL2,1.
The dominant dependence in a small area juncti
L,lJ ,lG ~for all phases! is a power-law decrease o
c(L), leading toI c;L222t22s.

For systems withL.lJ , the current flows in an are
LlJ near the edges of the junction. The mean-field va
I c2
0 @Eq. ~8!# is reduced now by a factorlJ

0/lJ . Using
^coswJ&5Ac(L) and z5u0^coswJ&51/lJ

2 we obtain
lJ5lJ

0c21/4(L) with lJ
05l(t/8pEJ)

1/2, as in Sec. II. The
critical current is then

I c5I c2
0 A4 c~L !, L.lJ . ~51!

The relevant range of temperaturesT!t ~see Sec. II!, for
typical junction parameters, is most of the rangeT,Tc , ex-
cluding onlyT very close toTc . Thus t!1 and our main
interest is the coexistence to glass transition ats5 1

2. This
transition can be induced by a temperature change s
s5s(T) ~see Sec. III!. Thus we considert!s for which
z!D andlJ@lG'lG8 . When the transition ats5 1

2 is ap-
proachedlJ diverges and for a givenL the system crosse
into the regimelG,L,lJ ~which includes the glass phas!
where c(L);(L/l)24s(lG /L)

2 and I c;(L/l)122s. Since
L@l we predict a sharp decrease ofI c at some temperatur
TJ for whichs(TJ)5

1
2; this is the finite-size equivalent of th

L→` phase transition.

V. DISCUSSION

We have derived the effective free energy for a 2D
sephson junction~Appendix A! and studied it in the presenc
of random magnetic fields. We show that a coupling betw
replicas of the form cos(wa2wb) is essential for describing
the system. This coupling is generated by RG from the
sephson term in presence of the random fields, or also f
disorder in the Josephson coupling, a disorder whose fi
mean isEJ .

We find the phase diagram, Fig. 2, with four distin
phases defined in terms of a Josephson orderingz;^coswJ&
and a glass order parameterD. At high temperatures therma
fluctuations dominate and the system is disorder
z5D50. Lowering temperature at weak disorder (s, 1

2! al-
lows formation of a Josephson phase,zÞ0,D50. Further
decrease of temperature leads by a first-order transition
coexistence phase where bothz,DÞ0. The Josephson an
coexistence phases have similar diagonal correlations~see
Table I!. The main distinction between these phases is t
the slow relaxation times typical of glasses. Finally, at stro
disorder and low temperatures the glass phase withz50,
DÞ0 corresponds to destruction of the Josephson long-ra
order by the quenched disorder.

Our main result, relevant to experimental data w
t!1, is the coexistence to glass transition ats5 1

2. The criti-
,
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te
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cal behavior ofI c(s) near this transition depends on the ra
L/lJ ; not too close tos5 1

2 whereL.lJ we have from Eq.
~46!,~51! lnIc;1/(122s) while closer tos5 1

2 the divergence
of lJ implies L,lJ with I c;(L/l)122s. The junction or-
dering temperatureTJ corresponds tos(TJ)5

1
2 so that either

lnIc;2(TJ2T)21 ~not too close toTJ) or lnIc;(TJ2T)lnL/l
close toTJ .

We reconsider now the experimental data1–5 where the
junctions order at temperatures well below theTc of the
bulk. In our scheme, this can correspond to a transition
tween the glass phase and the coexistence phase, a tran
which may occur even at low temperaturest!1 provideds
decreases with temperature. As discussed in Sec. III,s de-
pends on a power ofl, in particulars;l2 for short junc-
tions, the experimentally relevant case. Thuss decreases
with temperature sincel is temperature dependent. We pr
pose then that junctions with random magnetic fields~aris-
ing, e.g., from quenched flux loops in the bulk! may order at
temperatures well belowTc of the bulk.

From critical currents1,2 at 4.2 K I c'1502400 mA we
infer EJ'124 K andlJ

0'224 mm, the latter is somewha
below the junction sizesL'5250 mm. For the more recen
data on YBCO junctions3–5 with I c'0.426 mA we obtain
lJ
0!L and Eq. ~51! applies. In fact, magnetic-field

dependence4 and I c;L dependence7 show directly that
lJ,L is feasible.

We note also that mean-field treatment of the effect
free energy Eq.~49! is valid since thermal fluctuations of th
effective point junction are weak~as assumed in Secs. II an
IV !, i.e.,f0I c/2c.T. E.g., at 80 Kf0I c/2c5T corresponds
to I c'1mA, while the mean fieldI c at the temperatures
where I c disappears, i.e., at 0.420.8Tc , should be compa-
rable to its low-temperature values1–5 of I c50.126 mA.
Thusf0I c/2c@T and point-junction-type fluctuations can b
neglected.

Other interpretations of the data assume that the com
sition of the barrier material is affected by the supercondu
ing material and becomes a metal3 N or even a
superconductor5 S’. In an SNS junction the coherence leng
in the metal is temperature dependent and affectsI c , while
the onset of an SS’S junction obviously affectsI c . Note,
however, that the SNS interpretation with lnIc;2T1/2 is con-
sistent with theT dependence but leads to an inconsist
value of the coherence length.3 In our scheme,
lnIc;(TJ2T)lnL/l is consistent with the data3 of the
1003100 mm2 junction showing a cusp inI c(T) near
TJ'25 K. Further experimental data, and in particular t
L dependence ofI c , can determine the appropriate interpr
tation of the data.

The increasing research on large area junctions is m
vated by device applications. The design of these juncti
should consider the various types of disorder studied in
present work. Furthermore, we believe that disordered la
area junctions deserve to be studied since they exhibit g
phenomena. In particular the coexistence phase with b
long-range order and glass order is an unusual type of gl
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55 14 507DISORDER IN TWO-DIMENSIONAL JOSEPHSON JUNCTIONS
APPENDIX A: FREE ENERGY OF A 2D
JOSEPHSON JUNCTION

In this Appendix we derive the effective free energy o
large area Josephson junction. In Appendix A 1 bound
conditions and the Josephson phase are defined. In Appe
A 2 the Gibbs free energy in presence of an external cur
is derived. In Appendixes A 3, A 4 the Gibbs free energy
derived explicitly for superconductors in the Meissner sta
i.e., no flux lines in the bulk; Appendix A 3 considers lon
junctions, i.e.,W@l ~see Fig. 1!, while Appendix A 4 con-
siders short ones,W!l. Finally, in Appendix A 5 the free
energy in presence of~quenched! flux loops in the bulk is
derived.

1. Boundary conditions

The barrier between the superconductors~region I in Fig.
1! is defined by allowing currentsj z(x,y) in the z direction
so that Maxwell’s relation for the vector potentialA(x,y,z)
is

“3“3A5~4p/c! j zẑ, ~A1!

whereẑ is a unit vector in thez direction. There is no addi
tional relation betweenj z andA ~e.g., as in superconduc
ors!. This allowsj z to be a fluctuating variable in thermody
namic averages.

Equation~A1! implies that the magnetic field in the ba
rier H(x,y)5“3A is z independent andHz50; thus the
currentsj x , j y50 as required.

Considering the superconductors in Fig. 1 we denote
2D fields~i.e.,x, y components! at the right and left junction
surfaces ~i.e., z56d/2) with indices 1,2, respectively
Boundary conditions are derived18 by integrating “3A
around the dashed rectangle in Fig. 1, which sincej y50,
yields continuity of the parallel magnetic fields

H1~x,y!5H2~x,y!. ~A2!

IntegratingA along the same rectangle yields for the vec
potentials on the junction surfaces

A1x2A2x1E
2d/2

d/2

~]Az /]x!dz5dHy , ~A3!

and a similar relation interchangingx andy. Introducing the
phasesw i(r ), i51,2 for the two superconductors and
gauge-invariant vector potential

A i8~r !5A i~r !2~f0/2p!“w i~r ! ~A4!

yields forA i8(x,y) on the junction surfaces

A18~x,y!2A28~x,y!5dH~x,y!3 ẑ2~f0/2p!“wJ~x,y!,
~A5!

wherewJ(x,y) is the Josephson phase,

wJ~x,y![w1~x,y!2w2~x,y!2~2p/f0!E
2d/2

d/2

Azdz.

~A6!
y
dix
nt

,

ll

r

2. Gibbs free energy

In the presence of a given external currentjex passing
through the junction we separate the system into the sam
with relevant fluctuations~e.g., superconductors with barrie!
and an external environment in whichjex is given. Thermo-
dynamic quantities are then given by a Gibbs free ene
G(H) whereH is the field outside the sample which dete
minesjex. The situation which is usually studied is such th
jex does not flow through the sample19 so that it is uniquely
defined everywhere. We need to generalize this situatio
the case in whichjex flows through the sample, a generaliz
tion which to our knowledge has not been developed pre
ously.

In standard electrodynamics,20 in addition to the space
and time-dependent electric and magnetic fieldsE and H,
respectively, one defines a free currentj f , a displacement
field D and an induction fieldB such that

“3H5~4p/c!j f1~1/c!]D/]t,

“3E52~1/c!]B/]t, ~A7!

and only outside the sampleD5E, B5H, andj f5 jex. When
the various electrodynamic fields change by a small amo
the change in the sample’s energy is the Poynting ve
integrated over the sample surfaceS ~with normal ds) in
time dt

2dt
c

4pESE3H ds5E
V
F 14p

H•dB1
1

4p
E•dD

1E• j fdtGdV, ~A8!

where integration is changed from the surfaceS to the en-
closed volumeV by Eq. ~A7!. When jex does not flow
through the sample,j f50 and neglect ofD ~for low-
frequency phenomena! leads to the usual energy change19

dE5*H•dB/4p.
The general situation is described by keeping the surf

integral in Eq.~A8! and in terms of the vector potentialA,
whereE52(1/c)]A]t,

dE5E
S
dA3H ds/4p. ~A9!

Thus the surface values ofA andH ~parallel to the surface!
determine the energy exchangedE and there is no need to
specify anH or a j f inside the sample, where in fact they a
not uniquely determined.

SinceH ~on the surface! is determined byjex @via Eq.
~A7! outside the sample# we define a Gibbs free energ
G(H) by a Legendre transform

G~H!5F2~1/4p!E
S
A3H ds. ~A10!

A is determined now by a minimum conditiondG/dA50
which indeed reproduces Eq.~A9!.

We apply now Eq.~A10! to the Josephson-junction sys
tem. We assume a time-independent currentjex, i.e.,
“3H5(4p/c) jex outside the sample and that the same c
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rent jex flows through both superconductor-normal~SN! sur-
faces~e.g., the superconductors close into a loop or that
current source is symmetric!. Consider now the surfaceS1 of
superconductor 1, which includes the superconductor-nor
~SN! surface and the superconductor-vacuum~SV! surface.
The boundary ofS1 is a loopJ which encircles the junction
surface, oriented with normal1 ẑ. In terms of the gauge
invariant vectorA85A2(f0/2p)“w1, assumingj

ex is time
independent,]E/]t50 and using

“w13H5“3~w1H!2~4p/c!w1j
ex,

we obtain

E
S1

A3H ds5
f0

2p F R Jw1H•dl2~4p/c!E w1j
ex
•dsG

1E
S1

A83H•ds. ~A11!

The jex•ds term for both superconductors involves th
differencew12w2 of the phases on the two SN surface
This difference17 is related to the chemical potential diffe
ence in the external circuit so that the corresponding term
wJ independent.

Consider next the insulator-vacuum~IV ! surface. Since
Hz50 in the insulator only theAzHy or AzHx terms contrib-
ute with

E
IV
A3H ds52 R JH•dlE

2d/2

d/2

Azdz. ~A12!

Combining Eq.~A11!, the similar term for superconductor
and Eq.~A12!, ~ignoringwJ independent terms! we obtain,

G~H!5F2
1

4pESV1SN
A83H•ds2

f0

8p2 R wJH•dl.

~A13!

3. Long superconductors

We derive here an explicit free energy, in terms of t
Josephson phase, for the caseW@l1 ,l2 ~see Fig. 1!, where
l i ~i51,2! are the London penetration lengths of the tw
superconductors, respectively. The incoming curr
jex(x,y) is parallel to theẑ axis.

Consider the free energy19 of superconductor 1~suppress-
ing the subscript 1 for now!

F5
1

8pEz>d/2
d3r F 1l2 S f0

2p
“w2AD 21~“3A!2G .

~A14!

The superconductor is assumed to have no flux lines,
w(r ) is nonsingular. The vectorA95A2(f0/2p)“w has
then three independent components~no gauge condition on
A9) and“3A95“3A. The partition function involves in-
tegration on all vectorsA9 and on its boundary value
As8(r s) on the boundaryr s of the superconductor,
e

al

.

is

t

.,

Z5E DAs8~r s!E DA9~r !exp@2F$A9~r !,As8~r s!%/T#.

~A15!

We shift now the integration field fromA9 to dA8 where
A95A81dA8 andA8 is the solution ofdF/dA850, i.e.,

“3“3A852A8/l2 ~A16!

with A85As8 at the boundaries; thusdA8(r s)50. SinceF is
Gaussian,F(A81dA8)5F(A8)1F(dA8) and the integra-
tion on dA8 is a constant independent ofAs8(r s). Thus

Z;E DAs8~r s!exp@2F$A8~r !%/T#,

where

F$A8%5
1

8pE d3r F 1l2 ~A821“3A8!2G . ~A17!

Note that Eq. ~A16! implies “•A850 and therefore
“

2A85A8/l2. Note also that the currents obe
j52(c/4pl2)A8.

We are interested in boundary fields at the barrier wh
are 2D vectors, e.g.,

A18~x,y![@A1x8 ~x,y!,A1y8 ~x,y!#.

The effect of these fields decays on a scalel so that for
z@l, A8; ẑj ex(x,y) also obeys London’s equatio
l2¹2 j ex5 j ex. Thereforej ex is confined to a layer of thick-
nessl near the SV surface. The solution forz>d/2 has the
form

@Ax8~r !,Ay8~r !#5A18~x,y!exp@2~z2d/2!/l#,

Az8~r !5l“A18~x,y!exp@2~z2d/2!/l#2~4pl2/c! j ex~x,y!.
~A18!

This ansatz is a solution of London’s equation~A16! pro-
vided thatA18(x,y) is slowly varying on the scale ofl. The
corresponding magnetic fields are

~“3A!x85~1/l!Ay82~4pl2/c!]y j
ex1O~¹2A18!,

~“3A!y852~1/l!Ax82~4pl2/c!]xj
ex1O~¹2A18!.

~A19!

Since eventuallyA18;“wJ @Eq. ~A23! below# we evaluate
F by neglecting terms with derivatives ofA18 . Some care is,
however, needed in evaluating cross terms withj ex, which is
not slowly varying. Thus,*Az8

2(r ) from Eq. ~A18! involves

E j ex“•A18dx dy52E A18•“ j exdx dy,

which cannot be neglected. Note that the line integral on
SV surface vanishes since on this surface the perpendic
component ofA18 is zero, i.e., no currents flowing into
vacuum. TheO(¹2A18) terms in Eq.~A19! can be neglected
since their product withj ex cannot be partially integrated
without SV line integrals.

The cross terms from squaring Eqs.~A18!,~A19! involve
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E @ j ex“•A181A18•“ j ex#dx dy5E “•~ j exA18!dx dy50.

For superconductor 2 withz,2d/2 the solution has the
form of Eq. ~A18! with A28(x,y) replacingA18(x,y), the z
dependence has exp@(z1d/2)/l2# and 2“•A28 replaces
“•A18 in the equation forAz8. For both superconductor
( i51,2!, afterz integration, we obtain

Fi5E dx dyA i8
2~x,y!/8pl i1O~]A i8!2. ~A20!

Next we use the boundary conditions Eqs.~A2!, ~A5! to
relateA i8 to wJ . Equations~A2!, ~A19! yield

A18/l12~4pl1
2/c!“ j 1

ex52A28/l22~4pl2
2/c!“ j 2

ex

1O~]A i8!2, ~A21!

while Eq. ~A5! yields

A182A285d@2A18/l11~4pl1
2/c!“ j 1

ex#2~f0/2p!“wJ .
~A22!

Since“ j ex is not slowly varying, the ansatz Eq.~A18! is
consistent~i.e.,A i8 are slowly varying! only if the junction is
symmetric,j 1

ex(x,y)5 j 2
ex(x,y), l[l15l2 and that the limit

d/l→0 is taken. Thus,

A1852A2852~f0/4p!2“wJ . ~A23!

The magnetic energy in the barrier is neglected since it
volvesd/l. The total free energy, from Eqs.~A20!,~A23! is
then

F5F11F25
1

4pl S f0

4p D 2E dx dy~“wJ!
2. ~A24!

If j ex50, Eqs.~A20!,~A23! are valid also for nonsymmetri
junctions andF has the form~A24! with 2l replaced by
l11l21d.

We proceed to find the Gibbs terms in Eq.~A13!. Since
Eq. ~A19! and the constraint of no current flowing into th
vacuum,A83 ẑ•dl50 yield HSV52(4pl2/c)“ j ex3 ẑ on
the SV surface, the loop integral becomes

R
J
wJH•dl5~4pl2/c! R

J
wJ“ j ex•dl3 ẑ. ~A25!

For the SV surface integration we use againHSV so that for
superconductor 1,

E
SV1

A83H•ds52~4pl4/c!E
SV1

Az8“ j ex•ds

5~4pl2/c!E A18•“ j exdxdy

1O~¹2A18 ,wJ independent terms!,

where“ j ex•ds is replaced by¹2 j exdxdydzas j ex has domi-
nantx,y dependence. Using Eq.~A23! and adding terms for
both superconductors leads to
-

E
SV
A83H•ds5

2f0

c E wJj
exdx dy2

f0

2p R
J
wJH•dl.

Finally we obtain,

G5E dx dyF 1

4pl S f0

4p D 2~“wJ!
22

f0

2pc
wJj

exG .
~A26!

Adding the Josephson tunneling term;coswJ leads to Eqs.
~1!,~3!.

4. Short superconductors

Consider superconductors with lengthW1 ,W2!l1 ,l2
~see Fig. 1!. The exp(2z/l1) in Eq. ~A18! can be expanded to
terms linear inz. Since now both exp(6z/l1) are allowed at
z.0, there are two slowly varying surface fieldsA1, H1,

@Ax8,Ay8#5A18~x,y!1zH1~x,y!3 ẑ1O~z2!,

Az85A1z8 2z“•A181O~z2!, ~A27!

and the magnetic field is

H5H1~x,y!2~z/l1
2!A18~x,y!3 ẑ1O~z2,]Az8 !.

~A28!

The x,y components ofH5H1
ex at z5W1 define the

boundary conditions,

H1x2~W1 /l1
2!A1y8 5H1x

ex ,

H1y1~W1 /l1
2!A1x8 5H1y

ex , ~A29!

and similarlyH2
ex at z52W2.

H2x1~W2 /l2
2!A2y8 5H2x

ex ,

H2y2~W2 /l2
2!A2x8 5H2y

ex . ~A30!

Equations ~A29!,~A30! and the boundary condition
~A2!,~A5! at the junction determine all the fieldsA i8 ,H i in
terms ofH i

ex andwJ , e.g.,

A1x8 5
l1
2

l1
2W21l2

2W11dW1W2

3@~l2
21W2d!H1y

ex2l2
2H2y

ex2W2~f0/2p!]xwJ#,

A2x8 5
2l2

2

l1
2W21l2

2W11dW1W2

3@~l1
21W1d!H2y

ex2l1
2H1y

ex2W1~f0/2p!]xwJ#,

H1y5
l2
2W1H2y

ex1l1
2W2H1y

ex1W1W2~f0/2p!]xwJ

l1
2W21l2

2W11dW1W2
.

~A31!

The boundary fieldsH i
ex need to be slowly varying~of order

“wJ) so that Eq. ~A31! is slowly varying; thusHz ,
Aiz;¹2wJ can be neglected.

The free energy~A17!, to leading order inWi /l i is
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F15~W1/8pl1
2!E A18

2~x,y!dx dy

1O@~W1 /l1!
3~“wJ!

2,~W1 /l1!
2
“wJ•H1

ex#.

~A32!

IgnoringwJ independent terms,

F11F25
f0

16p2E dx dy

3H f0

2p

W1~W2l1!
21W2~W1l2!

2

~l1
2W21l2

2W11dW1W2!
2 ~“wJ!

2 ~A33!

22d
l1
2W2H1y

ex1l2
2W1H2y

ex

~l1
2W21l2

2W11dW1W2!
2 ]xwJ1~x↔y!J .

~A34!

The free energy in the barrier

FI5~d/8p!E dx dyH1
2~x,y! ~A35!

precisely cancels the terms linear in“wJ in Eq. ~A34! so that

F5
1

8p S f0

2p D 2 W1W2

l1
2W21l2

2W1
E dx dy~“wJ!

2.

~A36!

Considering next the Gibbs term, the SV surface involv
Az8 or Hz which are neglected. The SN surface involv
A8(z5W1)5A11O(W1

2]wJ), hence

2
1

4pESNA83H•ds5
f0

8p2E dx dy
l1
2W2H1y

ex1l2
2W1H2y

ex

l1
2W21l2

2W1

3]xwJ2~x↔y!1•••

52
f0

2pcE dx dy jexwJ

1
f0

8p2 R JwJH•dl1•••, ~A37!

where higher-order terms inWi /l i and wJ independent
terms are ignored, and the fact thatH• l is z independent on
the SV surface is used~this arises from zero current into th
vacuum and neglectingHz). The currentj ex is defined here
as an average of the currents on both sides,j i

ex5(“3H i
ex)z

~which locally may differ!, i.e.,

j ex5
l1
2W2 j 1

ex1l2
2W1 j 2

ex

l1
2W21l2

2W1
. ~A38!

The Gibbs free energy is finally,

G5F2~f0/2pc!E dx dy jex~x,y!wJ~x,y! ~A39!

with F given by Eq.~A36!.
s

5. Junctions with bulk flux loops

Consider a junction with flux loops in the bulk of th
superconductors. These loops induce magnetic fields w
couple towJ . To derive this coupling we decompose th
superconducting phase into singularws and nonsingularwns
parts, i.e.,

“3“~ws1wns!5“3“wsÞ0.

We define a three-component vectorA95A2(f0/2p)“wns
so that the free energy Eq.~A14! is

F5
1

8pE d3r F 1l2 S f0

2p
“ws2A9D 21~“3A9!2G .

~A40!

We shift the integration fieldA9 by A9→A91dA9 ~as in
Appendix A 3! wheredA950 at the boundaries andA9 sat-
isfiesdF/dA950, i.e.,

“3“3A95@~f0/2p!“ws2A9#/l2. ~A41!

SinceF is Gaussian inA9, the integration ondA9 decouples
from that of ws and the boundary values. Define no
A95A81As whereAs is a specific solution of Eq.~A41! and
A8 is the general solution of the homogeneous part of
~A41!, “3“3A852A8/l2, which depends on boundar
conditions, i.e., onwJ .

Substituting Eq.~A41! for As in Eq. ~A40! yields

F5
1

8pE d3r F 1l2 ~l2
“3“3As2A8!2

1~“3A81“3As!
2G . ~A42!

In the absence of flux loops“3As50 and Eq.~A42! re-
duces to the previousF(A8) as in Eq. ~A17!. The terms
which depend only onAs represent energies of flux loops i
the bulk and affect the thermodynamics of the bulk sup
conductors. Here we are interested in temperatures well
low Tc of the bulk so that fluctuations of these flux loops a
very slow and are then sources of frozen magnetic fields.
thermodynamic average is done only on the boundary fie
which determineA8, and are coupled toAs by the cross
terms in Eq.~A42!,

Fs5~1/8p!E d3r @22A8•“3“3A812“3A8•“3As#

5~1/4p!E
S
~A83“3As!•ds. ~A43!

The surface values ofA8 are determined bywJ . The SV
surface involves z integration of “3As with either
exp(6z/l), Eq. ~A18!, or a linear function, Eq.~A27!. In
either case the randomness in“3As causes this integral to
vanish. The relevant surface in Eq.~A43! is therefore the
junction surface.
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APPENDIX B: HIERARCHICAL REPLICA
SYMMETRY BREAKING

In this appendix we examine the full replica-symmetr
breaking formalism~RSB! and show that it reduces to th
one-step symmetry-breaking solution, as studied in Sec.
The method of RSB is based15,16on a representation of hier
archical matricesAab in replica space in terms of their diag
onal ã and a one-parameter functiona(u), i.e., Aab
→@ ã,a(u)#. In our caseAab is related to the inverse Green
function Gab

21 which was obtained by Gaussian variation
method~GVM!.

To derive this representation, consider the hierarch
form of a matrixÂ,

Â5(
i50

k

ai~Ĉi2Ĉi11!1ãÎ . ~B1!

Here Ĉi is n3n matrix whose nonzero elements are bloc
of size mi3mi along the diagonal; each matrix eleme
within the blocks is equal to one; the last matrix equals
unit matrix Ĉk115 Î . The matricesĈi satisfy relations which
are useful for finding the representation of the product
matricesÂB̂ . Since the hierarchy is formi /mi11 integers,
we have

Ĉi5(
j5 i

k

~Ĉj2Ĉj11!1 Î ,

Ĉi Ĉj5HmiĈj , j< i

mjĈi , j. i .

The matrix product with a matrixB̂,

B̂5(
i50

k

bi~Ĉi2Ĉi11!1b̃Î ~B2!

is found to be

ÂB̂5(
j50

k

~Ĉj2Ĉj11!F (
i5 j11

k

~aibj1ajbi !dmi2ajbjmj11

1(
i50

j

aibidmi G1 Î F(
i50

k

aibidmi1ãb̃G , ~B3!

wheredmi5mi2mi11.
In the limit n→0 mi becomes a continuum variableu in

the range 0,u,1 andai becomes a functiona(u); thus the
matrix Â is represented by@ ã,a(u)#. The product of two
matrices, using Eq.~B3!, becomesÂB̂→@ c̃,c(u)# where

c̃5ãb̃2^ab&,

c~u!5~ ã2^a&!b~u!1~ b̃2^b&!a~u!

2E
0

u

@a~u!2a~v !#@b~u!2b~v !#dv, ~B4!

and ^a&5*0
1a(u)du.
.

l

al

e

f

To find the inverseB̂5Â21 we solve forc̃51, c(u)50
and find

b̃2b~u!5
1

u@ ã2^a&2@a#~u!#
2E

u

1 dv

v2@ ã2^a&2@a#~v !#
,

~B5!

b̃5
1

ã2^a&
F12E

0

1 dv@a#~v !

v2@ ã2^a&2@a#~v !#
2

a~0!

ã2^a&
G ,
~B6!

@a#~u![ua~u!2E
0

u

dva~v !. ~B7!

The inverse Green’s function is from Eq.~27!

4pGab
21~q!5

1

2t
@dab~z1q2!2v0sab2q2s/t#, ~B8!

which for ŝ→@s̃,s(u)# parametrizes as@ ãq ,aq(u)# with

ãq5
1

2t
@q2~12s/t !1z2v0s̃#,

aq~u!52
1

2t
@q2s/t1v0s~u!#. ~B9!

Since the sum on each row ofŝ vanishes@Eq. ~28!# we
obtains̃5^s&. Therefore the denominator under the integ
tion in Eqs.~B5!,~B6! assumes the form

ãq2^aq&2@aq#~u!5
1

2t
@q21z1D~u!#, ~B10!

where the order parameterD(u) is defined by D(u)
5v0@s#(u). From Eq.~B5! the representation of the Green
function takes the form (4p)Gab→@ b̃q ,bq(u)# with

b̃q2bq~u!52tF 1

u@q21z1D~u!#
2E

u

1 dv
v2@q21z1D~v !#G .

~B11!

The GVM equation for s(u) is from Eq. ~28!
s(u)5exp@2B(u)#, where from Eq.~25!

B~u!54pE d2q

~2p!2
@ b̃q2bq~u!#5

g~u!

u
2E

u

1dvg~v !

v2
.

~B12!

Equation~B11!, after summation onq, identifies

g~u!52t ln
Dc

D~u!1z
. ~B13!

Using s8(u)5d@exp(2B(u)/2)#/du52s(u)g8(u)/u and
the definition ofD(u), D8(u)5v0us8(u) we obtain
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D8~u!

u
52

d

du FD8~u!

g8~u! G , ~B14!

which from Eq.~B13! can be written as

S 1u2
1

2t D dD

du
50 . ~B15!
T

.

i-

.

pl

s.
The solution of this equation is a step functio
i.e., D(u) jumps from zero to a constant value atu52t,
which is precisely the one-step solution.

We note that keeping finite cutoff corrections13 spoils this
correspondence. The variational method is, however,
signed for weak-coupling systems and an infinite cutoff p
cedure is appropriate.
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