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The application of superconducting Bi,Sr2CaCu208 and YBa2Cu307 wires or tapes to electronic de-

vices requires the optimization of the transport properties in Ohmic contacts between the superconduc-
tor and the normal metal in the circuit. This paper presents results of tunneling theory in

superconductor —normal-metal —superconductor (SNS) junctions, in both pure and dirty limits. We
derive expressions for the critical-current density as a function of the normal-metal resistivity in the dir-

ty limit or of the ratio of Fermi velocities and effective masses in the clean limit. In the latter case the
critical current increases when the ratio y of the Fermi velocity in the superconductor to that of the
weak link becomes much less than 1 and it also has a local maximum if y is close to 1. This local max-

imum is more pronounced if the ratio of effective masses is large. For temperatures well below the criti-
cal temperature of the superconductors the model with abrupt pair potential on the SN interfaces is con-
sidered and its applicability near the critical temperature is examined.

I. INTRODUCTION

For many technical applications of superconductivity,
a large critical current is an essential property. The in-
tegration of superconducting devices in electronic cir-
cuits requires that the current-carrying ability be
preserved in electrode Ohmic contacts with metals, or at
metallic-superconducting interfaces within the supercon-
ducting device. Such contacts are present when the
necessity for improved ductility of the superconducting
ceramic material leads to the use of metal-matrix com-
posites such as Bi2Sr2CaCu20s (BSCCO) granules
dispersed in an Ag matrix, or BSCCO powder in an Ag
tube. ' Composite wires or tapes can be modeled as a
dispersion of strongly superconductive granular islands
embedded in a metallic matrix such that the super-
conducting order parameters are coupled by Joseph-
son junctions. Each such junction is then a
superconductor —normal-metal —superconductor (SNS)
junction; the normal-metal part is also referred to as a
weak link. The critical current of such SNS junctions
determines the critical current of the composite system.

It is therefore of considerable interest to identify which
material parameters affect the SNS critical current and
eventually optimize the Josephson junctions by the prop-
erties (physical, chemical or geometrical) of the normal
metal that could be adjusted to maximize the critical-
current density.

A direct Josephson effect in high-T, SNS junctions has
been observed in many experiments (see review article
for a list of references). The theoretical study of SNS-
type Josephson junctions considers different temperature
intervals below T, and various purity limits for materials
which compose the SNS trilayer. For T close to T„SNS
junctions were studied in the dirty limit, i.e., in the
case when the mean free paths of quasiparticles in the su-
perconductor l, and in the weak link I„areless than the

corresponding coherence lengths. A pure SNS sandwich
with abrupt pair potential barriers at SN interfaces (valid
for T « T, ) has been considered by Ishii at T=o and by
Bardeen and Johnson. In this model the effective mass
m„m„andFermi velocities U„v„for the superconduc-
tors and for the weak link, respectively, are the same.
Near T, self-consistent solutions of the order parameter
show that the pair potential is changed in a large region
near the SN boundary, i.e., the so-called proximity effect.
This has a significant impact on the Josephson current
affecting also its temperature dependence. The mode1
with abrupt pair potential barriers at SN interfaces needs
then to be modified. The proximity effect of the pure
SNS junction is known for v, =U„and m, =m„and to
some extent for more general cases, ' The proximity
effect with v, Wv„b tuwith m, =m„was considered by
Kieselmann' who obtained numerically the pair poten-
tial for several values of temperature. %e have used
Gor'kov equations to calculate the critical Josephson
current, though the approach based on the quasiclassical
theory of superconductivity is possible. Quasiclassical
equations and boundary conditions general enough to de-
scribe a wide class of superconductors with magnetic ac-
tive interfaces were obtained recently by Millis, Rainer,
and Sauls. " This theory was generalized on
superconductor —normal-metal double-layer system in the
article. "

In this work we evaluate the critical Josephson current
of both pure and dirty SNS junctions in the present case
where v, Wv„and m, Am„. The only assumption made is
that the thickness d of the weak link is large compared
with its coherence length, i.e., weak tunneling. In Sec. II
the pure SNS junction at temperatures near T, is studied

by solving the integral equation for the order parameter
and the critical current; the weak link is taken as a nor-
mal metal with a critical temperature T,„=O.Optimum
values of the parameters 0, /u„and m, /m„ for maximiz-
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ing the critical current are found. In Sec. III dirty SNS
junctions at temperatures near T, are studied; numerical
data by Barone and Ovchinnikov are analyzed and sim-
ple analytic expressions for the critical current and pair
potential is given. This allows for an easy parameter op-
timization (e.g., resistivity of the weak link) for maximiz-
ing the critical current. Section IV solves the pure SNS
system in the case when the critical temperature of the
weak link deviates from zero and comparison with results
for the dirty limit are made. In Sec. V pure SNS junc-
tions at temperatures well below T, are studied by using
the model with abrupt pair potential on an SN inter-
face, ' generalized to v, Av„and m, Am„. It is shown
that under some conditions (large difference in masses
and velocities) the results are applicable even if T is close
to T, . In the conclusions, Sec. VI, we compare our pure
limit results with experimental data' showing unusual
temperature dependence of the critical current. Appen-
dix A solves for the proximity effect, while Appendix B
discusses an instructive case of reQection from a single
SN boundary.

II. PURE SNS JUNCTION

SNS devices working in the pure limit have been fabri-
cated with superconductive YBazCu307 (YBCO) thin-film
electrodes and Ag normal-metal bridges. ' The clean
limit has also been achieved for Bi-based high-T, super-
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FIG. 1. Schematic energy diagram for SNS junction in non-

superconducting state. E,„=m, „v',
„

/2 are the Fermi energies
of the superconductors and weak link, respectively.

conductors. In this case 1, )g, =v, /2~T„1„)g„=v„/2n T, where g, and g„arecoherence lengths for the
superconductor and normal metal, respectively and T, is
the critical temperature of the superconductors. We con-
sider the case that the temperature T is close to T, and
that the critical temperature in the weak limit is T,„=O
(Sec. IV considers T,„AO).The relevant physical param-
eters are m„m„,v„and v„.Superconductors and nor-
mal metal in the junction have the same chemical poten-
tial (see Fig. 1). For such trilayers SNS structure the to-
tal Hamiltonian has the form

p
2m

mv y 1 dg, df
+b(z)Q(pQ) p+b, "(z)P)pgt pdz dz

1 d 1
1CO+—

2 dz PPl dz

2 2

+ G (z z')2'

=5(z —z'), (1)

with the boundary conditions that the values:

The parameters in H,„,are z dependent: m, v are equal
to m„v, if ~z~ )d/2, or to m„, v„ if ~z~ &d/2; the
relevant energies are shown in Fig. 1. In H»„f
are the quasiparticle second quantization operators,
a= I, l is the spin index, and the sum on a is implied.
b, (z) stands for the z-dependent order parameter. A term—

~ E~, which has no dependence on quasiclassical opera-
tors, is omitted in the expression for the Hamiltonian
H,„,. We have used the homogeneity of the junction in
the x,y directions (parallel to the junction) and made
Fourier transformation of the 11 operators on these coor
dinates. The corresponding momentum component p of
the quasiparticle is continuous at the SN interface due to
this homogeneity.

Consider first the Green's function of the SNS when
the all components of the junction are in the nonsuper-
conducting state, i.e., b, (z) =0 in H,„,. The Green's func-
tion which depends only on the z coordinate obeys then
the equation:

G (z,z'); (1/m)(d/dz)G ~(z,z');

In formulas (1)—(3) co=@T(2n +1) with n =0,
+1,+2, . . . are discrete fermion frequencies.

The Green's function can be written in the form

G (z,z') =C [l9(z —z')w (z)Q (z')

+8(z' —z)w(z')u(z)] . (3)

Here 8(x) is the Heaviside step function which is equal to
1, if x)0 or to 0 when x (0. The functions w (z), u (z),
satisfy the homogeneous Eq. (1). They, as well as
(1/m)w'(z) and (1/m)u'(z) (prime stands for a derivative
on z) are continuous at the SN surfaces. Furthermore,
for z~ao u( —z)~0, w(z)~0. The constant C is ob-
tained from Eqs. (2) and (3),

dw(z') (,) (, )
du (z')

The functions w(z), u (z) for three different regions of z

are continuous on z at each interface of SNS (see Fig. 1).
Due to the 5 function in the right-hand side of Eq. (1)
there is also the relation

6 (zz ) +v 6 (zz ) v=2m . (2)
d ~ d



4224 A. GOLUB AND B.HOROVITZ 49

can be easily found:

u (z)=exp[k, z], z & —d/2

[exp( k„(z+d /2) )—a(g)exp( —k„(z+d /2) ) ]exp( —k, d /2)
IzI &—

[1—a(g)] 2

exp(k, (z —d))[exp(k„d)—a (()exp( —k„d)]+2a(g)exp(—k, z)sh (k„d)
I. 1 —a'(k) l

w (z) =exp( —k, z), z )d /2

[exp( —k„(z—d /2) ) —a(g)exp(k„(z —d /2) ) ]exp( —k, d /2)

[1—a(g)] 2

exp( —k, (z + d) )[exp(k„d)—a (g)exp( —k„d)]+2a(g)exp(k, z)sh (k„d)

[1—a (g)]

dz)—
2

z (——
2

(4b)

where instead of p we introduced a new variable
g= 1 —p /(m„u„),and the notations k„=p—(m„u„)

2im—„co;k, =p (m,—u, ) 2im—,co; the real parts of k,
and k„aretaken to be positive. The new function a(g)
that appears in the equations for m and u describes the
reflection of quasiparticle from the SN boundary:

6 (z,z') = — (1—a(() )
n

d ~ d
X exp k, —+z' —k„—+z

X [1—a(g)exp[ —k„(d—2z)] I,

a(g) = k, k„
m, mn

k, k„+
m,

Izl & —,z'& ——;d ~ d.
2' 2'

The single SN boundary is considered in Appendix B,
where it is also shown that the reflection is minimal ap-
proximately at y = 1 where y = u, /u„; more generally
a(g)=0 when both y =v= 1 where v=m, /m„.

The Green's function in the various intervals of z, z'
can be obtained from Eqs. (3) and (4). Aiming at the cal-
culation of the critical current in the case d )g„,we
write down the Green's function for the whole SNS sys-
tem only for z &d/2, z'& —d/2. This corresponds to
the approximation when the mutual influence of super-
conductive electrodes in the SNS junction is small; this is
due to the exponentially small factor exp( —k„d)when
d &g„.Thus we have for the Green's function of the
SNS system:

6„~(z,z')= — "(1—a(g))
n

Xexp[k, (z' —z +d) —k„d],

In Eqs. (7) and (8) the term proportional to exp( —k„d}in
the last brackets may be ignored when the critical current
is calculated.

The Green's function Eq. (6)—(8) has contributions of
two types: The first corresponds to real terms in the ex-
ponent, while the second to imaginary ones. The latter
result in oscillations of G„on atomic -(1/mv) dis-

tances. We can simplify a(g) by neglecting in Eq. (5)
terms of the order (m, u, g, ) ', (m„u„g„)

(()—[y nC
[yv'n4+1] v'y'

m, Us
V—

mn Un

Density of the critical current is related with the Green's
function as follows

z & d /2, z' & —d /2 . (6)

The expressions for Careen's functions in other regions of
z, z' have a form:

6„(z,z') = — (1—a(g) }
n

d dXexp —k z ———k ——z'
S 2 n

J= (V, —V„.)„„.T g G' (r, r'},
lm

or in the case when only z dependence is essential

dJ= . (V,.—V)Tg f 2e
' 6'~(z z').

im (2~)

(10}

X [1—a(g)exp[ —k„(d+2z')]],

(7)
d ~ d.
2' 2'

where the index s stands for the full Green's function
which includes also superconductive correlations,
5~+0. Near T„expansion to second order in h(z) can
be applied' ' to 6' (z, z'):
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G' (z,z')=G (z,z') —f dz, f dz2G (z,z, )b(z, )G (z2, z, )E(z2)G (z2,z'),

where

(12)

b(z)=h(z) 8 z ——exp(iP, )+8 — —+z exp(i/2) =h(z)f, (12')

Here P„Pzare phases of the order parameter in left and right superconductors, respectively; b, (z) is its absolute value.
Inserting (12) into the formula for current density Eq. (11)we have

J(z =0)=j sing, P=P, —
Pz

4e —d/2 G Pj= T g f dz, f dz2 f 2
b(z~)b, (z2)G „p(z2,z, )L(z2, z~),m„)p — d/2 (2~)

(13)

E(zz, z& ) =6„&(0,z& ) G„z(z2,z) G„z(—zz, 0) G z(z, z& ),

The Green's function 6 „~(z2,z, ) in the expression for j
describes the motion of quasiparticle from one side of the
junction to the other, So this Green's function, as was
mentioned before, has to be defined for the whole SNS
junction, whereas L(z,z') consists of Green's functions
which describe the motion of quasiparticle from one of
the superconductors to the inside of the weak link. These
may be calculated for the separate SN system. We
proceed further by substituting the explicit form for the
Green's functions [Eqs. (6)—(9)] in formula (13) for
current density j:

Now we integrate (16) and find

2epln Unj= ~1
—a~ bI(k, )exp

d

u„&g
(17)

k = [2/(I+Ql+4to /u m )]'
v, &ri U

j =8em„Tg f exp( k„d)A&—(k, ) .dpi —a( )

4~'lk. I'

32em„v„hI(k,}
m. d (I+y)

(18)

(14)

Here bI(k) denotes the Laplace transform of b, (z):

EI(k, )=f dz b,(z+d/2)exp( —k,z),

where

' 0.5

~k„~ =(m„u„)g 1+
z z z

g v„(m„v„}

(15)

We can rewrite the expression for the current by integra-
tion on the variable g which was introduced above [see
Eq. (9)]:

where a =a(g= 1), t = T/T,
To complete calculations of the current density, we

have to obtain the Laplace transform of the order param-
eter at the point k, . This means that we must know
h(z) in the whole region near the NS boundary
0 (z —d/2 & 1/k, . Due to the exponent in Eq. (18), it is

possible to analyze a two-layer SN system neglecting the
mutual inhuence of superconductive banks. Thus we can
define the z dependence of the order parameter consider-
ing this more simple case. Detailed derivation of b, (z) is
presented in Appendix A, while here we stress the main
lines. In the vicinity of T„the order parameter near the
SN surface on a scale of g, obeys the linear integral equa-
tion of the type proposed by de Gennes for Josephson SIS
junctions'

j= em„Tg—f dg exp( —k„d)b, (k, ) .a(g)l 2
n f s

(16)

d2
b (z) =

~ g ~2T y„f, f "A(z')K„(z,z' }dz',
)p (2'�)

K„z(z,z') =6 z(z, z')6 „z(z,z'), z )0, z'&0,
(19)

The condition that the thickness of the weak link d is
greater than g„permits us to simplify the last expression.
At T near T, only one term in the sum is important and
we can put /= 1 in all terms of Eq. (16) except for the ex-
ponential term. Physically this means that the quasi-
particles moving normal to the junction contribute
significantly. We also ignore terms such as the last term
under the square root in Eq. (15}which are proportional
to (m„u„g„)'. Therefore

where g is the interaction coupling strength responsible
for superconductivity. In the normal metal we assume
that g=O ( T,„=O),so the integration on z' in Eq. (19) is
restricted to the region z' & 0 of the superconductor. The
origin z=0 is taken on the SN boundary. The expres-
sions for the Green's functions and the solution of the in-
tegral equation (19) is given in Appendix A. The solution
for z )&g, is matched with the solution of the Ginzburg-
Landau equation:
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A(z) = b,otanh&r/2 +5
S1s

Z Z
b, (z}=b,o&r/2 +5 +a expP (21)

where 6 and a are given by

5 =1.722+1.52, a =—(2. 15 Bz —2.432) .
1

(22)

This generalizes previous results. All values A;, B,
(i =1,2), and D depend on the reflection coefficient a(g),

B, =—f 'dzt)'"' "[1—I«() I'], (23)

where g and g are defined in Eq. (9), and B vanish when
the reflection coefficient u( g )~ l. In the case when the
reflection coefficient a(g) does not depend on v, parame-
ter 5 as function of y was calculated by another method
(solving numerically the Gor'kov equations) in Ref. 9.

All integrals can be easily calculated numerically. As a
result we obtain Figs. 2—4, which represent 5 as a func-
tion of y for various values of v. From these figures we

g„=&7((3)/12(,=0.84$, .

Here 60=3.06T,~' is the superconducting gap in the
bulk of the superconductor and ~=1—t. The value of 6
is obtained from the solution of Eq. (19); it depends on
material parameters for both the superconductor and the
weak link, and it determines to what extent b(z) is re-
duced by proximity to the normal metal. The solution of
Eq. (19) has a form (see Appendix A)

see that the minimum of 5 (y) depends on the effective
mass ratio v. This minimum corresponds to that of
reAection from the SN surface. This behavior differs
from the corresponding dependence in dirty limit (see
below). This is possibly due to different characteristics
reAecting how the quasiparticles move in the pure and
dirty cases. In dirty limit the quasiparticles spread
diffusely, while in the pure system they move ballistically.
For the model a(()=0, m„=m„v„=v,we have
5 =0.764.

Now with the help of Eq. (21) we can calculate the La-
place transform b.f(k, ) and find the amplitude of the
critical-current density:

47. 7~ tdj= '
eT, N, tv, F~exp( —doy), do= —,

(5~+1.2+0.5a)
F =

(1+y)

(24)

Here the density of quasiparticle states N, =m, v, /2m' is
introduced, as well as dimensionless thickness of the
weak link do. Formula (24} is our main result for clean
SNS junctions. In Figs. 5 and 6, F is plotted as function
of y and various values of v. %e see that in the range
0 & y (2 for the most values of v, F has a minimum. F
increases when y approaches the value 2. This is due to
the balance between the reAection of quasiparticles from
the SN interfaces and transmission of Cooper pairs
through the SN boundaries. However, for large y, F de-
creases if y grows. Indeed, when y&)1 the refiection
coefficient a(g) is close to unity and the main contribu-
tion to 5 comes from term with B, [see Eqs. (22) and

(23)]. Therefore, in the limit y))1 for y dependence of
5 and F, we find 5~ -const/B, ; B, -2y/(1+y)
-2/y; F -y /(1+y) -1/y . Such behavior of F
shows that the suppression of the transmission probabili-
ty of Cooper pairs overcomes the suppression of the
proximity effect (increasing 5 ). The current j depends
upon the exponential term which suppresses the current

2. 5

2. 25

1.75

1 . 25

FIG. 2. The parameter 6~
[Eq. (22)] which describes the
suppression of the order parame-
ter at the SN boundary as func-
tion of y, for difFerent ratios v of
efFective masses. The unmarked
curves correspond, from top to
bottom, to v=0.2, 0.6, 1.0, re-
spectively.
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FIG. 3. The y dependence of
the parameter 5~ as in Fig. 2 for
higher values of v.
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FIG. 4. 5~ as function of y
when the Fermi velocity of the
superconductor exceeds that of
the normal metal (y & 1).
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I
v =3/ v =2.
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FIG. 5. The y dependence of
the pre-exponential factor F~ in
the formula for the critical
current density [Eq. (24)] for
various v. The lower curve cor-
responds to v=0.2, 0.6, 1.0. On
this scale the curves representing
these values of v are close to-
gether.
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0.5 1.5



4228 A. GOLUB AND B. HOROVITZ

2

FIG. 6. F~ as function of y
for v=1, 0.6, 0.2 corresponding
to curves from top to bottom.

0. 5 1.5

if y increases while the pre-exponent term increases with
y. Therefore, if do is closed to one: do)1, and v)1,
then the critical current j as a function of y has a local
maximum. Physically this optimum originates from
competition between two factors: First, the minimum in
the reflection at y =1 which reduces the order parameter
(or enhances the proximity e6'ect) and second is the
reduction of g„when y grows, i.e., reduction in the tun-
neling amplitude.

The critical current also increases if y becomes much
less than one, an eff'ect which is bigger for large v. For
small y both factors mentioned above enhance j, i.e.,
both reAection and tunneling when y (1 is reduced. Fig-
ure 7 shows the local maximum of j(y) as well as the
enhancement at small y for do=1.5 and v=3 [the
ordinate is labeled by normalized value
jo=jdol(47. 7eT, N, tv, r )].

( 2

(1+5 )
(25a)

The same considerations are true in the case of junctions
with large concentration of nonmagnetic impurities in
the superconductors and in the weak link.

We note that present theory is applicable close to T„
i.e., for small ~. To estimate the range of applicability we
note that the matching of the asymptotic of the solution
[Eq. (21)] with the expansion of the Ginsburg-Landau
solution Eq. (20) when 5& is large, can be achieved if cor-
respondingly ~ is small. [We need to make such a match
since the solution of integral equation (19) is defined up to
the constant which is obtained from this matching. ]
Hence, the temperature interval where this theory is valid
is given by

0.5

v =3

0. 45

0.35

FIG. 7. The y dependence of
the critical current for d0=1.5.
Note the local maximum which
is in the region of applicability
of the theory (d /g„—1.4).

0.3

I

0.2 0. 4 0. 6 0. 8
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III. DIRTY SNS JUNCTION

In the dirty limit: l, (g„.and l„(g„;(the index i
stands for dirty limit). The relevant physical characteris-
tics are the resistivities p, and p„,the densities of the
quasiparticle states N, and N„(the latter are proportional
to the Sommerfield constants g, and y„)for supercon-
ductive electrodes in the normal state and in the weak
link, respectively. At temperatures near T„the density
of the critical current was calculated by Barone and
Ovchinnikov. They numerically solved the integral
equation (19) for dirty SNS junction and obtained the
asymptotic form of the order parameter similar to Eq.
(21}. The parameter 5;, which replaces 5 for the dirty
case, depends now on one quantity q

0.56q (1+0.81q)
(1+q) (26)

The amplitude of the Josephson critical current density j,.
can also be represented in a simple analytical form. In
this case the numerical data for current density j; has
the form

1 86T,F,2 . P T, (K)=1.63X10 4 I,
eg„p,&t &t g„p,(Qcm }

(27)

In this formula, the last term gives the current density in
A/cm . For F; we find

F; =q (1—0. 11 lnq)exp
d&r

(28)

For a given thickness d -g„;and fixed values of N, and
N„,the critical current as a function of normal resistivity

l

q =, P„=QD„/2m T, =g„Qp,N, /p„N„,
ps s

(25b)

where D„=—,
' v„l„is the diffusion coefBcient of quasiparti-

cles in the normal metal. Here we have obtained in the
same way as in the pure limit (see Appendix A) a simple
analytical expression for 5;, which is in good agreement
with the results of numerical computations:

p„hasa maximum. This maximum, as in the clean limit,
is due to competition between the suppression of the or-
der parameter by the proximity effect (y or p„/p,—1)
and the reduction of the tunneling (exponential) (y or
p„/p, ))1). This becomes clear if F, is rewritten by in-

troducing new combinations of the relevant parameters
x —p„/p„c —X, /X„.

F; =~E[1—0. 11 in(a.s) jexp (29)

IV. PURE SNS JUNCTION (T,„AO}

The Josephson current was obtained on experiments
performed on a series of YBCO/Y06Pro~BCO/YBCO
edge junctions. ' The critical temperature of the normal
layer (here, the Y06Pr04BCO compound) deviates from
zero, T,„=40K. SNS junctions in this experiment be-

long to the clean case. For this limit a complete theory is
not available. Here we are going to consider only the ex-
ponential factor in the expression for the critical current.
For dirty SNS junctions the influence of the proximity
effect on the exponent when T,„AOis well known in-

stead of d/g„, , we have dK; where K, is the inverse decay
length and is given by the smallest root of the following
equation:

T

ln =i)'j( —,
' —

—,'g„;K;) —ir'r( —,
'

) . (30)

Here '0 is the logarithmic derivative of the I function.
%e can find the equation for pure limit similar to Eq.

(30) in a manner analogous to Ref. 3. Let us consider an
SN system and suppose that the normal layer occupies
the half space z&0. The linear integral equation for or-
der parameter [see Eq. (19) and Appendix A] has a form

This maximum, however, appears in the range of
thicknesses d which are on the margin of where the
theory is applicable, d —g„. The optimum thickness
d is related to ~ and c by a simple relation:
ad t /(g„)=0.89. As an example, consider typical
values for parameters of ceramic and noble metals with

(„;-0.5 nm, p, -2X 10 0 cm, g„-40 nm, and

N, /N„-6.4. Assuming d =g„'we get the optimum value

p„=1.5x10 0 cm.

b, (z &0)=— N„2~Tg f f dz'h(z')exp —2 ~z
—z'~v„",o 0

(31)

This equation is valid only deep inside the normal metal
where b.(z) is the sum of damped exponential exp(K„z).
The smallest E gives the maxirnurn contribution, ' thus
we take A(z)=e exp(K z), put it into Eq. (31), and per-
form the integration on z'. K~ is less than E, = ~co~/v„,
and we can neglect the terms exp(2c. &z) as compared with
exp(K z). The result can be represented in the form

T
1n

cn

1 1 Kpvnk=—

fdic

2$ — f —+—
2 0 2 2 4mT

K v„g
2 4~T

(32)
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1

I ( —,'+y)

After final integration over g, we obtain the equation
which in the clean limit replaces Eq. (30),

I /2
sin[sr( —,

' —y) ]
(33)

b

of the SNS junction. We also have

6' (z,z'), , +O=G'~(z, z'), , o,
F+ (z,z'), , +D=F+p(z, z'), , 0,

(37)

where y =E~g„/2,b = T,„/T,. E is the smallest root of
this equation. E enters in the expression for the critical
current j—exp( —dK ), a result which may be quite
di8'erent from the dirty limit Eq. (30) for which

j -exp( dE,—).

V. PURE SNS JUNCTIONS AT LO% TEMPERATURE

(V, —V, )T
2lm

2

X g J [e '" 6' (z,z'), , —c.c. ] .
(2m. )

(34)

Equation (34) can be easily proven by using the Lehmann
representation for the Green's function —the co summa-
tion yields a zero contribution for the real part of
exp( ico5)6' (z—,z')

The abrupt pair potential model is given by

b,(z)=h, lzl &d/2

=0, Izl & d /2 . (35)

The Green's function G' (z,z'), as well as the anoma-
lous Green's function F+ (z, z') obey Gor'kov's equations

For temperatures mell below T, the self-consistent
determination of the order parameter b (z) and the criti-
cal current requires keeping high orders in b (z). Howev-
er, in this case the model with abrupt pair potential ' '
is physically reasonable and the calculation of the critical
current is in fact easier. The most recent development of
this model by including the barrier potential was given in
Ref. 20 (see also Ref. 21). In this article we generalize
this model by allowing distinct e8'ective masses and Fer-
mi velocities for the superconductors and the weak link.
In the limit of wide link (see below) and for equal masses
m, =m„our result reduces to that of Ref. 20.

Here we present a brief scheme of calculations and sin-
gle out the points which are connected with our generali-
zation (m„Am„u„Au,). We begin with rewriting Eq.
(11)for the current density in the form (5~+0)

and in addition to Eq. (2) there is a relation

F„z(z,z'), , +0= F„z(z,z'), (38)

X 2m, i—co+(m, u, ) g+ ~
F+~(z,z'),

dz2

(39)

where 3) is given by Eq. (9) and z & d/2 or z & —d /2 for

P„Pz,respectively.
In the normal metal, 6'z(z, z') and F„(z,z') are con-

nected only through the boundary conditions. However,
we are seeking the Green's functions with lz'l &d/2 (in
fact z'~0). In difFerent regions of z, they have the form

IZX IZA,F+ (z,z')=a, e '+aze

i exp[i&—z] IZA. IZA,6' p(z, z') = (co+a e ' —co a~e ' ),
z ( —d/2;

IZXF+ (z, z')=b, e '+bze

i exp[i/, ]—6' p(z, z') = (co+b, e '
cu b~e—IZA, '),

z & d/2; (40)

With these boundary conditions, we find the solution
of Gor'kov's equations and evaluate the critical current.
It is convenient to calculate j at the symmetry point z=0
(see Fig. 1), since at this point it is possible to avoid the
appearance of a source term which originates from the
fact that b(z) does not satisfy the self-consistency equa-
tion. Therefore we need the Green's function G' (z, z')
at z'~z+0, z=0. Since the order parameter does not
depend on z inside the superconductors, there is a simple
relation between the Green's functions G' (z,z') and
F+ (z, z') at lz'l &d/2,

exp[iyi z]
G'p(z, z') =

2m, h

mv p 1d 1 d
2 2m 2dz m dz

6' (z,z')

F (z,z')

0 f
f' 0—

5(z —z')
(36)

izk —IzkF+ (z, z')=c, e " +c~e

6'„(z,z')=d&e "+dze ", z &z', lzl &d/2
izk —izk

=e&e "+e&e ", z )z

where f contains the phases P&, tt~ [Eq. (12')], I and o 3
are 22 diagonal matrices with elements [1,1], [1,—1],
respectively.

The boundary conditions for 6' (z, z') are the
same as for G„(z,z') [see Eq. (2) and the preceding
text]. The anomalous Green's function F+ (z, z') and
(I/m)c}F+ (z,z')/Bz are continuous on z at each interface

All coefficients in Eq. (40) from a, to ez are functions
of z'; cu+ =(co +b, )'~ +co, cu =(co +b, ) co. From-
Eq. (20) and Eq. (37), if lzl, lz'l & d /2 we get

mn
e, =d, + . exp[ ik„z'], —

&k„

mn
e, =dz — exp[ik„z'] .

n
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A,, =(p, g+2im, t/co +b, ) (42)

The wave numbers A,„k„areobtained from the solution
of Eq. (36) with the zero-valued right-hand side

(there are eight equations) determine all the coefficients

(a, . . . , d), hence G'„(z,z') for z, z' in the weak link is

obtained. From Eq. (34) we derive the dc Josephson
current

where k„=(p„(+2m„i');p„=m„v„;p, =m, v„square
roots are chosen here so that Imk„&0, Imk, , & 0, and g, ri
are related by Eq. (9).

The continuity conditions at the interfaces z =+d/2
I

Q2 1J= musinPT g f dpi „',
co) 0

where

(43)

I „=b,cosP+ [tu2+(tuz+bz)K2]cosh(dk„}+2tuV tu2+6 K,sinh(dk„)

(tu—2+6 )K czos(dk„')+( tu2+5 2)K s3in(dk„'),

l~ I'+~1k I' l~ I'+~1k I'

vlk„I }(,'
'

2vlk„I'Z,' vlk„lk,' 21k„lk,'

'2

K3 =
z z

k„'X„l,,'=A, , +A,,", k„'=k„+k„',2, = i (A—,, —1,;), k„= i (k—„—k„"}.
n s

We have maintained in Eq. (44) the term of order
(m, v, g, ) ', while terms of order (m„u„g„)' are neglect-
ed. For high-T, superconductors, the former terms have
a noticeable inhuence in the case y=1, v=1. If at a
given temperature T, d »g„,then the main contribution
to the current density comes from integration over g near
(=1. The hyperbolic functions remain only in I „sothat
+n mnVn~ ~n ~n~ +]

&i+r'
. 2y.

2 4(co +4 )

I+@) ' '
(m u')'

(45)

If the terms of order (m, v, g, )
' are ignored then P&=1

and

K =(1+r )/2r,
and the current has the form J =j,sing, where

(46)

2eb m„v„sing
exp

n. d [mT+K+6 +(mT) ]

2m Td
(47)

This expression reduces to that of Ref. 20 if m,
=mn when the barrier height is identified as U
=m, v, /2 —m„v„/2.Note, however, that for d &g„,a
nontrivial dependence on v= m, /m„appears.

If T is close to T„j,=Qj [with K represented by Eq.
(46)] where Q is given by

2

—2
3.06rT, (5 ++1.2+0.5a)

(4g)

5 +a

)
5 +1.2+0.5a

2

(49)

j is given by Eq. (24), 5 and a by Eq. (22) and r= 1 t-
In the last formula let us substitute the order parame-

ter b, through its boundary value at z =d/2 [see Eq. (21)
with z=0]. Then for the factor Q we have

I

Note that the temperature interval near T, where we

have used the self-consistent theory (Sec. II) is rather
small for large 5 [see inequality (24a)]. However, when

5& »1, Q is close to 1 and j,=j, i.e., the model with

abrupt pair potential can be extended to the region
near T, and Eq. (47) is valid for all T & T, with 6 sub-

stituted by its value at the SN boundary
h(z =0)=Du(T)tanh[(r/2)' 5 ]. Thus at T « T„
b(z =0)=b,u(T) as in (47), while near T, [Eq. (24a)]
b(z =0)-~'~ bu(T) is reduced by the proximity effect

which affects the ~ dependence of the critical current.
The reason that Eq. (47) [with b, ~b, (z =0)] interpolates
so well for all T & T, is that a large 5 implies a weak z
dependence [Eq. (21)] so that the abrupt pair potential is

in fact valid even near T, .
We note that Eq. (47) is a monotonically decreasing

function of y and the local maximum of Sec. II is absent.
The local maximum is a result of a minimum in the
reflection from the NS boundary which affects the A(z)
solution. This effect is absent when h(z) is an abrupt pair
potential [Eq. (35)].

VI. CONCLUSIONS

In this work we have studied SNS Josephson junctions
which are necessary for analyzing weak links in compos-
ite high-T, materials which are used for fabrication of
wires and tapes. Our work generalizes previous results

by allowing different Fermi velocities and effective masses
in the superconductor and the weak link, respectively.
We consider both clean and dirty limits, as well as tem-
peratures near T, or we11 below T, .

An interesting result is Eqs. (47)—(49) which relate the
self-consistent theory near T, with a step-type approxi-
mation for the pair potential, which is a good approxima-
tion at temperatures we11 below T, . When v, /v„deviates
considerably from 1 [inequality (24a)] we find that both
derivations coincide.

Our results allow for optimization of material parame-
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I, =I,O[aor+(1 —ao)r ] (50)
I

ters so that the critical current is maximized. In pure
junctions the optimum is obtained by choosing ratios of
Fermi velocities or ratios of e6'ective masses. The critical
current is maximized by high refiection from an SN
boundary, i.e., y far from 1, and by the tunneling factor
exp( —d, y) [Eq. (24)]. The result of both factors is
enhancement at y « 1 and a local maximum at y =1 (see
Fig. 7).

For dirty junctions the optimization is done by choos-
ing the resistivity of the weak link. In this case the criti-
cal current is affected by the proximity effect (reducing j)
which is reduced by a high resistivity p„ofthe weak link
and the exponential tunneling term which decreases with
p„[Eq.(21)], The result is a local maximum of j(p„)
which can be used to optimize weak links in the dirty
limit.

Finally, we consider experimental data' for
Ag/YBCO SNS junctions which seem to be in the clean
limit' in a large temperature range below T, . The data
are rather surprising, showing that I,(r) has a downward
curvature which is opposite to that of the exp( —d/g„)
factor. A fit to the dirty-limit theory was attempted,
though an empirical dependence of the form

was found to be a better fit to the data" with a0=1.6.
We propose that Eq. (47} for the clean limit is more reli-
able for this experiment. Qualitatively, the factor K in

Eq. (47) favors downward curvature (i.e., large ao); we

cannot, however, give a quantitative fit as there are un-
certainties in the parameters y and d/g„. Furthermore,
the rather low T, = SO K indicates strong disorder within
the superconductors.
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APPENDIX A

In this appendix we derive the solution (21) for the
self-consistency equation of b, (z), Eq. (19). The kernel
K ~(z, z ) in the integral equation (19) is defined in the
half-space occupied by the superconductor (z) 0, z') 0).
For Eq. (31) we need K in the interval z&0, z'&0.
Therefore, we consider the Green's functions for all these
ranges of z. From the solution of Eq. (1) for a SN two-
layer system we find

m,
G„~(z,z') = — [exp( —k, Iz —z'I ) —a(g)exp( —k, (z +z') ) ], z )0, z') 0;

S

[exp( —k„Iz—z'I)+a(g)exp(k„(z+z'))], z &0, z'&0 .
n

If z) 0, z' & 0 or z &0, z' & 0, expressions for the Green's
functions can be easily obtained from the last two lines in
Eq. (4). We ignore, as was mentioned above the oscillat-
ing terms in the kernel K (z, z') and obtain

2m,
K (z, z') = [exp( —k, Iz —z'I )P '

II I2

+Ia(g)I exp( —k, (z+z')}] . (A 1)

2

a(z)=IgI '
y. f '""f "dz'~(z')P(z, z ),

2& „00 7J 0

(A2)
P (z,z') = [exp( —k, Iz —z'I )

+Ia(g)I exp( —k, (z+z'))],

This is the Miln-type integral equation, and the solution
can be found by the variational method proposed for

The normal metal has the same kernel as Eq. (Al), ex-
cept that the index s is replaced by n and the minus in the
second exponent is replaced by a plus. Equation (31),
which we used in Sec. IV, neglects the term proportional
to a(g) in the kernel. This term is small deep in the nor-
mal metal where we are seeking the solution of the in-
tegral equation.

After introducing {A1) into Eq. (19), the equation for
the order parameter takes the form

Miln's equation. First we write A(z) in the form similar
to Eq. (21),

b(z)=M +S(z), S(z)=5 +h(z) (A3)

g(z)= '
y f dye "(1—Ia(g)I')

X exp( —k, z),

where the constant M is found from matching with the
Ginzburg-Landau solution Eq. (20); it is equal to the
coef5cient before brackets on the right-hand side of Eq.
(21). The function h (z) goes to zero at z~ ~. Substitut-
ing Eq. (A3) into the equation for the order parameter
yields an equation for S (z) and h (z)

h (z) =R (z)+5~ Q (z)
2

+IgI y f ~ f dz'h(z')P(z, z'),
2& „00 'g 0

2

S(z)=R (z)+ IgI g f f dz'S(z')P(z, z'},2' 0 Y/ 0
(A4)

2 2

R(z)=Igl 3

' g f dg(1+Ia(g)I )
8m T g'i, „=0(2n+1}

Xexp( —k,z),
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where the terms with higher orders in r were omitted. We multiply Eq. (A4) by z, integrate over z & 0, and after simple
calculations we obtain the equation

, f dg[1+la(g)l']h(k, )=~,g, y, f dq&q[1 —la(()l']
„=o(2n+1) „=o(2n+1)

—
g, &12/7g(3) g f drirI[1+la(g')l ] .

o (2n +1) o
(A5)

Here g(3)= 1.2 is the Riemann g function, h (k, ) defines the Laplace transform [see Eq. (15)] of h (z). This identity will
be used further for the minimizing functional. Due to the relation K„~(z,z')=K„~(z',z), the functional which after
variation gives Eq. (A4), has a formz

r

f "dz S(z) S(z)—lgl(m, '/2n. ) g f '(dg/g) f "dz'S(z')P(z, z')
0 n)O 0

f R (z)S (z)dz
0

On the optimum trajectory we have

H '= R zS zdz.
0

On the other hand, choosing the trial function as a constant, S(z)=const, we obtain from Eqs. (A6) and (A4)

g [I/(2n+1) ]f dpi(1 —la(g')l )
n=0 0

2

g [1/(2n+1) ]f drive(1+la(g)l )
n=0 0

(A6)

(A7)

(AS)

With the help of Eq. (A5), we calculate the right-hand side of Eq. (A7):

H „= N, g, &12/7((3) —fi Q, —&»/7g(3) y ', f 'dphil(1+ la(g)l')
2 o (2n+I) o (2n+1)

Inserting this expression into the left part of Eq. (A8), we have

5~=0.85 y ', f 'drip[1+la(g)l ] +„-o(2n +1)

'2

g [1/(2n+1) ]f drive[1+ la(g)l ]
n=0 0

g [1/(2n+1) ]f dg[1 —la(g)l ]
n=0 0

Summation over n yields the result of Eq. (22) for 5 with A, 8 given by Eq. (23). The correction to the asymptotic
form of b, (z) near the surface is found by taking the function h (z} in the form of the last term in the brackets in Eq.
(21). Introducing this h (z) into Eq. (A5), we obtain the expression (22) for a.

In the dirty limit, the integral equation for the order parameter which substitutes Eq. (A2) was obtained in Ref. 3.
The calculation of 5;, which is similar to that of 5, was done in Ref. 8.

APPENDIX B

In this appendix we show that the function a(g) [Eq.
(5}] is the refiection coefficient from a single SN bound-
ary. Consider Eq. (1) for a single boundary, i.e., m =m„
and v =v„ for z)0, while m =m„v=v, for z&0.
A plane-wave-type solution of the corresponding
Schrodinger equation [i.e., without 5(z —z ) in Eq. (1)]
has the form

u (+0)=u (
—0),

u '(+0)lm„=u'( —0) lm, ,

where u '(z) =Bu /Bz. Equations (Bl) and (82) yield

a =(m„k,+m, k„)/(2m,k„),
b = ( m, k„—m„k,) l(2m, k„).

(B2)

(B3)

u(z)=exp(k, z), z &0

=a exp(k„z)+bexp( —k„z), z &0, (Bl)

so that u (z ~—ao )~0; k„k„aredefined below Eq. (4).
The boundary conditions are

The refiection coefficient from (Bl) is then lal = lb/ul in
agreement with Eq. (5).

A simple estimate of u can be given by assuming that
the dominant contribution of the reAection is from quasi-
particles moving normal to the SN surface, i.e., @=0,and
that at low temperatures compared with the Fermi ener-
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11 —r
1+y (84)

gies, the to( —T) term can be neglected. Thus k„=im„v„,
k, =im, v„and with y = v, /v„

so that
l
a

l
has a minimum at r = 1. This tninimum is

essential in the self-consistent theory of Sec. II as it
enhances the proximity effect and reduces the critical
current, This minimum leads to the minima in Figs. 2- ~

and causes the local maximum in Fig. 7.
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