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Landau-level mixing and spin degeneracy in the quantum Hall effect
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We study the dynamics of electrons in a magnetic field using a network model with two channels per link
with random mixing in a random intrachannel potential; the channels represent either two Landau levels or two
spin states. We consider channel mixing as a function of the energy separation of the two extended states and
show that its effect changes from repulsion to attraction as the energy separation increases. For two Landau
levels this leads to level floating at low magnetic fields, while for Zeeman-split spin states we predict level
attraction at high magnetic fields, accounting for electron spin resonance data. We also study random mixing
of two degenerate channels, while the intrachannel potential is perindimandom We find a single ex-
tended state with a localization exponent 1.1 for real scattering at nodes; the general case also has a single
extended state, though the localized nature of nearby states sets in at unusually large scales.
[S0163-182607)02611-9

[. INTRODUCTION attraction has also been predicted theoretically by Shah-
bazyan and Raiki using a high-magnetic-field expansion.
The quantum Hall effedfQHE) remains a great attraction The system of two coupled extended states was also stud-
for theoreticians and experimentalists. Of particular interesied in the context of a spin-split Landau batid!’ In the
is the divergence of the localization length at a discrete set adibsence of a Zeeman term it was found that two separate
energies, corresponding to extended states. This has mo#xtended states appear, each with a localization exponent of
vated a large variety of methods for studying the pertinent=2.3. Allowing for a finite Zeeman term leads to level at-
metal-insulator transition as a critical second-order phas&action at high field$® In fact, electron spin resonance
transition! such as field-theoretical methotisemiclassical (ESR dat&® have shown that the spin splitting has an un-
methods>* numerical method3,and finite-size scaling for usual nonlinear dependence on field. As shown below, this
transfer matrice8.Most of these works focus on properties nonlinear dependence is consistent with localization phe-
near an isolated extended state with emphasis on the criticabmena and level attraction of extended states.
exponentrv of the localization length. The most recent ex- A different type of system where two degenerate states in
perimental resufty=2.3+0.1 is in agreement with theoret- a strong field(e.g., spin states in the first Landau levate
ical predictions"® coupled by random mixing, but the scalae., intrachannel
The situation with a few extended states, allowing forpotential is absent, was recently studt&d’?222This corre-
coupling between these states, received less attention. Thiponds to a spin-orbit coupling that is dominant relative to
situation is relevant to the behavior of delocalized states ithe scalar potential scattering. For white-noise interband
weak magnetic fields. It is well known that the existence ofmixing®! it was found that an extended state at the original
delocalized states is a necessary condition for the QHE bd-andau-level energy exists, suggesting a distinct universality
havior. On the other hand, scaling thébmnd numerical class. For smooth interband disordeit was suggested that
studie$ imply that in a two-dimensional2D) system in the there are two separate extended states as in the spin-split case
absence of a magnetic field all states should be localizedn addition to a third extended state in between, at the origi-
Therefore, a scenario in which delocalized states “float up”nal Landau level.
above the Fermi level as the magnetic field decreases has In the present work we study these and other aspects,
been suggested:'! Recent experimentsshow that, indeed, using various extensions of the network model introduced by
the energy of the lowest delocalized state floats up above thehalker and Coddingtoh.In the network model electrons
Fermi level as the magnetic field is reduced. This corremove along unidirectional links that form a closed loop in
sponds to a transition from an insulator to a quantum Halknalogy with semiclassical motion on contours of constant
conductor at both low and high fields. Numerical studies of gootential. Scattering between links is allowed at nodes, in
few Landau band$~1"focused on critical exponents, except analogy with tunneling through saddle-point potentials in the
for an early work by AndG,which supports the floating sce- semiclassical model. The assumption that each link carries
nario. Ando’s work useds-function impurities, which is, current only in one direction implies that the wave packets
however, not suitable when the impurity concentration is tocare sufficiently localized in the transverse direction, i.e., the
low since bound states of th& potential shift the extended magnetic length is small in comparison to the spacing of
state even for a single Landau bahdive have recently nodes or with the correlation length of the potential fluctua-
showrt® that two extended states attract each other, whicltions.
leads to a minimum in the energy of the lower state. This Our paper is organized as follows. In Sec. Il we describe
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In order for the system to be invariant, on average, under
90° rotation the next-neighbor node is obtained by rotating
Fig. 1(b) by 90° and writing the states on links 4 and 1 in
terms of those on links 2 and 3. The transfer matrix then has
the same form as in Eql) with a parametel®’ replacing
6, wheré sinhg’ =1/sint¥ and the phases;,a,,as,a, are
replaced by— a3, aq,a,+ 7, — a5 [Fig. 1(c)]. We therefore
describe scattering at the nodes indicated in Fig. 1 by circles
with transfer matrixT(#) and at the nodes indicated by
boxes withT(6").

The phasesy; can be absorbed into phases describing
propagation on links. Since a shift by a common phase in all
links of a given column does not affect the Lyapunov expo-
nents of the network, we can choose the phases on the links

gl 0) (cosh9 sinhﬁ) (ei“3 0)

® @ © % a as *a,+p [Fig. 1@)], where a=3a;—3a,—a, and B
o o agt Lo =Za;—3a,+ a3 Note that the sum of left links equals
those of right links+ #r. For a random potentigiSec. Il
these link phases are considered as random, while for a pe-
y N - N riodic potential(Sec. IV) we choose specific sets. The appro-
% Z Z z priate procedure is then to multiply transfer matrices for

links and nodes alternately and derive Lyapunov exponents
FIG. 1. Network model. Arrows indicate the direction of current for strips .Of width up to 64 and of length of typically
flow. The nodes marked b and are related by a 90° rotation. 60 000 unitg(Sec. 11 o_r 24_0 OOO(Sep. V). At the_se lengths
(a3 The strip hasM, links with periodic boundary conditions OUr €rror for the localization Iength.e., for the inverse of
(M,=6 in the figure. In the two-channel case each link representsth® smallest Lyapunov expongns <0.5%.
two channels, i.e.M=2M, is the number of transverse channels.  In the following we relate the node parametrto the
The thick line is a reference for measuring area in Sec(tyand  €lectron energy by using known results for scattering from a
(c) Phase relations for two neighbor nodes. saddle-point potenti&® The transmission probabilitj of an
electron with energyE through a saddle-point potential

the network model for one and two channels and relate paYsiX:¥)= __UxX2+ U,y?+V, in a perpendicular magnetic

rameters of the system to the transfer matrix. In Sec. Ill wdi€ld B is given by

expand our earlier wolR and study the two-channel network

model corresponding to two coupled Landau bands. We T= 1 )

evaluate the energies of extended states as functidn tife 1+exp(—me)’

bare energy separation of extended states in the absence of

level mixing. In Sec. IV we investigate the two-level systemWhere

with random mixing while the scalar potential scattering is

periodic (i.e., nonrandom and consider different types of e=[E—(n+3)E,—Vol/Ey, ()]

symmetries for random mixing. Our results are summarized

in Sec. V, where the ESR data are also discussed. In Appef!

dix A, using the one-channel network model, we test the

possibility of sublocalization behavior of the wave function, E :[Q 2+(&

based on a possible fractal behavior of the nodes. In Appen- ! 4 4

dix B the tunneling amplitude between Landau levels is es-

timated. where Q=[jwZ+(U,—U)/m]*2 y=(U,+U,)/4mQ, m
is the electron mass, and.=eB/mc is the cyclotron fre-
quency. The oscillator frequendy, is

1/2
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II. THE NETWORK MODEL
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Consider first a one-channel Chalker-Coddingt@C) EZZZ[Q Pe
4

network® which has directed links and scattering at nodes
[Fig. 1(a)]. Propagation along links yields a random phase
¢, thus links are presented by diagonal matrices with diago- From Eq.(2) the ratio of reflection and transmission co-
nal elements in the form exigf). The transfer matrix for one efficients is expt me). On the other hand, the transfer matrix
node relates a pair of incoming and outgoing links on the lefEq. (1) determines this ratio as (sif. Therefore, the rela-
[links 2 and 4 in Fig. tb)] to a pair of links on the right tion between node parametérin the CC model and the
(links 1 and 3; it has the form electron energy is

02
+4Q+(
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We note that unlike discrete Landau levels, the saddle- (11)
point potential allows for a continuous energyfor each wherex? is the mixing probability between different levels.
discrete state n. Furthermore, for >y, E;—0, We note that the maximal numper of independent param-
E,— w., andE—fAw(n+ 1/2)+V, corresponds to discrete €ters in a W2) matrix presented in Eq(ll) is 4. These
Landau levels. In the opposite limit ob.<y we have Phases can be chosen a8=1/2(¢1+ dot dst da),
Ey— (U, /2m)Y2 E,—(2U,/m)Y2 and the integen corre-  91= ~ 1/2(¢2+ #4), and 5, = —1/2(¢,— ¢3) so that
sponds to a quantum number of the harmonic potential
U,y [elor1—x2 —e'%2x

In the case of one channel per link a single extended®state U=e" “is, —io T2 12
is ate=0 (i.e., #=0.8814), corresponding to the center of € X € 1=x
any bandn, E=(n+1/2)E,+V,. Numerical studies of this The phaseS corresponds to a scalar potential; it can be either
system with widthM and periodic boundary conditions con- random(Sec. Ill) or fixed for a periodic potentigiSec. IV).
firm the one-parameter scaling hypothesis, i.e., the localizaf §=2#Z (where Z denotes an integgrthe U matrix
tion length&,, is given by a scaling functiom, where changes its symmetry group from(2) to a unitary unimo-

dular SU2). In Sec. IV we study the effect of various sub-
£y M groups of W2) on the critical properties of the system.
M f( §(E>)' “

with ¢(E)~|E|~" and v=2.5+0.5. This result is in good
agreement with experimental data for spin resolved lelels,
numerical simulations using other mod&i$# and a semi-
classical derivatioh® that predictsy=7/3. We have re-
peated the one-channel calculatiofppendix A with par-
ticular emphasis on the possibility of sublocalization; we find

that localized states decay as a regular exponential. sponds to extended states. This defines “bare” extended

A two-channel network, i.e., two channels per link, is -
. ’ no . .7 states aEq,= E,(n+1/2)+V, and the bare energy splitting
characterized by parametefisand 6— A 6, which determine of the n=0,1 states is theik,. Note that the splitingE,,

the tunneling amplltud_e at the n(_)de for each channel Wm/vhich is magnetic-field dominated ai(m/U)¥2>1, re-
A 6 related to the relative energy interval between the bands__. - . . :
ains finite asw.—0 and is potential dominated at

of the two channels. The transfer matrix is parametrlzedic(mlu)l,2<1 (hereU,=U,=U). The latter region is ac-

4

as ceptable for a network model if the correlation length of the

potential fluctuation is long compared to the magnetic length,
u O C S U; O so that locally the saddle-point potential determines a finite
T=( 0 Uz) (S C) ( 0 U4)' (8)  splitting. The splittingA=E,/E, is therefore bounded by

A=2 atw,—0.

The transfer matrix at a node is composed of the blocks ~_The application ton=0,1 Landau levels assumes that
mixing of states withn’s differing by An=2 is much
smaller than for those withn=1. Mixing or transition rates

costy 0 sinhg 0 can be evaluated for a potential of the form
0 coslio—A0))" | 0 sinh(o—A0)) (1/2)U(x2+y?) —Uy3/\, where\ is a measure of the cor-
(9) relation length of the random potential. For states near the
local minimum we find that mixing is given by E¢B6) (see

Defining an energy parameteiA such that e—A  Appendix B. We therefore expect our results for the=0

= —(2/)In(sinh(6—A6), we obtain state, within the two channel model, to be valid down to

mwﬁ/le/In()\/l)sl (assumindJ=U) so that the range of

valid mw?/U values is extended down to lower limits for

2
€=— ;In(smh&). (6) U=

IIl. NONDEGENERATE LEVELS WITH RANDOM
POTENTIAL AND RANDOM MIXING

We study here a system of two Landau levels in the pres-
ence of a smooth random potential, so that for proper de-
scription we use the most general form of EtR) with four
random variables. In the absence of level mixing we know
from results of the one channel sysfethat e=0 corre-

C:( Vitexg-m(e-A)] 0 ) longer-range potential fluctuations. The results for rirel
0 Vitexd —me])’ state, however, are not directly relevant.
We consider below also the case of a spin-split single
level n=0 for which Vo= *(1/2)g* ug, whereg* is the
_ exd —m(e—A)/2] 0 10 electrong factor andug is the Bohr magneton. The bare
B 0 exd—mel2]) (19 extended states then correspondBg=3E,* 39* ug, SO

thatA=g* ug/E;.
Propagation along links yields random phasggsi=1—4, The systenisee Eqgs(8) and(10)] is, on average, invari-
and also allows mixing between two different channels. It isant under 90° rotation if at the next-neighbor node the trans-
described by blockJ: mission and reflectiorfof each channglare interchanged,
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FIG. 2. Renormalized localization lengély /M as a function of
e for A=2.2. +’s correspond tM =32 and’s to M =64 system os | * |
widths. Arrows point to the location of extended states in the ab- Tl . NS o ¢
sence of level mixing. The energies of extended statesr the . : o ©
peaks of¢y, /M,) are closer than the arrow positions, demonstrating o
level attraction.
-0.5 1 1 L L { ! 1

i.e., e—>—¢€ and e— A— —e+A. The system is then sym-

metric undere— —¢€, A——A and the extended states at

€ (i=1,2) become:;(—A)=—¢€;(A). A further translation FIG. 3. Critical valuese as functions ofA. Full lines are the

Of energles byA returns the System to |tse|f except for a bare extended states=0 ande=A are shown. Inset: energy of the
12 interchange; e,(—A)+A=¢;(A), hence & (A) lowest extended state as a function of magnetic field with full level

+e,(A)=A. Therefore, results for the two energies, are mixing (<¢) and with reduced mixing {). The full line is the
constrained by the conditioe, + e,= A ’ lowest bare extended state. Her&'=E(2m/U)¥? and

r_ 1/2
We proceed further by calculating normalized localization®c ™~ we(2m/U) ™

length &y, /M, for systems withM = 16,32 (the size of the

T matrix is MXM and M;=M/2 is the number of links The most remarkable aspect of the data is the crossing of
across the stripand different values oé andA. For A=0 €(A) with the bare extended states&#=0.5. Usually one

we used alsoM =64, which affected critical energies by expects that mixing affects mainly extended states leading to
3%, which is within 5% from the result of Wareg al’® The  level repulsion of these states. This expectation leads to
couplingx is chosen to be uniformly distributed in the inter- €;(A) approaching zero from below argd(A) approaching

val [0,1]; we checked that other distributions inlead to A from above, as implied by Fig. 2 of Ref. 13. Contrary to
similar results. Finite-size scaling is then used for fitting ourthis expectation we find that abouke~0.5 there is level
data onto a single curvé(é..(€)/M)) extracting values of attraction.

localization lengtht,, for the infinite 2D system. Finally, we Level attraction is also supported by the following obser-
look for the critical energies; and critical exponenv by  vation: Parametrize the upper branch of critieaby 0, i.e.,
requiring £..~|e— | ~*. The raw data for one particuldt ~ e=—(2/m)Insinhg; at A=0, €=0.23, i.e.,§=0.65;>*°and
(see Fig. 2 represents the characteristic features of the syse increases withA so thatd—0. In the level repulsion sce-
tem. One can see that the values &f/M, for any two  nario e>A so that the parametéd in Eq. (9) varies in the
energy values whose sum equalscoincide, as we expect range 0=A 6= —0.88. We could, however, define the model
from the symmetry condition. Another important feature iswith parameter®,A 6 (instead ofe,A) with A # unbounded,
that for A=1 we have two pronounced maxima of which implies thate—A must change sign.

&u M, which we expect to be near the critical energies; We present now results for the energies of extended states
this is supported by the scaling procedure. We find that apas a function of magnetic field by relatidgto B via Eqs.(5)
proaching the critical energies from outside vyieldsand (6). As noted aboveE, is always finite so thah=2
v=2.5+0.5. The states between the two critical energie{A— 2 forB—0 andU,=U,) and thus we are always in the
seem to be localized, i.&), /M, decreases witM, although level attraction regime. The results are shown in the inset of
the decrease is rather slow. Fig. 3 by diamondgassuming, for simplicitylJ,=U,=U)

The critical values:, , are presented as a functiondfin ~ and the full line is the lower bare extended state energy. Our
Fig. 3. We cannot calculatéy,, /M for A>3.5 because of data show a minimum ab.(2m/U)Y?>~0.5 in the lower
roundoff errors. The\ - case can be solved analyticalfy, state, consistent with floating, and are a result of level attrac-
since then, near one extended state the other channel is vetign due to Landau-level mixing. Allowing for mixing with
far from tunneling and its trajectory is a closed loop betweerthe n=2 Landau level may cause floating of the=1 state
the nodes. Eliminating the closed loop variables and assunas well, but will have a small effect on the floating of the
ing that it mixes with links of only one node leads to ex- n=0 state, as discussed above. ForLandau levels our
tended states a# (A)~1/A and e;(A)—A~—1/A. The symmetry argument shows that the extended state energies
rather flat behavior o&;(A) up to A<3.5 implies that the come in pairs whose average is the same as for the bare
asymptotic behavidf sets in at a higheA. states, i.e.g+ens1-i=(N—1)A, with i=1,... N. Hence
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0.22 _ 1 )
02 b H—%(pdl—A) +h(r)-a-, (13)
0.18

016 1 whereh(r) is a random field in thex andy directions and

projection to states of the lowest Landau level is understood.
1 This model has an extended state at the original Landau
. leveP! (e=0) and possibly two additional extended

1 states>1617 symmetric around=0.

. We wish to study the HamiltonigEqg. (13)] by a network
model. We therefore replace the continuum by a periodic
potential so that the nodes of the network are the periodic set
of saddle points. In general, a magnetic flux through a unit
cell leads to Aharonov-Bohm phases on the links that in-
crease linearly from, say, left to right. This, however, reduces
the symmetry aroun@=0 as checked by our simulations;
this may be related to the formal loss of invariance under
90° rotations. We therefore choose the unit cell to have an
integer number of flux quanta.

As shown in Figs. (a and Xb), the phases on the links
we eXpeCt that the energies of the lower half states increa%n be represented by two pha$ﬁ$ In order to choose
at low fie|dS, consistent with the ﬂoating scenario and Withre'evant values 0&'3 we consider the pure System without
the experimental datt o _ spin mixing and try to make its spectra similar to that of the

The assumption of full mixing, i.exe[0,1] in Eq. (11),  p22m term in Eq.(13), i.e., a constant, with a total number
is not valid for strong magnetic fields where tunneling be-of states close to that of a Landau level. Extended states in
tween Landau levels should be suppressed. We model thiie pure system can be found by applying transfer matrices
situation in a reduced mixing modeébee Appendix B  across a unit celii.e., two nearby nodes in Fig),.which by
where the parameterin Eq. (12) is now chosen randomly in - Bjoch’s theorem lead to multiplication by exg) along the
the reduced range of0,exp(-mwZ/U)]. The results are strip or expik) in the direction across the strip. This proce-
shown in the inset of Fig. 3 by pluses. The minimum in thedure yields the dispersion relation
lower level is now more pronounced and is at a higher field
the w,(2m/U)¥2~1.

Finally, we present the application of our data to extended sing+sin(k— a+ B)
state energies for a Zeeman spin splitting of a Landau band cosh{mel2)= 2sinatB)
whereA=g* ugB/E;. SinceA can cross the value 0.5 we
predict that spin splitting is larger than expected for small
fields (level repulsion and is smaller than expected for large  This relation shows that there is a maximal eneggy, in
fields (level attraction. In fact, we claim that level attraction the band where cosh€/2)=1/sin(@+8). The density of
accounts for ESR dafd, which show a nonlinear depen- states is linear at—0 and saturates at,,,. The total num-
dence of the spin splitting oB. In particular, the data for ber of states in the band approaches that of a Landau level
N=0 in the range 8 14 T is visibly nonlinear in the range for o+ 8—0. However, aiw+ 8=0 the spectra Eq14) is
8—-12T. singular, so that it seems that a small but finite value of

To demonstrate the effect we considg’® ugB/w, a+ B is needed.
=g*m/2m,=0.018(e.g.,g* =0.51 with an effective to free The spin term in Eq(13) is taken to mix spin states on
electron mass ratio & m/my=0.07) and replot the data of links. Since all links are unidirectional the transfer matrix is
Fig. 3 for the splitingAE=E,(e,—€;) in Fig. 4. The ex- equivalent to an evolution operator that is a rotation in spin
perimental data aB>8 T fit our results if J/m)¥?=310 space exjii/z)[h(r)-o dt]. Since successive rotations about
GHz is choser(see Sec. V for independent data leading tothex andy axes produce a rotation about thexish should
this valug; the field scale is them.(U/m)¥?~1.38 T. The  be a 3D vector. The effect of these rotations is equivalent to
deviation from a straight line measured at 82 T cannot be an SUZ2) transfer matrix[Eg. (12) with §=0] and we can
accounted for by band-structure calculatigsse Sec. Y. interpret all independent phases as corresponding angles of
The data, therefore, provide strong support for level attracthe pseudofield. Below we consider such transfer matrices
tion at these fields. with different sets of independent parameters for the case of

two degenerate levels.
Consider first the case whéhis a real matrix, i.e., the
IV. DEGENERATE LEVELS WITH RANDOM MIXING pseudofield is only in thg direction andT then has SQ)
symmetry,

0.14
AE(@m/U)/?
0.12 -
01|
0.08

0.06 -

0.04

6 8 12 14
we(m/U)'?

FIG. 4. Energy of spin splitting of extended state® ') with
bare  splitting (straight ling of g*ugB=0.0180,.
GaAs/ALGa,_,As data (Ref. 20 fit our results with {J/m)?
=310 GHz and the field scale is,(U/m)¥?~1.38 T.

(14)

We consider in this section a single Landau level with two
degenerate spin statése., no Zeeman terjrwhere the only

randomness comes from mixing of the spin states, e.g., by o
spin-orbit scattering. A model of this type was studied by :(cosﬁ sm¢) 15
Hikami, Shirai, and Wegnélr with the Hamiltonian sing cosp |
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FIG. 5. Renormalized localization length, /M, as a function
of energye for a system with S@) mixing between the levels.
$’'s correspond toM =16, +'s to M=32, and[’s to M=64
system widths.

FIG. 6. Fit of raw data from Fig. 5 for a system with &pand
for a system with 1) X SO(2) mixing between the levelst, /M,
versus eM{"” with »=2.2. ¢'s correspond toM=16, +’s to
M=32, andd’'s to M =64 system widths for S@) case;X’s
correspond toM =16, A’s to M=32, andx’s to M =64 system

The results for the case with the Haar measure, ., yjgths for the U1)x SO2) case.

e[0,27] with cosp uniformly distributed, are shown in Fig.
5. The data show a single extended state=a0.

We know that random (2) transfer matrices lead to two
extended states. It is therefore interesting to modify th
SQ2) system by a random potential leading to @1)x
SQO2) system

+ B+ m)/2,(a+ B—)/2), but due to the right-left symme-
etry this is just((a+ B)/2,(a+ B)/2). If this symmetry holds
for our finite strips then it is sufficient to consider only the
diagonals in the ¢, 8) plane. Note that all these symmetries

cosp —sing hold for the spectra of the pure system Etd). Finally, we
U=¢ 5( . ) ) (16) consider a symmetry that is due to the randomBghases.
sing  cosp A shift of the link phases in Eq. (12) by = is equivalent to

The data maintain a single peakext 0 in this case as well. @ shift of 7 in the SU2) phasess,, &,; since the latter are

Fitting the data of those two cases by a smooth functisn ~ random the result is invariant. Thus, in Figallthe phase
that £y /M, = f(eM™) yields »~2.2 for the critical expo- —a+a can be replaced by « and a column shift byr/2

nent(Fig. 6. Actually, one should expect in those two casesY€!dS (@.B8)—(a+m/2,8) or similarly (a,B)—(a,B
behavior similar to the one-channel model due to the fact 7/2)- Thus, with rotation symmetry it is sufficient to con-

that matrices) commute with each other. Our results sup- SIder phasesd, @) in the range 8<a<m/4.
port this expectation. We checked all these symmetries numerically. It turned

Next in the hierarchy of symmetries is the &Y group
[Eq. (120 with §=0] with three independent phase@

out that all symmetries hold; however, the rotational symme-
try requires largeM and a higher number of iterations than

choice of two independent phases is not closed under succds- the U2) case, in particular for large, 8. This has the

sive transfer operations.

following probable explanation: the periodic phagse@ in-

The most general case of a network model correspondin?c’d“ce a new ir_relevant Ien_gth scale in the system. In order
to the Hamiltonian Eq(13) is that of SW2) matrices on links  © 90 beyond this scale to find the symmetries one needs to
and a complex transfer matripEg. (1)] at nodes. TheT
matrix on links is then a (2) matrix; however, only its
SU(2) phases are random, while the phasen Eq. (12) is
regular, having the values «,+ 8 periodically. i
Before presenting numerical results we discuss the sym- )
metries for which &.(€) is invariant. Note first that 15 9 .
a—a+m Or B— B+ iS a symmetry, since one can shift 0 D
even or odd columns by a constant phase. Shiftingzby Gu/M L + ]
results ina+ 7 and —a+ 27 [the latter is equivalent to 5
—(a+m)+m] or B+ and — B+ (the latter is now +

. . i 05 O
equivalent to— 8— 7). Consider next the up-down reflection 0 4
[m]

symmetry that yields(after shifts by ) the equivalence
(a,B8)—(— a,— B). The right-left reflection symmetry leads ] 0.8
to (a,B)—(B+ wl2,a— w/2). Indeed, looking from right to ¢
left, the links with phasesg,— ) come first(actually with

opposite signs since propagation is to the left, but by the £ 7. Renormalized localization leng#y, /M, as a function
previous symmetry signs can be changedwhile  of energye for a system with S(2) matrices on links and and a
(@, —a+m) come second; shifting by 7, this yields the  complex transfer ~ matrix at nodes  with  small
stated equivalence. The next symmetry is a property of thex=—0.1758=0.075) phases after 480 000 iteratioKs's corre-
infinite 2D system: if we rotate our system by 90° and thenspond toM=16, +'s to M=32, ('s to M=64, and X's to
shift the phases properly we get «,8)—((«a M =128 system widths.
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FIG. 10. Fit of raw data from Fig. 9 for a system with &Y
FIG. 8. Renormalized localization lengfy, /M, as a function — mixing between the levelsy /M, versuseM ¥ with v=1.1.
of energye for a system with S(2) matrices on links and a com-
plex transfer matrix at nodes with smalk€ 8= —0.005) phases
after 480000 iterations.®’'s correspond toM=16, +'s to

M=32,0's to M=64, andX’s to M =128 system widths.

Hence, if there are extended states in theZldase near
€=0, they are extremely close to=0 and therefore are not
related to those of the (@) case as has been propogéd.

The critical exponent in Fig. 10 is~1.1. Thus the S(2)
case is a distinct universality class. This is consistent with
symmetry was found for the largest system dite- 128 for the occurrence of a singular_densgcly of states and the distinct
some particular phases. It is expected to holdMb# oo valug of oy found b,y H|kam|et al: ,

The results for &=-0.1758=0.075) and Finally, we _con5|der_ an mterpol_atlon betweeri2Jand
(a=—0.0058=—0.005) are shown in Figs. 7 and 8 re- SU(2). by aIIow_mg the link phas¢ s in Eq. (12)] to be ran-
spectively. The data exhibit single peaks near0. The pe- dom in a restricted range gff —m,x]. On long scales the

culiar property of the data is that in the range betweerf@ndomness may accumulate, allowing an(Blbehavior
e~—0.1 and e=0 the renormalized localization length Only atp=0. However, it is known that a metal-insulator

£1¢/8< £3J16< £5,/32, which indicates a band of extended transition (in the absence of a magnetic figldccurs at a
states: however, the data forM=128 shows finite ratio of spin-orbit to scalar randomne&sThus it may
E64/32> £1,464, Which determines these to be localizedP® Possible that S@2) behavior sets in at a finite. Fig-

states. This is just another manifestation of the irrelevanfré 11 shows our data witp=0.3; the best fit for the scal-
length scale mentioned above. ing form yields extended states at*+0.16 with v=2.5.

We consider, finally, the case=8=0 in Figs. 9 and 10. Since the extended states of thé2lJcase p=1) are at
Although the pure case is singular, the disordered system i§~ = 0.2;""we conclude that the two extended states ap-
well behaved, the data converge faster and there is no irreRroach each other gs is reduced, until belowp~0.2 they
evant length scale, i.e., the localized behavioe#f0 states Merge and onlye=0 corresponds to an extended steate
sets in already a¥l = 32. We therefore consider=83=0 as state$. The range betweep~0.2 andp~0.05 is difficult to
the generic case for SP). analyze since the localized nature of the states aedr sets

There is clearly a single extended statesat0 or, more in only atM=128; apparently there is an irrelevant length
precisely, at least all states with|>0.03 are localized. Re- Scale, similar to the one we had above. Belpw0.05 the
call, that in the W2) case withA =0 the extended states are,
at e~*+0.2, well separated fronre=0 (see Refs. 13-15

investigate much longer systerfet least 300 000 iterations
in comparison with 60 000 in the (2) casd. The rotational
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FIG. 11. Renormalized localization lengé, /M, as a function
FIG. 9. Renormalized localization length, /M, as a function  of energye for a system with reduced (8) mixing between the
of energye for a system with S(2) mixing between the levels. levels (p=0.3). ¢’s correspond toM =16, +’s to M=32, and
$’s correspond toM =16, +'s to M=32, and’s to M=64 [0's to M =64 system widths. A fit to a scaling form yields two
system widths. extended states at=*+0.16, withy=2.5
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TABLE I. Symmetry classes of random phases.

No. of energies with

Group Link phases, 8 extended states v

SQ(2) arbitrary 1 2.2
SU(2) 0 1 1.1
u(2) random 2 25

behavior is close to that of the $2) (i.e., p=0) case, i.e.,
Figs. 9 and 10. Thus we have d2) to SU2) phase transi-
tion at a finitep, p~0.2.

V. KAGALOVSKY, B. HOROVITZ, AND Y. AVISHAI 55

tended states, it accounts for the remarkably low lineviftith
of 50 mT.

To fit the data we choose\Ey=g* ugB+ v, with
g* m/2my=0.018 andv,=0 (i.e., fo® m/my=0.07 we have
g*=0.51). The parametek of Fig. 3 is nowA=AE,/E;,
allowing the data of Fig. 3 to be replotted as the splitting
AE=E (e,— €41) in Fig. 4. The experimental data could also
be fitted with a smalleg* by increasingy,, e.g.,g* =0.44
with »o=11 GHz. The splitting in frequency units is given
by (U/m)Y¥?=310 GHz, while the field scale is set by
w(U/m12=1.38 T.

Figure 4 shows nonlinear behavior with a decreasing

We summarize our results in Table I. The table shows thélope forB>8 T, in agreement with the experimental d%&aj
different symmetries involved with their critical properties. Below 8 T we predict a different trend with the energy split-

V. DISCUSSION

ting crossing the bare one at4 T (Fig. 4 and becoming
larger than the bare splitting 8t<<4 T. (Recall that the bare
splitting itself, which should be determined by a band-

We have studied two types of systenig:nondegenerate structure calculation, may be nonlinearBnfor these lower

states with random mixing and random scalar potential angields?®2% We propose then that extending the ESR data to
(i) degenerate states with randomness only in the mixingower and higher fields can serve as a unique tool for testing
terms. The system with nondegenerate states is relevant tur predictions for level attraction and repulsion.
two types of experimentally studied cases. The first case is We have also studied the network model with random
where nondegeneracy is represented by Landau-level splitixing of two degenerate states, while the scalar potential is
ting. We find that the lower Landau level has a minimum asperiodic (nonrandom The random part of the transfer ma-
a function of magnetic field, consistent with the floating trix Eq. (12) is then an S(P) matrix. We believe that this
scenario®*! This result accounts for a transition from a Hall model corresponds to that of Hikamef al?* Eq. (13). There
liquid to an insulator at both high and low fields, as observedare, however, some differences) The continuum transla-
experimentally*? tion symmetry of the free particle term in Ed.3) is replaced
The second case is where nondegeneracy is representpyg a periodic potential with extended states in the band of
by the Zeeman spin splitting. In this case the bare splitting=q. (14). This band resembles the continuum one for small
A (which is g* ugB/E; in the simplest cagecan cross the «,p. (b) The random field$, .hy of Eq. (12) correspond in
value ~0.5 where level repulsion crosses into level attrac-our case to a general $2) matrix, i.e., we have also a ran-
tion. We predict, therefore, that the spin splitting of the ex-dom h, component. While Eq(13) including a randomh,
tended states is largésmalle) than the bare Zeeman split- was not explicitly studied, we believe that the noncommuta-
ting at low (high) fields. To estimate the field corresponding tive Pauli matricesr, ,0y generater, terms in the time evo-
to A~0.5 we use dafd on the temperature scaling of the |ution (or in perturbation theojyand the models are there-

conductance peak in GaAsiMa, _,As, which show that the
low-temperature scaling of thid=0] peak neaB=6 T is
modified at a crossover temperature~e®.3 K. An analysis
of tunneling through saddle-point barri&shows that the
crossover temperature isT,=AU/2mmw., where
U(=U,=U,) is the barrier curvature. Sindg <w.~120 K
atB=6 T (using an effective ma&$of m/my~0.07) Eq.(4)
yields E;~#U/mw.=27T;~2 K and U/m)¥?~15 K.
Using the bulk valu® g* =0.44, we obtail~1, i.e., level
attraction is predicted abovg~4 T (whereA=~0.5).

fore equivalent.

Our results for the S(2) model show that for small but
finite «, B a single extended state appearsal, though the
localized nature of nearby states appears only at unusually
wide strips M =128). This indicates that the phasess
produce an additiondirrelevan} length scale, which renders
numerical analysis more difficult. Remarkably, for the choice
a= B=0 the irrelevant length scale disappears and we find a
clear single extended stateet 0. Finite-size scaling is well
obeyed(Fig. 10 and an exponent=1.1 is found. Thus the

Spin splitting of extended states can be directly probed bysU(2) network model forms a distinct universality class.
ESR; the extended electromagnetic wave couples dominantly Our SU2) data are inconsistent with the argument of

the extended states. Experimental da@n Landau levels
N=0,1,2 show a spin splitting that is nonlinearBrand was
fited by a quadratic polynomial.
calculation®?°
a spin splitting of the form\Ey=g* ugB+ vy, assuming®
vn<w, (in the more recent calculatihthe linear form is
valid for N=0,B>6 T).

The nonlinearity is best seen in thie=0 data, which span
B=8-14 T and is clearly nonlinear in the range-82 T.
The band-structure calculatidfi€® predict linear behavior,

Lee?® and with the numerical study of Minakuchi and
Hikami.l” The argument of Weet al. is qualitative and ap-

Band-structure plies to slowly varying random fields(r), while in our case
show that at large fields the pure system hash(r) is uncorrelated between unit cells. We do not expect

that this will change critical properties since correlations will
vanish along long loops in both cases. The numerical data of
Minakuchi and Hikami, who study Eq13), show three ex-
tended states. At present we cannot account for this discrep-
ancy with regard to the location of extended states; although
Eq. (13) is defined differently from our S(2) model, the two

at least aB>6 T. We propose then that the deviation from should be equivalent, as discussed above.

linearity is due to localization effects, i.e., level attraction.

Experimental realizations of the $2) model correspond

Note also that if indeed the ESR transition probes only exto systems with dominant spin-orbit coupling. We predict
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that in a usual random system that has spin-split levels, in-

creasing the strength of spin-orbit coupling would shift the 1
extended states so that they approach each other, until at
some critical value of the spin-orbit coupling, the energies of
these two extended states would merge. We simulated this
situation by allowing randomness in link phases to vary in
the rangep[ — 7, 7] range. We find that below=~0.2 the
system behaves like an &) one, i.e., an extended stdta

state$ at the single energy of the band center. 0.01
0.01

log(€w /M) g4

1
log(M /o)
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in particular the region of localized stat¥sSuppose that
wave function on an MXM square decreases as
exd —(M/&y)?]. Then at distance >M, where M is the
The simplest argument for deriving the 7/3 expofiést  width of the strip, it decays as in a 1D strip, i.e., as
based on the semiclassical picture. An electron with energ¥x —(M/g,)A(r/M)]=exd —r/&,], and &y is the value that
E+0 follows semiclassical constant potential contdura we calculate numerically: henc§w=(EM/M)BM. on on

e e o 06 I, 205 the othr hand, by the scaing hypothes/M - (/M)
tron can propagate to a distance &, by tunneling events which for £< M yields £y/M :é:/M and therefore.

P . IM = (&/M)B. Therefore an asymptotic tangent to the fit-
between clusters, each event reducing the wave function by%VI
factor expfalE|), wherea depends on potential barrier pa- ting curve OT Ing'\’! /M) versus Iogl(/l/f)_shou!d have a slope
rameters. These tunneling events occur at saddle points iﬁ'B. (._3/.4 if the idea of red bonds is vajdWe perform
the potential that are on the infinite percolating cluster aPpPtimization proce.dureﬁusmg our results as'well as dat'a from
E=0. Assuming that these saddle points are homogeneous halker _and Coddingtofr. The fitting curye(Flg. 12 and its
distributed, i.e., their number i5¢,, we find that the total L ”g.e”_t n t.he range<M .show conclusively thap gannot
wave-function decay is e dl_stlngwshed from unity and therefore the localized wave

functions decay exponentially.

E—8/3

APPENDIX A: TEST FOR SUBLOCALIZATION

1€, _
[exp(—alE|)]"é=exp(—r/§). (A1) APPENDIX B: MIXING OF LANDAU LEVELS

Hence the localization lengté~ &, /|E[~|E| 7. We wish to estimate the mixing probability of Landau
We wish to test the homogeneity assumption, i.e., whethefeyeis on the links, i.e., far from saddle points. We consider
the number of tunneling events i8¢, . In the theory of  than the tunneling rate between Landau levels in a weakly
percolation the infinite cluster at the critical energy has &,errhed harmonic potential. We choose the potential on the
backbone consisting of alternating sequence of singly oM s asV(x y)=(1/2)G(x2+y2)—(G/A)y3' X is a a mea-

Eﬁf‘fs%o(_srf cljt i)s tc):(())rrlliseivznbclje T#:tlptlznﬁgmecéigfgeat) req SUre of the correlation length of the potential. We perform a
' 9 standard change of variables

bonds of the infinite cluster, i.e., bonds whose elimination
disconnects the infinite cluster. Analytfcand numericaf . . .

studies show that the number of red bomglg, between two =P eA K=y My J—y+ Crx (B1)
points separated by a correlation lengély diverges as c’ eB’ eB’

E™%; therefore, at the scales=¢,~E *® we obtain . o , -
Lgg~r4 If we assume that the number of tunneling eventsX @nd Y are slow guiding center coordinates and, are

is (r/gp)3’4, the derivation of the localization length E@1) operators of fast cyclotron motiAon. A Scldinger equation
is now modified to exﬁ(—aE)(r/@)*""‘]~ex;{—(r/§)3’4]. The for the fast variablegchoosingc,/eB=z as a coordinate
consequences are that now the localization length exponeahd treating andY adiabatically has the form

2

UY/m—(3Unmy2 \* U
+ xZ

zZ— = =
wZ+U/m—(6U/Am)Y

(1 U )(d UmPw X
- Un(Z;X,Y)

. . 2+m , U 30y
2m  2mw;/\dz me2+U @

+
S m Mm

=E (X,Y)¢¥n(Z;X,Y). (B2)
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Eigenvalues of Eq(B2) can be interpreté& as local non- Mo, Mg 2\(Mw2+0)?
equidistant Landau leveE,(X,Y) depending on the classi- te= + , (B5)

T Y o 2
cal guiding center coordinates. 2 U U 3mUawcA
We estimate the tunneling rate between neighbor Landau

levels using Dykhne’s formuf&® whereA is the amplitude of oscillations in the direction.

Note thatUA is a measure of the center coordinate energy,
which corresponds to the width of a Landau band; since this

tC
Pn,n+1~exp[—<2/h> Im f (Ens1—Epdt|, (B3
0

whereE,, {>E, for all real times and, is a point in the
complex time plane where they cross. We solve EBpR)

keepingX andY as fixed parameters and obtain to first order

in 1/

U 3UY\

2 —_— = .
Mg  mw?+U

Eni1—Ep~fo.| 1+ - (B4)

Note that we are considering quasibound states near the local

minimum of V(x,y), i.e., Y<<\. We solve equations of mo-
tion for Y in a harmonic potential, substitute this solution
into Eq. (B4), and find

width is less than or on the order diw. we have
A=< \/hwc/U=I\/mm§/U, wherel is the cyclotron length.

We find crossings at conjugate points, as one expects for real

Hamiltonians® Evaluating, then, Eq(B3), we find that the
main contribution to the tunnelingn this adiabatic approxi-
mation is independent onm and proportional to

mw§+U| 2)\(mw§+0)2

Pn,n+1~exr{ - n
3lVmUw?

For transitions frorm to n+ An the term in the exponent is
multiplied by An.

5 (B6)
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