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Abstract. -We  derive the effective free energy of a two-dimensional Josephson junction in the 
presence of an external current and predict that the junction has a phase transition at  a 
temperature TJ below the bulk transition temperature T, . In the range TJ < T < T, long-range 
phase correlation exists in the bulk, but is destroyed in the vicinity of the junction. The critical 
current I ,  is reduced by thermal fluctuations; for a junction of size L,  I ,  - where b ( T )  < 0 
for TJ < T < T, (i.e. I, vanishes at  L + m ) while 0 < b ( T )  < 2 for T < TJ. Our results may 
account for the absence of an observable supercurrent at  temperatures below T, in YBa&u,O,- 
and Bi2Sr,CaCu208-based junctions. 

Recent developments in fabrication of Josephson junctions has led to junctions with a 
large area, i.e. the junction size L (in either direction in the junction plane) is much larger 
than A, the magnetic penetration depth in the bulk superconductors. Studies of trilayer 
junctions composed of [ 13 YBa2Cu0,/PrBa2Cu30,/YBa&u30, (YBCO junction) and of [2] 
B i ~ ~ ~ ~ C a C U ~ 0 ~ / B i ~ S ~ ~ ~ ~ ~ U ~ ~ ~ ~ / B i ~ ~ ~ ~ ~ ~ ~ U ~ ~ ~  (BSCCO junction) have shown anomalies of 
the critical current I,. In particular in the YBCO junction [l] a zero-resistance state was 
achieved only below - 50K, although the Y13a2Cua0, layers were believed to be 
superconducting already at  the bulk critical temperature T,  = 85 K. Similarly, in the BSCCO 
junction [2], a supercurrent through the junction could not be observed above 30 K, although 
the Bi2Sr2CaCu208 layers remained superconducting up to T,  = 80 K. These remarkable 
observations are significant both as basic phenomena and for junction applications. 

A free energy for a 2D junction was proposed by Josephson [3], and has since been studied 
and applied to various systems [4-71. This free energy has the form [3] 

where pJ(x,  y )  is the Josephson phase, E j  is the Josephson coupling energy in area A 2  and 
(x, y )  is the junction plane. If eq. (1) can be used to  describe thermal fluctuations of p (x, y) 
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it follows that the system undergoes a Berezinskii-Kosterlitz-Thouless-type phase 
transition [8] at  a critical temperature Tj  = 7 .  As shown below, this implies the existence of a 
temperature interval TJ < T < T,  at which the phase p j (x ,  y)  is disordered, although 
superconductivity exists in the bulk. Is the coexistence of a disordered phase on the surface 
and an ordered phase in the bulk a valid situation? 

To study this fundamental question we need to extend Josephson’s mean-field theory and 
derive from ab init io the free energy for a 2D junction, allowing also for the presence of 
external currents. We then proceed with the renormalization group (RG) analysis of our 
system and finally discuss the experimental data. 

Consider first the problem of a superconductor in a Meissner state (i.e. no vortices in the 
bulk) which is bounded by a volume V. We wish to integrate out Gaussian thermal 
fluctuat@s i\the bulk and+obtain an Gfective free energy in terms of fields on the surface. 
Define A ’ = A - (po/2x)  V y, where A is the vector potential, p is the superconductor’s 
phase and G o  is the flux quantum (the arrow indicates a 3D vector, while an arrowless vector 
denotes a two-component vector parallel to the surface). The free energy of the 
superconductor 

yields the partition_ sum as a functional integral on the 3-component vector A’ ‘ and on its 
boundary values A ’(r , )  = A I  (P,) with the weight exp [ - F / T ] ,  where r = r, defines the 
surfa2e of the superconductor. We shift A’ ’ + + 22 ’ w h y e  now A’ ’ is the solution of 
8F/8A ’ = 0 ,  i.e. the+ London equation A’? x V x A ’ = - A ’ subject to the+ boundary 
condiGons, +while 8A ’(5) = 0, Note $at the &ondon equation implies a * A  ’ = 0 and 

V 2 A  ’ = A I. Since F(A ‘ + 8A ’) = F(A ‘) + F(;A  ’) the integration on the bulk fluctuations 
82’ yields a constant independent of the boundary values A l .  

Consider noy two superconductors with surface fields Ai(%,  y), magnetic fields 
Hi(%, y) = a X Ai and phases pi(x, y), i = 1, 2, respectively, which form a_ZD ju2ctio; 
(fig. 1). Boundary conditions at  the barrier are obtained [4] by integrating both A and V X A 
along the loop in fig. 1, assuming that within the barrier H = H(x, y). This yields 

V ............. jT\Im I r.......... _ _ _ _ _ _ _ _ _ _ _  ; dx 

Y z i  
............. 

4 - 
W d W 

Fig. 1. - Junction geometry. Dotted lines separate superconductors (SC) from normal metals (N) or 
insulator (I) from vacuum 0. The dashed box is used for deriving the boundary conditions equation (4). 
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where d is the thickness of the barrier, 2 a unit vector in the x-direction and p (x, y) is the 
Josephson phase 

We proceed now to study two limiting cases depending on the width W of each 
superconductor (fig. 1). In case I, W >> A ,  the external current becomes confined to a layer of 
thickness A near the superconducting-vacuum surfaces for I x I >> A. Thus we can consider the 
external current j e x ( x ,  y) to bejn the x-direction and to obey London's equation A2V2jex  = 
= j e x .  Since the total current - A ' ( r )  becomes2j"for I x I >> A ,  the solution of A 2  V2A' = A' has 
the form ( x  = 0 at  the barrier) r A ~ ( T )  = A exp[-x/A]V.A,(x, y) - (4xA2/c)jeX(x, y), 

where AI(%, y) is assumed to be slowly varying on the scale of A. 
The boundary condition equation (3) determines Al and A2 in terms of p and j e x  leaving 

just a scalar phase p as an independent degree of freedom. The junction free energy Fj  
consists of eq. (2) for both superconductors in addition to the tunnelling term coupling states 
at the junction surface and leading to the Josephson term - cos p J. Substitution of eq. (5 )  in 
eq. (2) yields the free-energy equation (1) with z = z = $E/(4x2A) for d<<A. 

Ln the presence-of a given egernal current one needs the Gibbs free energy G(@ in terms 
of 5, where a x H = (4/xc) j e x  is defied outside the sample. The standard de4vation of 
G(H) [9] assumes that jex does not flow through the s%mple, otherwise j e x  or H are not 
uniquely defined inside the sample. Our generalized G(H) involves a sufuce term 

A'(r) = Al (x, y) exp [ - z / N  , 
( 5 )  

G(@ = F - (1/4x) x i % d o ,  

where do is the surface of the superconductors; minimizatjon with respect to A' yields the 
correct flow of energy, i.e. the Poynting vector. Writing A in terms of p as above finally 
yields 

Fj  = Fo - 

Note that the Gibbs free energy yields a term which is not invariant under p + p + 2 x ;  
this symmetry breaking corresponds to the flow of external current. For a uniform jex the 
Gibbs term reduces to the previously known form [5,10,11]. 

We have bothered to present a detailed derivation of eq. (7) in order to show that i) this 
fluctuation energy is decoupled from the phase fluctuations in the bulk of the 
superconductors, no matter how large they are, and ii) that it is a free energy valid for all 
configurations of p (x, y) and not just those which solve the mean-field equation SFj /dp = 
= 0, i .e. 

( E J / h 2 )  sinpj = (z/8x)V2pJ + ( ~ 0 / 2 x c ) j e x .  (8) 

This equation may be interpreted as equating the Maxwell current with the tunnelling 
current - sin p J. Equation (8) however is not a boundary condition in the previous sense; 
configurations p J ( x ,  y) which do not satisfy eq. (8) are allowed in the partition sum, while 
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eq. (8) should be satisfied only after thermal averaging, i .e. (6Fj/6pj(~, y)) = 0. An 
equivalent way of studying thermal averages is to add to eq. (8) time-dependent terms like 
dissipative and random force terms. The time average, which includes configurations not 
satisfying eq. (8), is by the ergodic hypothesis equivalent to the partition sum, i .e .  a 
functional integral over F; with the weight exp [ - FJ/T] .  

Case I1 involves thin superconductors, i .e. 5<< W<<A, where 5 is the coherence length; 
5 << W is needed to avoid vortex fluctuations in the superconductors so that the bulk T, is 
valid [12]. The equilibrium state for the case I1 was studied in ref. [13]. 

The solution for 0 < x <<A is 

A ' @ )  = a1 (x, Y) exp [ - z/AI + bl (x, y) exp [x/Al , (9) 

where a, and bl are slowly varying. The external current and geometry determine an 
external field Hex at  x = & W such that V X He" = ( 4x/c)jex. Matching V X A' at  x = +- W and 
using the boundary condition at  the junction equation (3) one obtains for the free energy the 
form of eqs. (l), (7), except that now T is reduced by the factor W/A from case I, i .e. 7 = 
= W/( 4?r2 A2). The factor W/A represents the reduced volume of magnetic fluctuations which 
extends to I x I = W rather than to I x I = A as in case I. Note that jeX is now determined by the 
current source, e.g. jex may be uniform. 

We proceed to evaluate the effects of thermal fluctuations in eq. (7) which is the celebrated 
2D sine-Gordon system [8]. The usual RG procedure withjex = 0 can be applied provided that 
jex is localized in space, i .e. jex = 0 on intermediate scales between A and L. This is the natural 
situation for case I, wherejex is localized near the superconductor-vacuum surfaces; in case I1 
jex should be applied only to part of the junction cross-section, which seems to be the case in 
the relevant experiments [1,2]. I f jex  is not localized the following RG still holds if L is not too 
large or if IT - Tj I is not too small. We proceed with length scale renormalization of the 
jex = 0 case and stop at  either the relevant correlation length or a t  the sample size L. Finite 
jex is then treated by mean-field theory for the renormalized free energy. 

RG integrates fluctuations of F ; ~ ( x ,  y)  with wavelengths between a and a + da, the initial 
scale being A. The parameters X = T/z and y = Ej /T  are renormalized, to second order in y, 
by the differential equations [8], 

dy/y = 2( 1 - X) da /a ,  (loa) 

dZ = - 2y2 y2 X 3  d a / a ,  ( l o b )  

where y is of order 1, depending on the cut-off smoothing procedure. Equation (10) defines a 
phase transition at  l / X  = 1 - y i .  Note, however, that z itself is T-dependent, since A(T) = 
= A ' ( 1  - T/T,)-'/' near T,. Thus the solution of .r(T)/T = 1 - yy defines a transition 
temperature T j  which is below T, . For Tj  < T < T, , y is irrelevant and Ej scales to zero, i.e. 
the superconductors are decoupled by the thermal fluctuations in the junction. For T < Tj  , 
is relevant and Ej scales to a finite value, i .e. the superconductors are correlated. 

The range TJ < T c T, is remarkable: the superconducting phases are disordered near the 
junctions (with correlation functions which decay as a power law) while these phases remain 
ordered in the bulk. This situation is due to fluctuations in the Josephson current; in fact for a 
single isolated superconductor the restriction for zero outcoming currents amounts to an 
additional constraint which eliminates all surface fluctuations. 

Note also that a similar junction for an X-Y model of a magnet does not yield a phase 
transition, i .e. long-range order in the bulk enforces long-range order on the surface. 
Superconductors, in contrast, have additional gauge fields which result in a finite screening 
length A; fluctuations at  the junction can then decouple from those in the bulk and enable the 
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loss of coherence at the surface in the temperature interval Tj < T < T,. (We note that 
application of these methods to long (1D) quantum junction leads to renormalization of Bloch 
oscillations [14].) 

We proceed to estimate Tj and find the effect on the critical current. The solution for 
T = z(T) yields Tj which is close to T,, i .e. for typical high-T, systems [1,2] T, - Tj  = K 
for case I while T,  - Tj = 10-1 K for case 11. We expect, however, that effects of disorder 
will reduce T j  significantly, as in the dual system of disordered 2D X-Y magnets [15,16]. This 
reduction in Tj is in fact needed to avoid the critical region near T,  and justify our assumption 
on the absence of thermally excited vortices in the bulk. 

The phase transition is strictly defmed only for infinitely large junctions. If the junction 
size L is finite, integration of eq. (11) must terminate at a < L.  Excluding the narrow interval 
I T/T - 1 1 < yEJ /T << 1, renormalization of X can be neglected and integration of eq. (loa) 
yields a renormalized Ej , E? = Ej ( u / A ) ~ ( ~ - ~ / ' ) .  

When Tj < T < T, ( i .e .  z < T )  EJ is renormalized towards zero. In a finite sample the 
renormalized system scales into a point contact junction (i.e. a uniform 9 J )  with the effective 
free energy 

where I,, = Sdxdyj,,. The critical current is therefore decreasing with L,  

I ,  = I:! (L/A) -2T/r , ( 12) 

where I:l = ( ~ ~ c / + ~ ) E ~ ( L / A ) ~  is the mean-field critical current for a point junction. 
The regime T < Tj has also interesting renormalization effects. If L is sufficiently large, 

the scaled a of eq. (10) reaches a correlation length A! at which EJ corresponds to strong 
coupling, i .e. E? = 2/4x. Thus, A? = A J ( A  J / A ) T / " - T )  which is longer than the conventional 
Josephson length A = A ( r / 4 7 ~ E ~ ) ~ / ~ .  The effective area for the current is LA: so that 

I ,  = I $ ( ~ & J / Z ) ~ / ~ ( ' - ~ ) ,  (13) 

where I,"2 = ~ . r L / 2 4 ~ A  J is the mean-field critical current for a large junction. Note that even if 
the exponent in (13) becomes very small at T < Tj,  a sufficiently small Ej can lead to an 
observable reduction of I,. Finally if L < A! renormalization must stop at a = L,  leading to 
eq. (12); now, however, T/s < 1 and I, approaches I,!! when T<<.r. 

The experiments on YBCO [l]  and BSCCO [2]  junctions with sizes L = 5-50 pm show that 
in a range of 20-50 K below T, there is no measurable supercurrent through the junction. A 
point junction would be thermally disordered if +oIc  / 2 c  < kT, i .e. I ,  < 1 p.4 at - 80 K; 
however, the observed I ,  at low temperatures are = 150-400 p A  and at  = O.4-0.8Tc should 
still be much higher than 1 pA. 

We propose therefore that since L >> A space-dependent fluctuations are relevant to the 
experiments [l, 21. These junctions correspond to case I1 with W = 0.1 pm and A '  0 0.2 pm so 
that T, - Tj = 0.05 K; we propose that effects of disorder [15,16] are responsible for a larger 
T, - Tj, consistent with the large sample dependence in the YBCO system [l]. 

A junction of type I may be realized as a YBCO edge junction [17] with W = 100 pm. In 
fact, Polturak et aZ. [17] have found that the critical current I, for their weakest junction is 
decreasing faster as T approaches T,  than I ,  ( T )  of other junctions. This can be due to thermal 
fluctuations which are efficient even below Tj and are enhanced when Ej is small (eq. (13)). 

In conclusion, we have shown that the study of large-area junctions is significant for two 
reasons. First, it provides a test for a new type of phase transition in which phases are 
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disordered on a junction while retaining long-range order in the bulk. Second, thermal 
fluctuations in the junction should be considered in device design and applications. 
Furthermore, we suggest that our theory is related to a number of observed anomalies in the 
critical current of large-area junctions. 
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