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Landau-level mixing and spin degeneracy in the quantum Hall effect

V. Kagalovsky,* B. Horovitz, and Y. Avishai
Department of Physics, Ben-Gurion University of the Negev, Beer-Sheva, Israel

~Received 16 October 1996!

We study the dynamics of electrons in a magnetic field using a network model with two channels per link
with random mixing in a random intrachannel potential; the channels represent either two Landau levels or two
spin states. We consider channel mixing as a function of the energy separation of the two extended states and
show that its effect changes from repulsion to attraction as the energy separation increases. For two Landau
levels this leads to level floating at low magnetic fields, while for Zeeman-split spin states we predict level
attraction at high magnetic fields, accounting for electron spin resonance data. We also study random mixing
of two degenerate channels, while the intrachannel potential is periodic~nonrandom!. We find a single ex-
tended state with a localization exponentn'1.1 for real scattering at nodes; the general case also has a single
extended state, though the localized nature of nearby states sets in at unusually large scales.
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I. INTRODUCTION

The quantum Hall effect~QHE! remains a great attractio
for theoreticians and experimentalists. Of particular inter
is the divergence of the localization length at a discrete se
energies, corresponding to extended states. This has m
vated a large variety of methods for studying the pertin
metal-insulator transition as a critical second-order ph
transition,1 such as field-theoretical methods,2 semiclassical
methods,3,4 numerical methods,5 and finite-size scaling for
transfer matrices.6 Most of these works focus on propertie
near an isolated extended state with emphasis on the cr
exponentn of the localization length. The most recent e
perimental result7 n52.360.1 is in agreement with theore
ical predictions.4,6

The situation with a few extended states, allowing
coupling between these states, received less attention.
situation is relevant to the behavior of delocalized states
weak magnetic fields. It is well known that the existence
delocalized states is a necessary condition for the QHE
havior. On the other hand, scaling theory8 and numerical
studies9 imply that in a two-dimensional~2D! system in the
absence of a magnetic field all states should be localiz
Therefore, a scenario in which delocalized states ‘‘float u
above the Fermi level as the magnetic field decreases
been suggested.10,11Recent experiments12 show that, indeed
the energy of the lowest delocalized state floats up above
Fermi level as the magnetic field is reduced. This cor
sponds to a transition from an insulator to a quantum H
conductor at both low and high fields. Numerical studies o
few Landau bands13–17 focused on critical exponents, exce
for an early work by Ando,5 which supports the floating sce
nario. Ando’s work usedd-function impurities, which is,
however, not suitable when the impurity concentration is
low since bound states of thed potential shift the extended
state even for a single Landau band.5 We have recently
shown18 that two extended states attract each other, wh
leads to a minimum in the energy of the lower state. T
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attraction has also been predicted theoretically by Sh
bazyan and Raikh19 using a high-magnetic-field expansion

The system of two coupled extended states was also s
ied in the context of a spin-split Landau band.13–17 In the
absence of a Zeeman term it was found that two sepa
extended states appear, each with a localization expone
'2.3. Allowing for a finite Zeeman term leads to level a
traction at high fields.18 In fact, electron spin resonanc
~ESR! data20 have shown that the spin splitting has an u
usual nonlinear dependence on field. As shown below,
nonlinear dependence is consistent with localization p
nomena and level attraction of extended states.

A different type of system where two degenerate state
a strong field~e.g., spin states in the first Landau level! are
coupled by random mixing, but the scalar~i.e., intrachannel!
potential is absent, was recently studied.16,17,21,22This corre-
sponds to a spin-orbit coupling that is dominant relative
the scalar potential scattering. For white-noise interba
mixing21 it was found that an extended state at the origi
Landau-level energy exists, suggesting a distinct universa
class. For smooth interband disorder,22 it was suggested tha
there are two separate extended states as in the spin-split
in addition to a third extended state in between, at the or
nal Landau level.

In the present work we study these and other aspe
using various extensions of the network model introduced
Chalker and Coddington.6 In the network model electron
move along unidirectional links that form a closed loop
analogy with semiclassical motion on contours of const
potential. Scattering between links is allowed at nodes
analogy with tunneling through saddle-point potentials in
semiclassical model. The assumption that each link car
current only in one direction implies that the wave pack
are sufficiently localized in the transverse direction, i.e.,
magnetic length is small in comparison to the spacing
nodes or with the correlation length of the potential fluctu
tions.

Our paper is organized as follows. In Sec. II we descr
7761 © 1997 The American Physical Society
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the network model for one and two channels and relate p
rameters of the system to the transfer matrix. In Sec. III w
expand our earlier work18 and study the two-channel network
model corresponding to two coupled Landau bands. W
evaluate the energies of extended states as function ofD, the
bare energy separation of extended states in the absence
level mixing. In Sec. IV we investigate the two-level system
with random mixing while the scalar potential scattering is
periodic ~i.e., nonrandom! and consider different types of
symmetries for random mixing. Our results are summarize
in Sec. V, where the ESR data are also discussed. In Appe
dix A, using the one-channel network model, we test th
possibility of sublocalization behavior of the wave function
based on a possible fractal behavior of the nodes. In Appe
dix B the tunneling amplitude between Landau levels is es
timated.

II. THE NETWORK MODEL

Consider first a one-channel Chalker-Coddington~CC!
network,6 which has directed links and scattering at node
@Fig. 1~a!#. Propagation along links yields a random phas
f, thus links are presented by diagonal matrices with diago
nal elements in the form exp(if). The transfer matrix for one
node relates a pair of incoming and outgoing links on the le
@links 2 and 4 in Fig. 1~b!# to a pair of links on the right
~links 1 and 3!; it has the form

FIG. 1. Network model. Arrows indicate the direction of current
flow. The nodes marked bys andh are related by a 90° rotation.
~a! The strip hasMl links with periodic boundary conditions
(Ml56 in the figure!. In the two-channel case each link represent
two channels, i.e.,M52Ml is the number of transverse channels.
The thick line is a reference for measuring area in Sec. IV.~b! and
~c! Phase relations for two neighbor nodes.
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T5S eia1 0

0 eia2D S coshu sinhu

sinhu coshu D S eia3 0

0 eia4D .
~1!

In order for the system to be invariant, on average, un
90° rotation the next-neighbor node is obtained by rotat
Fig. 1~b! by 90° and writing the states on links 4 and 1
terms of those on links 2 and 3. The transfer matrix then
the same form as in Eq.~1! with a parameteru8 replacing
u, where6 sinhu851/sinhu and the phasesa1 ,a2 ,a3 ,a4 are
replaced by2a3 ,a1 ,a41p,2a2 @Fig. 1~c!#. We therefore
describe scattering at the nodes indicated in Fig. 1 by circ
with transfer matrixT(u) and at the nodes indicated b
boxes withT(u8).

The phasesa i can be absorbed into phases describ
propagation on links. Since a shift by a common phase in
links of a given column does not affect the Lyapunov exp
nents of the network, we can choose the phases on the
as 6a,6b @Fig. 1~a!#, where a5 1

2a12
1
2a42a2 and b

5 1
2a12

1
2a41a3. Note that the sum of left links equal

those of right links1p. For a random potential~Sec. III!
these link phases are considered as random, while for a
riodic potential~Sec. IV! we choose specific sets. The appr
priate procedure is then to multiply transfer matrices
links and nodes alternately and derive Lyapunov expone
for strips of width up to 64 and of length of typicall
60 000 units~Sec. III! or 240 000~Sec. IV!. At these lengths
our error for the localization length~i.e., for the inverse of
the smallest Lyapunov exponent! is &0.5%.

In the following we relate the node parameteru to the
electron energy by using known results for scattering from
saddle-point potential.23 The transmission probabilityT of an
electron with energyE through a saddle-point potentia
VSP(x,y)52Uxx

21Uyy
21V0 in a perpendicular magneti

field B is given by

T5
1

11exp~2pe!
, ~2!

where

e[@E2~n1 1
2 !E22V0#/E1 , ~3!

and

E15FVH g21S vc

4 D 2J 1/22 1

4
V22S vc

4 D 2G1/2, ~4!

where V5@ 1
4vc

21(Uy2Ux)/m]
1/2, g5(Uy1Ux)/4mV, m

is the electron mass, andvc5eB/mc is the cyclotron fre-
quency. The oscillator frequencyE2 is

E252FVH g21S vc

4 D 2J 1/21 1

4
V21S vc

4 D 2G1/2. ~5!

From Eq.~2! the ratio of reflection and transmission c
efficients is exp(2pe). On the other hand, the transfer matr
Eq. ~1! determines this ratio as (sinhu)2. Therefore, the rela-
tion between node parameteru in the CC model and the
electron energy is

s
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e52
2

p
ln~sinhu!. ~6!

We note that unlike discrete Landau levels, the sadd
point potential allows for a continuous energyE for each
discrete state n. Furthermore, for vc@g, E1→0,
E2→vc , andE→\vc(n11/2)1V0 corresponds to discret
Landau levels. In the opposite limit ofvc!g we have
E1→(Ux/2m)

1/2, E2→(2Uy /m)
1/2, and the integern corre-

sponds to a quantum number of the harmonic poten
Uyy

2.
In the case of one channel per link a single extended st6

is at e50 ~i.e., u50.8814), corresponding to the center
any bandn, E5(n11/2)E21V0. Numerical studies of this
system with widthM and periodic boundary conditions con
firm the one-parameter scaling hypothesis, i.e., the local
tion lengthjM is given by a scaling functionf , where

jM
M

5 f S M

j~E! D , ~7!

with j(E);uEu2n and n52.560.5. This result is in good
agreement with experimental data for spin resolved leve7

numerical simulations using other models,16,24 and a semi-
classical derivation4,25 that predictsn57/3. We have re-
peated the one-channel calculation~Appendix A! with par-
ticular emphasis on the possibility of sublocalization; we fi
that localized states decay as a regular exponential.

A two-channel network, i.e., two channels per link,
characterized by parametersu andu2Du, which determine
the tunneling amplitude at the node for each channel w
Du related to the relative energy interval between the ba
of the two channels. The transfer matrix is parametriz
as14

T5SU1 0

0 U2
D SC S

S CD SU3 0

0 U4
D . ~8!

The transfer matrix at a node is composed of the blocks

C5S coshu 0

0 cosh~u2Du!
D , S5S sinhu 0

0 sinh~u2Du!
D .
(9)

Defining an energy parameterD such that e2D
52(2/p)ln(sinh(u2Du), we obtain

C5S A11exp@2p~e2D!# 0

0 A11exp@2pe#
D ,

S5S exp@2p~e2D!/2# 0

0 exp@2pe/2#
D . ~10!

Propagation along links yields random phasesf i ,i5124,
and also allows mixing between two different channels. I
described by blockU:
-

al

e

a-

,

h
s
d

s

U5S eif1 0

0 eif2D S A12x2 2x

x A12x2
D S eif3 0

0 eif4D ,
(11)

wherex2 is the mixing probability between different levels
We note that the maximal number of independent para

eters in a U~2! matrix presented in Eq.~11! is 4. These
phases can be chosen asd51/2(f11f21f31f4),
d1521/2(f21f4), andd2521/2(f22f3) so that

U5eidS eid1A12x2 2eid2x

e2 id2x e2 id1A12x2
D . ~12!

The phased corresponds to a scalar potential; it can be eit
random~Sec. III! or fixed for a periodic potential~Sec. IV!.
If d52pI ~where I denotes an integer!, the U matrix
changes its symmetry group from U~2! to a unitary unimo-
dular SU~2!. In Sec. IV we study the effect of various sub
groups of U~2! on the critical properties of the system.

III. NONDEGENERATE LEVELS WITH RANDOM
POTENTIAL AND RANDOM MIXING

We study here a system of two Landau levels in the pr
ence of a smooth random potential, so that for proper
scription we use the most general form of Eq.~12! with four
random variables. In the absence of level mixing we kn
from results of the one channel system6 that e50 corre-
sponds to extended states. This defines ‘‘bare’’ exten
states atEex5E2(n11/2)1V0 and the bare energy splittin
of the n50,1 states is thenE2. Note that the splittingE2,
which is magnetic-field dominated atvc(m/U)

1/2.1, re-
mains finite asvc→0 and is potential dominated a
vc(m/U)

1/2,1 ~hereUx5Uy[U). The latter region is ac-
ceptable for a network model if the correlation length of t
potential fluctuation is long compared to the magnetic leng
so that locally the saddle-point potential determines a fin
splitting. The splittingD5E2 /E1 is therefore bounded by
D>2 atvc→0.

The application ton50,1 Landau levels assumes th
mixing of states withn’s differing by Dn52 is much
smaller than for those withDn51. Mixing or transition rates
can be evaluated for a potential of the for
(1/2)Ũ(x21y2)2Ũy3/l, wherel is a measure of the cor
relation length of the random potential. For states near
local minimum we find that mixing is given by Eq.~B6! ~see
Appendix B!. We therefore expect our results for then50
state, within the two channel model, to be valid down
mvc

2/U'1/ln(l/l)&1 ~assumingŨ'U) so that the range o
valid mvc

2/U values is extended down to lower limits fo
longer-range potential fluctuations. The results for then51
state, however, are not directly relevant.

We consider below also the case of a spin-split sin
level n50 for which V056(1/2)g*mB , whereg* is the
electrong factor andmB is the Bohr magneton. The bar
extended states then correspond toEex5

1
2E26

1
2g*mB , so

thatD5g*mB /E1.
The system@see Eqs.~8! and~10!# is, on average, invari-

ant under 90° rotation if at the next-neighbor node the tra
mission and reflection~of each channel! are interchanged
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i.e., e→2e and e2D→2e1D. The system is then sym
metric undere→2e, D→2D and the extended states
e i ( i51,2) becomee i(2D)52e i(D). A further translation
of energies byD returns the system to itself except for
1↔2 interchange; e2(2D)1D5e1(D), hence e1(D)
1e2(D)5D. Therefore, results for the two energiese1,2 are
constrained by the conditione11e25D.

We proceed further by calculating normalized localizati
length jM /Ml for systems withM516,32 ~the size of the
T matrix is M3M and Ml5M /2 is the number of links
across the strip! and different values ofe andD. For D50
we used alsoM564, which affected critical energies b
3%, which is within 5% from the result of Wanget al.15 The
couplingx is chosen to be uniformly distributed in the inte
val @0,1#; we checked that other distributions inx lead to
similar results. Finite-size scaling is then used for fitting o
data onto a single curvef „j`(e)/Ml… extracting values of
localization lengthj` for the infinite 2D system. Finally, we
look for the critical energiese i and critical exponentn by
requiring j`;ue2e i u2n. The raw data for one particularD
~see Fig. 2! represents the characteristic features of the s
tem. One can see that the values ofjM /Ml for any two
energy values whose sum equalsD coincide, as we expec
from the symmetry condition. Another important feature
that for D*1 we have two pronounced maxima
jM /Ml , which we expect to be near the critical energie
this is supported by the scaling procedure. We find that
proaching the critical energies from outside yiel
n52.560.5. The states between the two critical energ
seem to be localized, i.e.,jM /Ml decreases withM , although
the decrease is rather slow.

The critical valuese1,2 are presented as a function ofD in
Fig. 3. We cannot calculatejM /M for D.3.5 because of
roundoff errors. TheD→` case can be solved analytically,19

since then, near one extended state the other channel is
far from tunneling and its trajectory is a closed loop betwe
the nodes. Eliminating the closed loop variables and ass
ing that it mixes with links of only one node leads to e
tended states ate1(D);1/D and e2(D)2D;21/D. The
rather flat behavior ofe1(D) up to D,3.5 implies that the
asymptotic behavior19 sets in at a higherD.

FIG. 2. Renormalized localization lengthjM /M as a function of
e for D52.2.1 ’s correspond toM532 andh ’s to M564 system
widths. Arrows point to the location of extended states in the
sence of level mixing. The energies of extended states~near the
peaks ofjM /Ml) are closer than the arrow positions, demonstrat
level attraction.
r

s-

;
p-

s
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The most remarkable aspect of the data is the crossin
e i(D) with the bare extended states atD'0.5. Usually one
expects that mixing affects mainly extended states leadin
level repulsion of these states. This expectation leads
e1(D) approaching zero from below ande2(D) approaching
D from above, as implied by Fig. 2 of Ref. 13. Contrary
this expectation we find that aboveD'0.5 there is level
attraction.

Level attraction is also supported by the following obs
vation: Parametrize the upper branch of criticale by u, i.e.,
e52(2/p)lnsinhu; at D50, e50.23, i.e.,u50.65,13,15 and
e increases withD so thatu→0. In the level repulsion sce
nario e.D so that the parameterDu in Eq. ~9! varies in the
range 0>Du>20.88. We could, however, define the mod
with parametersu,Du ~instead ofe,D) with Du unbounded,
which implies thate2D must change sign.

We present now results for the energies of extended st
as a function of magnetic field by relatingD toB via Eqs.~5!
and ~6!. As noted aboveE2 is always finite so thatD>2
(D→2 for B→0 andUx5Uy) and thus we are always in th
level attraction regime. The results are shown in the inse
Fig. 3 by diamonds~assuming, for simplicity,Ux5Uy[U)
and the full line is the lower bare extended state energy.
data show a minimum atvc(2m/U)

1/2'0.5 in the lower
state, consistent with floating, and are a result of level attr
tion due to Landau-level mixing. Allowing for mixing with
the n52 Landau level may cause floating of then51 state
as well, but will have a small effect on the floating of th
n50 state, as discussed above. ForN Landau levels our
symmetry argument shows that the extended state ene
come in pairs whose average is the same as for the
states, i.e.,e i1eN112 i5(N21)D, with i51, . . . ,N. Hence

-

g

FIG. 3. Critical valuese as functions ofD. Full lines are the
bare extended statese50 ande5D are shown. Inset: energy of th
lowest extended state as a function of magnetic field with full le
mixing (L) and with reduced mixing (1). The full line is the
lowest bare extended state. HereE85E(2m/U)1/2 and
vc85vc(2m/U)

1/2.
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we expect that the energies of the lower half states incre
at low fields, consistent with the floating scenario and wi
the experimental data.12

The assumption of full mixing, i.e.,xP@0,1# in Eq. ~11!,
is not valid for strong magnetic fields where tunneling b
tween Landau levels should be suppressed. We model
situation in a reduced mixing model~see Appendix B!,
where the parameterx in Eq. ~12! is now chosen randomly in
the reduced range of@0,exp(2mvc

2/U)#. The results are
shown in the inset of Fig. 3 by pluses. The minimum in th
lower level is now more pronounced and is at a higher fie
thevc(2m/U)

1/2'1.
Finally, we present the application of our data to extend

state energies for a Zeeman spin splitting of a Landau ba
whereD5g*mBB/E1. SinceD can cross the value'0.5 we
predict that spin splitting is larger than expected for sma
fields ~level repulsion! and is smaller than expected for larg
fields ~level attraction!. In fact, we claim that level attraction
accounts for ESR data,20 which show a nonlinear depen-
dence of the spin splitting onB. In particular, the data for
N50 in the range 8214 T is visibly nonlinear in the range
8212 T.

To demonstrate the effect we considerg*mBB/vc
5g*m/2m050.018~e.g.,g*50.51 with an effective to free
electron mass ratio of28 m/m050.07) and replot the data of
Fig. 3 for the splittingDE5E1(e22e1) in Fig. 4. The ex-
perimental data atB.8 T fit our results if (U/m)1/25310
GHz is chosen~see Sec. V for independent data leading
this value!; the field scale is thenvc(U/m)

1/2'1.3B T. The
deviation from a straight line measured at 8212 T cannot be
accounted for by band-structure calculations~see Sec. V!.
The data, therefore, provide strong support for level attra
tion at these fields.

IV. DEGENERATE LEVELS WITH RANDOM MIXING

We consider in this section a single Landau level with tw
degenerate spin states~i.e., no Zeeman term! where the only
randomness comes from mixing of the spin states, e.g.,
spin-orbit scattering. A model of this type was studied b
Hikami, Shirai, and Wegner21 with the Hamiltonian

FIG. 4. Energy of spin splitting of extended states (L ’s! with
bare splitting ~straight line! of g*mBB50.018vc .
GaAs/AlxGa12xAs data ~Ref. 20! fit our results with (U/m)1/2

5310 GHz and the field scale isvc(U/m)
1/2'1.3B T.
se

-
is

d

d
d

ll

c-

y

H5
1

2m
~p1A!21h~r !–s, ~13!

whereh(r ) is a random field in thex and y directions and
projection to states of the lowest Landau level is understo
This model has an extended state at the original Lan
level21 (e50) and possibly two additional extende
states,22,16,17symmetric arounde50.

We wish to study the Hamiltonian@Eq. ~13!# by a network
model. We therefore replace the continuum by a perio
potential so that the nodes of the network are the periodic
of saddle points. In general, a magnetic flux through a u
cell leads to Aharonov-Bohm phases on the links that
crease linearly from, say, left to right. This, however, reduc
the symmetry arounde50 as checked by our simulations
this may be related to the formal loss of invariance un
90° rotations. We therefore choose the unit cell to have
integer number of flux quanta.

As shown in Figs. 1~a! and 1~b!, the phases on the link
can be represented by two phasesa,b. In order to choose
relevant values ofa,b we consider the pure system witho
spin mixing and try to make its spectra similar to that of t
p2/2m term in Eq.~13!, i.e., a constant, with a total numbe
of states close to that of a Landau level. Extended state
the pure system can be found by applying transfer matr
across a unit cell~i.e., two nearby nodes in Fig. 1!, which by
Bloch’s theorem lead to multiplication by exp(iq) along the
strip or exp(ik) in the direction across the strip. This proc
dure yields the dispersion relation

cosh~pe/2!5
sinq1sin~k2a1b!

2sin~a1b!
. ~14!

This relation shows that there is a maximal energyemax in
the band where cosh(pe/2)51/sin(a1b). The density of
states is linear ate→0 and saturates atemax. The total num-
ber of states in the band approaches that of a Landau l
for a1b→0. However, ata1b50 the spectra Eq.~14! is
singular, so that it seems that a small but finite value
a1b is needed.

The spin term in Eq.~13! is taken to mix spin states o
links. Since all links are unidirectional the transfer matrix
equivalent to an evolution operator that is a rotation in s
space exp@(i/\)*h(r )–s dt#. Since successive rotations abo
thex andy axes produce a rotation about thez axish should
be a 3D vector. The effect of these rotations is equivalen
an SU~2! transfer matrix@Eq. ~12! with d50# and we can
interpret all independent phases as corresponding angle
the pseudofield. Below we consider such transfer matri
with different sets of independent parameters for the cas
two degenerate levels.

Consider first the case whenT is a real matrix, i.e., the
pseudofield is only in they direction andT then has SO~2!
symmetry,

U5S cosf 2sinf

sinf cosf D . ~15!
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The results for the case with the Haar measure, i.e.f
P@0,2p# with cosf uniformly distributed, are shown in Fig
5. The data show a single extended state ate50.

We know that random U~2! transfer matrices lead to tw
extended states. It is therefore interesting to modify
SO~2! system by a random potential leading to a U~1!3
SO~2! system

U5eidS cosf 2sinf

sinf cosf D . ~16!

The data maintain a single peak ate50 in this case as well
Fitting the data of those two cases by a smooth functionf so
that jM /Ml5 f (eMl

1/n) yields n'2.2 for the critical expo-
nent~Fig. 6!. Actually, one should expect in those two cas
behavior similar to the one-channel model due to the f
that matricesU commute with each other. Our results su
port this expectation.

Next in the hierarchy of symmetries is the SU~2! group
@Eq. ~12! with d50# with three independent phases.~A
choice of two independent phases is not closed under suc
sive transfer operations.!

The most general case of a network model correspond
to the Hamiltonian Eq.~13! is that of SU~2! matrices on links
and a complex transfer matrix@Eq. ~1!# at nodes. TheT
matrix on links is then a U~2! matrix; however, only its
SU~2! phases are random, while the phased in Eq. ~12! is
regular, having the values6a,6b periodically.

Before presenting numerical results we discuss the s
metries for which j`(e) is invariant. Note first that
a→a1p or b→b1p is a symmetry, since one can sh
even or odd columns by a constant phase. Shifting byp
results ina1p and 2a12p @the latter is equivalent to
2(a1p)1p# or b1p and 2b1p ~the latter is now
equivalent to2b2p). Consider next the up-down reflectio
symmetry that yields~after shifts byp) the equivalence
(a,b)→(2a,2b). The right-left reflection symmetry lead
to (a,b)→(b1p/2,a2p/2). Indeed, looking from right to
left, the links with phases (b,2b) come first~actually with
opposite signs since propagation is to the left, but by
previous symmetry signs can be changed!, while
(a,2a1p) come second; shifting by6p, this yields the
stated equivalence. The next symmetry is a property of
infinite 2D system: if we rotate our system by 90° and th
shift the phases properly we get (a,b)→„(a

FIG. 5. Renormalized localization lengthjM /Ml as a function
of energye for a system with SO~2! mixing between the levels
L ’s correspond toM516, 1 ’s to M532, andh ’s to M564
system widths.
e
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t
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e

e
n

1b1p)/2,(a1b2p)/2…, but due to the right-left symme
try this is just„(a1b)/2,(a1b)/2…. If this symmetry holds
for our finite strips then it is sufficient to consider only th
diagonals in the (a,b) plane. Note that all these symmetrie
hold for the spectra of the pure system Eq.~14!. Finally, we
consider a symmetry that is due to the random SU~2! phases.
A shift of the link phased in Eq. ~12! by p is equivalent to
a shift of p in the SU~2! phasesd1 ,d2; since the latter are
random the result is invariant. Thus, in Fig. 1~a! the phase
2a1p can be replaced by2a and a column shift byp/2
yields (a,b)→(a1p/2,b) or similarly (a,b)→(a,b
1p/2). Thus, with rotation symmetry it is sufficient to con
sider phases (a,a) in the range 0,a,p/4.

We checked all these symmetries numerically. It turn
out that all symmetries hold; however, the rotational symm
try requires largerM and a higher number of iterations tha
in the U~2! case, in particular for largea,b. This has the
following probable explanation: the periodic phasesa,b in-
troduce a new irrelevant length scale in the system. In or
to go beyond this scale to find the symmetries one need

FIG. 6. Fit of raw data from Fig. 5 for a system with SO~2! and
for a system with U~1!3SO~2! mixing between the levels:jM /Ml

versus eMl
1/n with n52.2. L ’s correspond toM516, 1 ’s to

M532, andh ’s to M564 system widths for SO~2! case;3 ’s
correspond toM516, n ’s to M532, and! ’s to M564 system
widths for the U~1!3 SO~2! case.

FIG. 7. Renormalized localization lengthjM /Ml as a function
of energye for a system with SU~2! matrices on links and and a
complex transfer matrix at nodes with sma
(a520.175,b50.075) phases after 480 000 iterations.L ’s corre-
spond toM516, 1 ’s to M532, h ’s to M564, and3 ’s to
M5128 system widths.
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investigate much longer systems@at least 300 000 iteration
in comparison with 60 000 in the U~2! case#. The rotational
symmetry was found for the largest system sizeM5128 for
some particular phases. It is expected to hold forM→`.

The results for (a520.175,b50.075) and
(a520.005,b520.005) are shown in Figs. 7 and 8 r
spectively. The data exhibit single peaks neare50. The pe-
culiar property of the data is that in the range betwe
e'20.1 and e50 the renormalized localization lengt
j16/8,j32/16,j64/32, which indicates a band of extende
states; however, the data forM5128 shows
j64/32.j128/64, which determines these to be localiz
states. This is just another manifestation of the irrelev
length scale mentioned above.

We consider, finally, the casea5b50 in Figs. 9 and 10.
Although the pure case is singular, the disordered syste
well behaved, the data converge faster and there is no i
evant length scale, i.e., the localized behavior ofeÞ0 states
sets in already atM532. We therefore considera5b50 as
the generic case for SU~2!.

There is clearly a single extended state ate50 or, more
precisely, at least all states withueu.0.03 are localized. Re
call, that in the U~2! case withD50 the extended states ar
at e'60.2, well separated frome50 ~see Refs. 13–15!.

FIG. 8. Renormalized localization lengthjM /Ml as a function
of energye for a system with SU~2! matrices on links and a com
plex transfer matrix at nodes with small (a5b520.005) phases
after 480 000 iterations.L ’s correspond toM516, 1 ’s to
M532,h ’s to M564, and3 ’s to M5128 system widths.

FIG. 9. Renormalized localization lengthjM /Ml as a function
of energye for a system with SU~2! mixing between the levels
L ’s correspond toM516, 1 ’s to M532, andh ’s to M564
system widths.
n

t

is
l-

Hence, if there are extended states in the SU~2! case near
e50, they are extremely close toe50 and therefore are no
related to those of the U~2! case as has been proposed.22

The critical exponent in Fig. 10 isn'1.1. Thus the SU~2!
case is a distinct universality class. This is consistent w
the occurrence of a singular density of states and the dis
value ofsxx found by Hikamiet al.21

Finally, we consider an interpolation between U~2! and
SU~2! by allowing the link phase@d in Eq. ~12!# to be ran-
dom in a restricted range ofp@2p,p#. On long scales the
randomness may accumulate, allowing an SU~2! behavior
only at p50. However, it is known that a metal-insulato
transition ~in the absence of a magnetic field! occurs at a
finite ratio of spin-orbit to scalar randomness.26 Thus it may
be possible that SU~2! behavior sets in at a finitep. Fig-
ure 11 shows our data withp50.3; the best fit for the scal
ing form yields extended states ate560.16 with n52.5.
Since the extended states of the U~2! case (p51) are at
e'60.2,13–15we conclude that the two extended states
proach each other asp is reduced, until belowp'0.2 they
merge and onlye50 corresponds to an extended state~or
states!. The range betweenp'0.2 andp'0.05 is difficult to
analyze since the localized nature of the states neare50 sets
in only atM5128; apparently there is an irrelevant leng
scale, similar to the one we had above. Belowp'0.05 the

FIG. 10. Fit of raw data from Fig. 9 for a system with SU~2!
mixing between the levels:jM /Ml versuseMl

1/n with n51.1.

FIG. 11. Renormalized localization lengthjM /Ml as a function
of energye for a system with reduced U~2! mixing between the
levels (p50.3). L ’s correspond toM516, 1 ’s to M532, and
h ’s to M564 system widths. A fit to a scaling form yields tw
extended states ate560.16, withn52.5
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behavior is close to that of the SU~2! ~i.e., p50) case, i.e.,
Figs. 9 and 10. Thus we have a U~2! to SU~2! phase transi-
tion at a finitep, p'0.2.

We summarize our results in Table I. The table shows
different symmetries involved with their critical properties

V. DISCUSSION

We have studied two types of systems:~i! nondegenerate
states with random mixing and random scalar potential
~ii ! degenerate states with randomness only in the mix
terms. The system with nondegenerate states is releva
two types of experimentally studied cases. The first cas
where nondegeneracy is represented by Landau-level s
ting. We find that the lower Landau level has a minimum
a function of magnetic field, consistent with the floatin
scenario.10,11This result accounts for a transition from a Ha
liquid to an insulator at both high and low fields, as observ
experimentally.12

The second case is where nondegeneracy is represe
by the Zeeman spin splitting. In this case the bare splitt
D ~which is g*mBB/E1 in the simplest case! can cross the
value'0.5 where level repulsion crosses into level attra
tion. We predict, therefore, that the spin splitting of the e
tended states is larger~smaller! than the bare Zeeman spli
ting at low ~high! fields. To estimate the field correspondin
to D'0.5 we use data27 on the temperature scaling of th
conductance peak in GaAs/AlxGa12xAs, which show that the
low-temperature scaling of theN50↓ peak nearB56 T is
modified at a crossover temperature of'0.3 K. An analysis
of tunneling through saddle-point barriers25 shows that the
crossover temperature is T15\U/2pmvc , where
U(5Ux5Uy) is the barrier curvature. SinceT1!vc'120 K
atB56 T ~using an effective mass28 of m/m0'0.07) Eq.~4!
yields E1'\U/mvc52pT1'2 K and (\U/m)1/2'15 K.
Using the bulk value20 g*50.44, we obtainD'1, i.e., level
attraction is predicted aboveB'4 T ~whereD'0.5).

Spin splitting of extended states can be directly probed
ESR; the extended electromagnetic wave couples domina
the extended states. Experimental data20 on Landau levels
N50,1,2 show a spin splitting that is nonlinear inB and was
fitted by a quadratic polynomial. Band-structu
calculations28,29show that at large fields the pure system h
a spin splitting of the formDE05g*mBB1nN , assuming

28

nN!vc ~in the more recent calculation29 the linear form is
valid for N50,B.6 T!.

The nonlinearity is best seen in theN50 data, which span
B58214 T and is clearly nonlinear in the range 8212 T.
The band-structure calculations28,29 predict linear behavior,
at least atB.6 T. We propose then that the deviation fro
linearity is due to localization effects, i.e., level attractio
Note also that if indeed the ESR transition probes only

TABLE I. Symmetry classes of random phases.

Group Link phasesa,b
No. of energies with
extended states n

SO~2! arbitrary 1 2.2
SU~2! 0 1 1.1
U~2! random 2 2.5
e

d
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tended states, it accounts for the remarkably low linewidt20

of 50 mT.
To fit the data we chooseDE05g*mBB1n0, with

g*m/2m050.018 andn050 ~i.e., for28m/m050.07 we have
g*50.51). The parameterD of Fig. 3 is nowD5DE0 /E1,
allowing the data of Fig. 3 to be replotted as the splitti
DE5E1(e22e1) in Fig. 4. The experimental data could als
be fitted with a smallerg* by increasingn0, e.g.,g*50.44
with n0511 GHz. The splitting in frequency units is give
by (U/m)1/25310 GHz, while the field scale is set b
vc(U/m)

1/251.3B T.
Figure 4 shows nonlinear behavior with a decreas

slope forB.8 T, in agreement with the experimental data20

Below 8 T we predict a different trend with the energy spl
ting crossing the bare one at'4 T ~Fig. 4! and becoming
larger than the bare splitting atB,4 T. ~Recall that the bare
splitting itself, which should be determined by a ban
structure calculation, may be nonlinear inB for these lower
fields.28,29! We propose then that extending the ESR data
lower and higher fields can serve as a unique tool for tes
our predictions for level attraction and repulsion.

We have also studied the network model with rando
mixing of two degenerate states, while the scalar potentia
periodic ~nonrandom!. The random part of the transfer ma
trix Eq. ~12! is then an SU~2! matrix. We believe that this
model corresponds to that of Hikamiet al.21 Eq. ~13!. There
are, however, some differences.~a! The continuum transla-
tion symmetry of the free particle term in Eq.~13! is replaced
by a periodic potential with extended states in the band
Eq. ~14!. This band resembles the continuum one for sm
a,b. ~b! The random fieldshx ,hy of Eq. ~12! correspond in
our case to a general SU~2! matrix, i.e., we have also a ran
dom hz component. While Eq.~13! including a randomhz
was not explicitly studied, we believe that the noncommu
tive Pauli matricessx ,sy generatesz terms in the time evo-
lution ~or in perturbation theory! and the models are there
fore equivalent.

Our results for the SU~2! model show that for small bu
finite a,b a single extended state appears ate50, though the
localized nature of nearby states appears only at unusu
wide strips (M5128). This indicates that the phasesa,b
produce an additional~irrelevant! length scale, which render
numerical analysis more difficult. Remarkably, for the cho
a5b50 the irrelevant length scale disappears and we fin
clear single extended state ate50. Finite-size scaling is well
obeyed~Fig. 10! and an exponentn51.1 is found. Thus the
SU~2! network model forms a distinct universality class.

Our SU~2! data are inconsistent with the argument
Lee22 and with the numerical study of Minakuchi an
Hikami.17 The argument of Weiet al. is qualitative and ap-
plies to slowly varying random fieldsh(r ), while in our case
h(r ) is uncorrelated between unit cells. We do not exp
that this will change critical properties since correlations w
vanish along long loops in both cases. The numerical dat
Minakuchi and Hikami, who study Eq.~13!, show three ex-
tended states. At present we cannot account for this disc
ancy with regard to the location of extended states; altho
Eq. ~13! is defined differently from our SU~2! model, the two
should be equivalent, as discussed above.

Experimental realizations of the SU~2! model correspond
to systems with dominant spin-orbit coupling. We pred
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that in a usual random system that has spin-split levels,
creasing the strength of spin-orbit coupling would shift t
extended states so that they approach each other, un
some critical value of the spin-orbit coupling, the energies
these two extended states would merge. We simulated
situation by allowing randomness in link phases to vary
the rangep@2p,p# range. We find that belowp'0.2 the
system behaves like an SU~2! one, i.e., an extended state~or
states! at the single energy of the band center.
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APPENDIX A: TEST FOR SUBLOCALIZATION

The simplest argument for deriving the 7/3 exponent4 is
based on the semiclassical picture. An electron with ene
EÞ0 follows semiclassical constant potential contours3 on
clusters of size of the percolation lengthjp , which, accord-
ing to percolation theory, diverges asjp;uEu24/3. An elec-
tron can propagate to a distancer@jp by tunneling events
between clusters, each event reducing the wave function
factor exp(2auEu), wherea depends on potential barrier pa
rameters. These tunneling events occur at saddle poin
the potential that are on the infinite percolating cluster
E50. Assuming that these saddle points are homogeneo
distributed, i.e., their number isr /jp , we find that the total
wave-function decay is

@exp~2auEu!# r /jp5exp~2r /j!. ~A1!

Hence the localization lengthj;jp /uEu;uEu27/3.
We wish to test the homogeneity assumption, i.e., whe

the number of tunneling events isr /jp . In the theory of
percolation the infinite cluster at the critical energy has
backbone consisting of alternating sequence of singly c
nected ~‘‘red’’ ! bonds and multiply connected~‘‘blue’’ !
bonds.30–32 It is conceivable that tunneling occurs at re
bonds of the infinite cluster, i.e., bonds whose eliminat
disconnects the infinite cluster. Analytic32 and numerical33

studies show that the number of red bondsL red between two
points separated by a correlation lengthjp diverges as
E21; therefore, at the scalesr5jp;E24/3 we obtain
LBB;r 3/4. If we assume that the number of tunneling eve
is (r /jp)

3/4, the derivation of the localization length Eq.~A1!
is now modified to exp@(2aE)(r/jp)

3/4#;exp@2(r/j)3/4#. The
consequences are that now the localization length expo
n-

at
f
is

ty

y

a

in
t
sly

er

a
n-

n

s

nt

is modifiedj;E28/3 and more significantly that sublocaliza
tion appears with a weaker exp@2(r/j)3/4# decay. To check
this possibility consider how it affects finite-size scaling a
in particular the region of localized states.34 Suppose that
wave function on an M3M square decreases a
exp@2(M/j̃M)

b#. Then at distancer.M , whereM is the
width of the strip, it decays as in a 1D strip, i.e.,
exp@2(M/j̃M)

b(r/M)#5exp@2r/jM#, andjM is the value that
we calculate numerically; hencejM5( j̃M /M )bM . On on
the other hand, by the scaling hypothesisj̃M /M5 f (j/M ),
which for j! M yields j̃M /M5j/M and therefore
jM /M5(j/M )b. Therefore an asymptotic tangent to the fi
ting curve of log(jM /M) versus log(M/j) should have a slope
2b (23/4 if the idea of red bonds is valid!. We perform
optimization procedure using our results as well as data fr
Chalker and Coddington.35 The fitting curve~Fig. 12! and its
tangent in the rangej!M show conclusively thatb cannot
be distinguished from unity and therefore the localized wa
functions decay exponentially.

APPENDIX B: MIXING OF LANDAU LEVELS

We wish to estimate the mixing probability of Landa
levels on the links, i.e., far from saddle points. We consid
then the tunneling rate between Landau levels in a wea
perturbed harmonic potential. We choose the potential on
links asV(x,y)5(1/2)Ũ(x21y2)2(Ũ/l)y3; l is a a mea-
sure of the correlation length of the potential. We perform
standard change of variables

p̂5p̂2
eÂ

c
, X̂5x2

cp̂y

eB
, Ŷ5y1

cp̂x

eB
. ~B1!

X̂ and Ŷ are slow guiding center coordinates andp̂x,y are
operators of fast cyclotron motion. A Schro¨dinger equation
for the fast variables~choosingcp̂x /eB5z as a coordinate
and treatingX̂ and Ŷ adiabatically! has the form

FIG. 12. Fit of the data for the one-channel model:jM /M ver-
susM /j and a tangential straight line with slope equal to unity.
F S 1

2m
1

Ũ

2m2vc
2D S d

dz
1
Ũm2vcX

mvc
21Ũ

D 21 m

2 S vc
21

Ũ

m
2
3ŨY

lm D S z2
ŨY/m2~3Ũ/lm!Y2

vc
21Ũ/m2~6Ũ/lm!Y

D 21 Ũ

l
z3Gcn~z;X,Y!

5En~X,Y!cn~z;X,Y!. ~B2!
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Eigenvalues of Eq.~B2! can be interpreted36 as local non-
equidistant Landau levelsEn(X,Y) depending on the class
cal guiding center coordinates.

We estimate the tunneling rate between neighbor Lan
levels using Dykhne’s formula37,38

Pn,n11;expF2~2/\! ImE
0

tc
~En112En!dtG , ~B3!

whereEn11.En for all real times andtc is a point in the
complex time plane where they cross. We solve Eq.~B2!
keepingX andY as fixed parameters and obtain to first ord
in 1/l

En112En'\vcS 11
Ũ

mvc
2 2

3ŨY/l

mvc
21Ũ

D . ~B4!

Note that we are considering quasibound states near the
minimum ofV(x,y), i.e.,Y!l. We solve equations of mo
tion for Y in a harmonic potential, substitute this solutio
into Eq. ~B4!, and find
au

r

cal

tc5
p

2

mvc

Ũ
6 i

mvc

Ũ
ln
2l~mvc

21Ũ !2

3mŨvc
2A

, ~B5!

whereA is the amplitude of oscillations in theY direction.
Note thatŨA is a measure of the center coordinate ener
which corresponds to the width of a Landau band; since
width is less than or on the order of\vc we have
A&A\vc /Ũ5 lAmvc

2/Ũ, where l is the cyclotron length.
We find crossings at conjugate points, as one expects for
Hamiltonians.38 Evaluating, then, Eq.~B3!, we find that the
main contribution to the tunneling~in this adiabatic approxi-
mation! is independent onn and proportional to

Pn,n11;expS 2
mvc

21Ũ

Ũ
ln
2l~mvc

21Ũ !2

3lAmŨvc
3 D . ~B6!

For transitions fromn to n1Dn the term in the exponent is
multiplied byDn.
s.

s.
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