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Layered superconductors. I. Vortex and fluxon phase transitions
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A system of superconducting layers with spacing d, in-layer penetration depth k, and Josephson cou-
pling between neighboring layers J is studied. When J =0 the system exhibits a two-dimensional (2D)
phase transition of vortex unbinding at a temperature T, . When A,, d a finite-size transition at T, & T,.
distinguishes this system from an XF model. When JWO, but vortices are neglected, Josephson Auxon
loops lead to a distinct phase transition at Tf & T, in which a significant second nearest-layer coupling is
generated. Competing vortices and Auxon loops lead to a three-dimensional phase transition at T„
where T„&T, (Tf. For Cu02-based superconductors (A,, »d) T, is near Tf if
T, ~ J&&T,exp( —E,'/T, ), where E,' is a renormalized vortex-core energy; T, drops to T„as J is de-
creased, accounting for data on YBa,Cu307/PrBa2Cu307 superlattices.

I. INTRODUCTION

Phase transitions in layered superconductors are of
considerable interest since most of the high-temperature
superconductors are layered. The structure' of supercon-
ductors such as YBa2Cu307, Bi2Sr2CaCu20, and
T12BazCaCu208 consists of a Cu02 bilayer (i.e., two Cu02
layers separated by —3 A) which is weakly interacting
with the other bilayers, being separated by 12—15 A.
Each bilayer is considered as one conducting layer; in the
absence of interlayer coupling, each such layer would ex-
hibit two-dimensional (2D) superconductivity.

The issue of dimensionality in layered superconductors
is significant in two aspects: (a) A quantitative aspect:
how close is the measured transition temperature T, to
that of uncoupled layers? (b) A fundamental aspect: can
a layered three-dimensional (3D) system with weak inter-
layer coupling exhibit a 2D phase transition with the cor-
responding critical phenomena?

The significance of interlayer coupling was recently
tested by producing (YBa2Cu307) (PrBa2Cu307)„super-
lattices, i.e., m layers of YBa2Cu307 unit cells separat-
ed by n layers of insulating PrBa2Cu307. As n increased,
T, was found to decrease, saturating at ' n =8—16. In
particular, for m =1, T, dropped from 90 K (n =0) to
-20 K (n =16). Disorder or charge depletion may ac-
count for some of this reduction; however, this by itself
should reduce T, to zero at large n. The saturation of T,
at large n therefore indicates that the loss of interlayer
coupling should be a significant cause for the reduction in
T, . A single YBa2Cu3O7 layer has shown a similar resis-
tance curve to that of the 1 X 16 superlattice, supporting
the claim for saturation. Data on
(BizSr2CaCu208) (Bi2Sr2Cu06)„have shown a decrease
of T, from 59 K (n =0) to —30 K (m =1, n =2) with
Bi2Sr2Cu06 being a semiconductor. Similar superlat-
tices showed no change in T, =75 K from n =0 to
m =1, n =5; however, Bi2Sr2CuO6 in the latter case is a
superconductor with T, = 15 K and is therefore less
effective in decoupling the B&2Sr2CaCu208 layers.

Interlayer coupling can also be controlled by iodine in-
tercalation of Bi2Sr2CaCu20; T, is then reduced by 10
K, although the crystal sheet resistance is hardly affected
by the intercalation. This indicates that intralayer prop-
erties are not affected, leaving the change in interplane
coupling as the main cause for the reduction in T, .

Superconductivity of an isolated layer is described by a
2D phase transition of the Kosterlitz-Thouless' and
Berezinskii" type. The transition temperature T,
separates a regime of thermally excited vortices from that
of bound vortices. The presence of such a transition can
be observed in two ways: (i) Resistivity p„of free vor-
tices at T)T„which is of the form

p, —expI —2[b(T, T)/(T T—, )]' I, —T, )T) T„,

where 6 is a constant and T, is the mean-field transition
temperature. (ii) Unbinding of vortices by the current at
T (T„ leading to a current- (I ) voltage ( V) relation of
the form

(2)

The exponent a ( T ) jumps from 1 to 3 at T„while the ex-
trapolation of a( T) to 1 yields T, .

An increasing number of experiments show the pres-
ence of the relations (1) and (2) on a variety of com-
pounds, ' ' as summarized in Table I of Ref. 16. From
the values of T„T,, and the London penetration depth,
the thickness of a superconducting layer relative to that
of a single Cu02 layer, P,~, can be deduced. This analysis
shows that 8,& is much less than the number of layers in
the samples, though it is 6—14, i.e., larger than 1. These
experiments seem contradictory —the nonlinear I-V indi-
cates 2D phenomena of uncoupled layers, while the
strong dependence of T, on layer separation implies
strong interlayer coupling.

The theoretical study of layered superconductors is
based on the Ginzburg-Landau continuum theory for
each layer and a Josephson coupling between neighboring
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layers. ' ' This model defines two types of topological
excitations: (i) vortices, which are point singularities in
each plane, and (ii) fiuxons, which are lines parallel to the
layers across which the relative phase of neighboring lay-
ers changes by 2~.

The system with J=0 was first solved by Efetov, ' and
more recently was further studied by several au-
thors. It was found that although the planes are cou-
pled via the 3D magnetic field, the vortex-vortex interac-
tion is logarithmic in distance, similar to the case of an
isolated layer. A 2D-type phase transition for vortex un-
binding at a temperature T, is then expected; this was
confirmed recently by an explicit renormalization-group
(RG) study.

When JXO, fiuctuations of fluxon loops compete with
the vortex transition. Assuming that vortices are absent,
the system has a phase transition at T&,

' at T) T&, Auc-
tuations of Auxon loops destroy the correlation between
layers allowing for an independent 2D behavior of each
layer, while for T & T& the layers are correlated resulting
in a 3D long-range order. The neglect of vortices is con-
sistent for isolated or widely separated junctions, e.g. ,
junctions on twin boundaries in YBa2Cu307.

For layered superconductors the separate treatment of
T, and TI is consistent only if T& & T„—the interval
TI & T & T„has then (i) no free vortices (being bound
below T, ), which is the assumption in deriving T/, and
(ii) J is renormalized to zero (by thermally excited fiuxon
loops when T )TI), which is the assumption in deriving
T„. The interval TI & T & T, (assuming T& & T, ) is a 2D
superconducting phase, consistent with the observed non-
linear I- V relation. This was Friedel s motivation for pro-
posing that T& & T, . However, Korshunov has stud-
ied a discrete-Cxaussian version for the free energy of lay-
ered superconductors and has found that TI )T„ for all
model parameters. Therefore a 2D regime is absent and
the transition temperature T, is a 3D one.

The dependence of T, on the anisotropy is essential for
understanding the data on the superlattices. For the an-
isotropic layered X-Y model, it was argued that
T, —T, —ln (J /T, ), while Korshunov has argued
that ln( T, —T, ) —T, /J; both results are for small J/T, .

A related problem is the full range of T, /T, as the sys-
tem becomes isotropic. Numerical data ' ' on the X-Y
model limits T, to be in the range 1 & T, /T, &2.4, with
the upper limit given by the isotropic X-Y model. Experi-
mentally, however, T, changes by a factor of -4, while
the X-Y coupling r decreases at higher T (e.g., in the
mean field r-T, T); thus, T,—/r changes by
-4(T, T, )/(T, T, ), w—hich is much lar—ger than the
2.4 value of the X-Ymodel.

The excessive drop of T, /~ (beyond the 2.4 factor) has
been related to a change of T, due to either boundary
effects or to change depletion from the YBCO layers.
The latter effect was found to correlate with fits of Eq.
(1), which indicate a decrease in T, . Since direct data on
intralayer properties of superlattices are not yet available,
the experimental value of the allowed range of T, /~ is
not yet settled.

In the present paper, the phase transition in layered su-

perconductors is studied in detail, expanding the presen-
tation of previous publications. ' In particular, I show
that the T, (J) dependence can account for a large varia-
tion in T„which is due to the presence of a core-energy
parameter E„aparameter which is absent in the conven-
tional X-Y model.

Section II presents the model and its transformation to
vortex and Auxon variables. Section III solves the J=O
system, showing the vortex transition T, and the vortex
correlation length g, . Section IV solves the system with
JWO, but assuming that vortices are not present; this
yields the Auxon transition at TI and a correlation length

Section V then shows that the full system, with both
vortices and fluxons, scales to a 3D isotropic system
when g„=g/, which therefore defines the 3D transition
temperature T, . Section VI analyzes data on T, of super-
lattice systems. In a subsequent paper, ' the effect of
magnetic fields parallel to the layers is studied. It is
shown there that such fields may decouple the system
into effective 2D layers, accounting for the observed I-V
data, even for relatively strong interlayer coupling.

II. MQDEI.

Consider an infinite stack of parallel layers with spac-
ing d in the z direction; each layer is continuous in the
r=(x,y ) plane. A Ginzburg-Landau-type free energy is
given in terms of an order parameter lgl exp[i'„(r)] on
the nth layer and the 3D vector potential A(r, z). For
temperatures not too close to the mean-field transition
temperature, the dominant fluctuations are due to the
phase qr„(r ) and the amplitude

l pl can be taken as a con-
stant except near vortices. A vortex is a singular point on
one given layer around which y„(r) changes by 2~. Each
singularity must be accompanied by a reduction of lgl,
which vanishes at the vortex center; the reduction ex-
tends over the coherence length $0. The presence of vor-
tices can therefore be defined by an integer field s„(r),
which takes values of 0,+1 on a lattice of spacing $0.
The amplitude variation at each vortex generates a core
energy E„which is roughly the loss of condensation en-
ergy in a volume ada, where da is the layer thickness.
Note that this core energy is present in addition to the
energy of the +2' phase winding with a constant lP out-
side the core.

Each layer is assumed to be sufficiently thin (d0 & $0)
so that y„(r) and A(r, z) are z independent within each
layer. The supercurrent energy involves then the
coefricient

where A, is the London penetration length parallel to the
layers; typically, A., = 10 —10 A ))d = 10 A for the
Cu02 systems. The Lawrence-Doniach effective free en-
ergy, ' ' supplemented with the core-energy term, is
therefore
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2

f d r dz (V'X A ) + g Vy„(r) —A(r, z) 5(z —nd) .1 2
— -~ 1 0o

8' iE. . 2&

2 g f d r cos y„(r)—y„,(r) —(2~/Po) f" A, (r,z')dz' +E, gs2(r),
(n —i]d

1

(3)

where J is the Josephson coupling and go=bc/2e is the
Aux quantum; two-component vectors are boldfaced,
while three-component ones are arrowed, e.g., A. The
four terms of (3) describe the 3D magnetic energy, the 2D
supercurrents, the Josephson coupling, and the vortex-
core energy, respectively.

In the limit of charge e ~0 (with A,, —e ) and E, =0,
Eq. (3) reduces to an anisotropic X-Y model

Pxr= y fd'r [Vq„(r)]
n

J cos[y„(r)—y„,(r) ]
ko

(4)

where r=Po/4m. A, For slow n dependence, the cosine
can be expanded, identifying an anisotropy parameter
8md J/for; when this parameter is =1, %xi becomes
isotropic.

Returning to the general e&0 system of Eq. (3), it is
useful to separate the phase into its singular and non-
singular components. This separation yields the natural
variables s„(r) and 8„(r)of this system, where

where &b„(r)=(P o/2m. )Vy„(r). The Fourier transform of
Va(r ) is 2rriz X q/qw, here z and q are unit vectors in the
z and q directions, respectively; q and k are Fourier
transform variables of r and n, respectively. Hence the
Fourier transform of 4„(r) is, from Eq. (5a),

4&(q, k ) =d g f d r N„(r) exp(iq r+iknd )

= (i Po/q )z X qs ( q, k ) /go —(i Po /2' )qgP( q, k ),

A(q, k)= g A(q, k+27rm/d), (8)

where y (q, k) and s(q, k) are Fourier transforms of
qP„(r) and s„(r), respectively [with g,~f d r /go in the

s(q, k) definition]. Here ~k~ &m/d, while q=~q~ is limit-
ed by the system size 8 in the x-y plane and by the cutoff
on phase fiuctuations, A, i.e., I/R & q & A and A= 1/go.
Since A(r, z) is defined on all z, its Fourier transform
A(q, k) has an unbounded k values, while A(r, nd),
defined at the discrete values z =nd, has a Fourier trans-
form [defined as in Eq. (7)] A(q, k ), with

~
k

~
& m /d. Us-

ing periodic boundary conditions

p„(r)= g s„(r')a(r —r')+qP„(r), (5a)

8„(r)=q „(r)—q „,(r)
(2vrlgo) f —A, (r,z')dz', (Sb)

(, n —1)d

with a(r)= tan '(y/x ) and qP(r) is the nonsingular part
of y„(r).

The problem at hand is to evaluate the partition sum of
Eq. (3), i.e., integrate exp[ —PIT] over all configurations
of A(r, z), 8„(r), and s„(r). A significant simplification is
achieved by first integrating A (r, z ), which can be done
exactly since A(r, z) is a Gaussian variable. The pro-
cedure is to solve for the minimum condition
5V/5A(r, z)=0 for A(r, z) in terms of 8„(r) and s„(r)
and resubstitute in Eq. (3). This leads to the main result
of this section: Eq. (15), an effective free energy in terms
of 8„(r) and s„(r), which is exactly equivalent to the orig-
inal system of Eq. (3).

In fact, 2, is determined by 3„,A~ and the gauge con-

dition, e.g. , in the London gauge V 2 =0 and A.n =0 on
the surface (n is normal to the surface). Thus one needs
the solution for A„, A from 59'/5A(r, z)=0, i.e.,

—V' A= g [4„(r)—A(r, z)]5(z —nd)/A, , (6)

with summation on all integers m. The Fourier trans-
form of Eq. (6) and application of Eq. (8) yield

A(q, k)=N(q, k)f(q, k)/[I+f(q, k)],

A(q, k)=N(q, k)/[A, ,d(q +k )[1+f(q,k)]],
where

(9a)

(9b)

q +(k+2 m /d )
(q, k)=

1 sinh(qd )

2i,,q cosh(qd ) —cos(kd )
(10)

Consider next the magnetic-energy term

f d rdz(VX A)
= —f d r dz A V A —f A (VX A ) Xds .

The term on the surface ds vanishes for zero external
fields (with a finite external field, it is canceled by the en-
ergy of the external field, which has the same surface
term with opposite sign). The bulk term, by using Eq. (6),
for the 3,2 components yields, for the first two terms
of Eq. (3),
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(8~&,d)-' fd'q dk(2') 'l@(q, k)l'/[I+ f(q, k)]
—(8m. } ' f d r dz A, V'2A, . (12)

is determined by the gauge condition, i.e.,
A, (q, k)= —q A(q, k)/k, with A(q, k) given by Eqs. (7)
and (9b); note that the vortex term does not contribute to
A, ; hence, A, (q, k)-p (q, k).

In the following we need integrals with periodic func-

tions g(k) =g(k+2m. /d ) of the form

f dk q g(k)/[k2(q +k )]

dkg k Ok — qk kd .—~/d
(13)

In the final form, qP( q, k ) is replaced by 0( q, k ) [Eq. (5b)],
which by using the solution for A, (q, k) and Eq. (13) be-
comes

Q(q, k)=y0(q, k)[1—exp(ikd )][1+f(O,k)]/[1+f(q, k)] . (14)

Note that the vortex and q&0 terms in Eq. (7) are orthogonal so that when (7) is substituted in (12) these variables decou-
ple; the only coupling in V is in the cosine term of (3). Finally, substituting A. (q, k ) in terms of q (q k ) and A(q k) in
terms of s(q, k ) and y (q, k ) in Eq. (12), using Eqs. (13) and (14), yields for the eff'ective free energy with A being in-
tegrated out,

,'T g —s„(r)G,(r —r', n n')s„—(r')+E, ps„(r)+ ,'T g Gf—'(q,k)~0(q, k)
n, r q, k

—(J/g0) g f d r cos 8„(r)+g [s„(r')—s„,(r')]a(r —r')
n r'

where

G, (q, k)=vrd(r/T)[[1+ f(q, k)]q

Gf ( q, k ) =4m ( T /r )( d /A. , ) [1+(4A,, /d ) sin ( kd l2 ) ] /q (16b)

and r=g0/(4m A,, ). As an additional check, Eq. (15) was rederived in the axial gauge (A, =O), confirming that it is
gauge invariant.

The terms of Eq. (15) represent the vortex-vortex interaction, the vortex-core energy, the deformation energy of the
nonsingular phase 8„(r), and the Josephson coupling, respectively. Note that the Josephson term is the only one which
couples the variables 0„(r) and s„(r).

The next two sections analyze two limits of the free energy (15), while Sec. IV returns to study the full problem of Eq.
(15).

III. VORTEX TRANSITION

In this section the system with J=0 is studied. The well-known logarithmic interaction' between vortices is first
reproduced, and then a RG analysis is presented.

The Fourier transform of Eq. (16a) yields the vortex-vortex interaction in real space,

G ( )= f J ( ) 6 — [b ( )
—1] ' Ib '( )

—[b ( )
—1]' ]'"' . ,2T 1/R q

' 2k
(17)

where JQ(qr ) is a Bessel function of the first kind and

2A'e qb(q)=
2A,,q cosh(qd )+ sinh(qd )

(18)

The long-range behavior of (17) is obtained for r ))d, where b(q) can be approximated by b(0) =2k,, /(2A. , +d);
hence,

4A,,
G„(r,n ) = — .5„0— 1+

2T

—I /2

1+ d
2k.

+ In(r/R ) .
4A,,

(19)

In particular, for d «A,„as for the Cu20 layers,
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G, (r, n ) = (—r/2T ) ln(r /R ), n =0,
G, (r, n )=(r/4T)(d/A, , )'~ exp[ —

~n ~(d/A. , )'~ ] ln(r/R ), n&0 .

(20a)

(20b)

T, = —[1—(1+4K,, Id )
'~ ] . (21)

For T) T„, creation of free vortices is favored, leading
to a finite vortex density, while for T & T, the vortex den-
sity vanishes. This argument is presented in more detail
in Appendix B and an effective free energy is derived.

It is instructive to consider also the shorter-range be-
havior of G, (r, n). When d «A, „G„(r,n) is logarithmic
at both large distance [Eq. (20)] and short distance r «d,
e.g. , G„(r,O)= —(r/2T) ln(r/R ). The situation is more
interesting when d ))k, :

G, (r, O)= —(rA, ITd)lnr, /R, A,, «d «r,
G, (r, O)=(rk, /Tr)+ const, A,, «r «d, (22b)

G, (r, O)= —(r/2T) ln(r/R ), r «1,, «d, (22c)

so that the interaction is not logarithmic only in the in-
termediate range of A,, « r «d. Note also that the
coefficients of the logarithmic interaction vary from r/2T
at short distance to ~A,, /Td at very long distance.

Before presenting the RG analysis, it is useful to con-
sider some magnetic properties of vortices. The single-
vortex configuration has a magnetic field which
penetrates through neighboring layers on which the
phase is nonsingular. The usual scenario of Aux penetra-
tion into a superconductor, e.g. , in the 3D case, involves
currents J= (c /4m )V X V X A, which decay faster than
1/r. Integration of the London equation [Eq. (6)] along a
circle of large radius yields then Aux quantization and
that a finite Aux must be related to an integer number of
vortices. However, in layered superconductors (with cou-
pling J=O), the currents decay as 1/r; in fact, the
current due to a single vortex at the origin is in the az-
imuthal direction 0, with magnitude

J&(r,z) = —(cTIPO) g G„(r,n )5(z —nd) .a
(23)

This can be derived either directly from Eq. (9) or by not-
ing that this current represents the Lorenz force of one
vortex on another one and is therefore proportional to
the gradient of the vortex-vortex potential TG„(r, n ).
The logarithmic form of G, (r, n ) leads then to currents
which decay as 1/r; thus, the current term can balance
the ffux term in Eq. (6) without a phase singularity.

The logarithmic interaction between vortices on different
layers is much weaker than for those on the same layer.
Note also that the exponential factor has a long decay
length of (A,, /d )' layers.

The usual Kosterlitz-Thouless' argument leads now to
a free energy of a single vortex,

—,
' TG„(go, 0)—T ln(R/g'o) =2(T„—T) lnR +const .

for large R, where the vortex transition temperature from
Eq. (19) is

(24)

In particular, the ffux P(0) through the plane with the
vortex can be much smaller than Po if A,, ))d. The ffux
acquires a radial component at z&0 reducing its z com-
ponent; P(n) vanishes for n~~ so that at large dis-
tances the whole Aux escapes in the radial direction.

An important question is whether a single vortex is the
lowest-energy excitation —it might be favorable for a sin-
gle vortex to nucleate other ones so as to reduce the
long-range currents. Consider a vortex "line" of length
m consisting of m point vortices, one on top of the other,
i.e., on planes n =0, 1, . . . , m —1 at r=0. The corre-
sponding energy, for A,, ))d, is

m —1

E(m )=—,
' g TG, (O, n n')+—mE,

n, n'=0

=(r/8) [m ln(dk, , /go)+2+A. , /d

X [1—exp( —meed/k, )] lnR ]+mE, +C,
(25)

where C is independent of m (or of R ) in the limit
m~~ (or R), respectively. Thus E(m) is an in-
creasing function of m and m = 1 is the lowest-energy ex-
citation. In particular, the lnR term is canceled when
m ))(A,, /d)'~; similar conclusions apply to all A,, /d.
The cancellation of the lnR term is related to the q, k ~0
form of

G, (q, k) —[q +q /[A, ,d(q +k )]j

which is nonsingular when k =0.
The total magnetization of a single vortex is in the z

direction, with the rather simple result

M, = f (V'X A ),d r =god .

An external magnetic field H perpendicular to the layers
couples to m vortices with the energy H m Pod/4m. The
lowest field at which this energy overcomes the creation
energy (25) is for m~ ~ and is given by (at T=O and
A,, »d)

H„=P [—,
'

ion(A, ,d Igo)+4E, /7. ) I(4m', ,d ) . (27)

The usual 3D form of H, &
is obtained by using an

effective London penetration length A,,b

=(A,,d )'~ =A,(d/do)', i.e., as if the condensate density
is spread over the whole spacing d, reducing the

average condensate density by factor d0/d.

The coefficient of the 1/r term in Eq. (23) determines
the total ffux (in the z direction) through the nth layer
due to a vortex at the 0th layer:

' —1/2
4A, ,

P(n ) =go 1+
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yexp — 2~ d q dkG q, k g q, k

i g X—„(r)s„(r) (E, /—T) g s„(r)
n, r n, r

(28)

When the Gaussian field X„(r) is integrated, the original
form (15) is recovered. Instead, the sum on s„=O,+1 can
be performed at each site r leading to a factor of

The case of an isolated layer is obtained in the limit
d —+ ~, i.e., P(0) =Po [Eq. (24)], while M, ~ ~ and

H, &

—+0. Note also that the vortex-vortex interaction in
an isolated layer is not logarithmic at very large distances
[Eq. (22b)], while with a finite d screening from other lay-
ers always result in logarithmic interaction for r »d.

I proceed now to study the finite-temperature behavior
by applying the RG method. The partition function Z of
(15) with J=0 is first transformed into that of a sine-
Gordon system by rewriting it as

where y o
=2 exp( —E, /T ) and a y o cos2X„(r ) term, being

irrelevant near the phase transition, is neglected. Since
E, is a chemical potential for vortices, yo is known as the
vortex fugacity.

The resulting free energy has the form of the sine-
Gordon system [Eq. (Al)], and the RG procedure, as de-
tailed in Appendix A, can be followed. Equation (A4)
identifies the function

g ( q, k ) = ( r/8 T)[ 1 +f ( q, k ) ] (30)

To check the relevancy of cos[X„(r)+X„,(r)], consider
Eq. (A18) for X„(ho=A, =0)=(rIST)[ ], where

I
.

] are the brackets in Eq. (17). It can be checked
that X„~o&&Xo near Xo = 1 [see, e.g. , Eq. (20)] so that all
these terms, including the v and h, terms in (Al) and
(A4), can be neglected. The recursion relations (A20)
therefore involve only the fugacity y and the self-energies
of type ho..

dy =2y [1—Xo(ho, 1 /g)]d In/,
(31)

dho=2y y Xo(ho, 1/g)d in/,

+ [I+yocosX„(r)]= exp yo g cosX„(r)
r n, r

(29) with initial conditions y ( go) =yo, ho( go) =0, and

Xo =Xo(ho q )

Xo(ho, q ) = [ho+ ST/r] '
1 —sinh(qd ) [ [2A,, (1+how/ST)q cosh(qd )+ sinh(qd )] —[2A,, (1+how/ST)q ] ]

(32)

To first order in y, the transition temperature of (31) is
determined by Xo(ho=0, 1//=0) and Eq. (21) is
recovered precisely. The phase transition is now inter-
preted according to the flow of the vortex fugacity y; for
T(T„y flows to zero and vortices are absent on long
scales, while, for T & T„y flows to a finite value; i.e., vor-
tices are thermally excited.

To second order in y and for A, , /d »1, as typical for
CuOz-based superconductors, Xo=(ho+ST/r) ', con-
sidering Xo as the scaling variable instead of ho, Eq. (31)
reduces to the standard 2D scaling' '"

Thus g, for which y(g, )=1 is identified as the vortex
correlation length. Near T, [i.e., A & 0, T, & T
&(r/8)(1+yyo)], y first decreases and then increases to

y = 1 at the scale

g, =goexp[vr/4( —A )'~ ]

=
go exp [(~ /32yyo )( 1 —T/T, ) I( T /T, —1) ] '~~,

(36)

dy =2y(1 —Xo)d 1ng,

dXo= —2y y Xod In/,

(33a)

(33b)

where the form r=ro(1 —TIT, ) has been used. For
T) T„but not too close to T, [T () /r8)(l +yy )o], the
effect of the second-order term in y is not significant,
leading to

—1 —yy =
Xo

y2y 2 (34)

with a phase transition at

„T=(~ 8/)(1 —yyo) . (35)

For T & T„, y is relevant and reaches a strong-coupling
situation y = 1, where thermal fluctuations are inefficient.

with the initial values y(go) =yo, Xo(go) =&/ST. The tra-
jectories of (33) are the well-known hyperbolas' "'
of the form

2

(37)

These results are confirmed by numerical solutions of the
full equations for A,, /d =10 as shown in Fig. 1(a). Since
the self-energy ho is mainly effective in the combination
ho+8T/~, the latter can be interpreted as a temperature
renormalization.

It is interesting to consider the case of d A,„which
applies to isolated or well-separated 2D junctions, e.g. ,
junctions on twin boundaries ' in YBa2Cu307. For scales
g «X„Xo=r/ST (for small ho) and the scaling (31) acts
as if T„=r/8, while, in the final integration range g))d,
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M„(r,n)= f dz(VXA)„
(n —1)d

($—0/2n)d fdk/2~+ [I+(4A,, /d) sin —,'kd] '[BO„.(r)/By] exp[ik(n n'—)d] .
n'

(39)

Similarly M (r, n) involves BH„(r)/Bx, while M, (r, n)=0. For a single fiuxon line, f dy BO„.(r)/By=+2m. , so that the
fiux in the x direction turns out to be P (n)=+/(n) of Eq. (24). Thus, for A,, ld)) 1, P„(0)«1 and P„(n) decays as
exp[ —

~n ~(d/A, , )' ]. Quantization does apply to the total fiux, i.e., g„P,(n) =+$0.
The fiuxon system can be solved by the RG procedure of Appendix A. Identify G(q, k) =G/(q, k) [Eq. (16b)] and

g(q, k) of Eq. (A4) as

g(q, k) =(Td/2A. ,r)[l+(4A, , /d) sin —,'kd] .

The variables X„ofEq. (A18) become, now,

( 1+d/2A, , —coskd) cosmkd
X„(h(),h, ) =d

2m. r/T+(ho+h, coskd)(1+d/2A, , —coskd)

(40)

(41)

In particular,

X„(0,0)=(T/r)[(1+d/2A, , )5„O—
—,'5„+,] . (42)

For n&0, +1 terms such as cos[Xo(r}+X„(r)] are ir-
relevant since for these X„(0,0)=0 [see condition of Eq.
(A23)]. However, for n =+1,X+ = —

—,'(1+d/2A, , ) when

Xo = 1; i.e., for d /A, , « 1, the free-energy term
v cos[X„(r)+X„+,(r)] is almost relevant at Xo=l. In
other words, y and u become relevant (in first order) at a
small parameter di6'erence ~XO

—X+, ~=d/A, , «1, so
that one cannot neglect the U term in the RG procedure.
In terms of the original phases p„(r), the u term corre-
sponds to a Josephson coupling between next-nearest lay-
ers.

The RG scaling equations are given by Eq. (A20), with
Xo, X, of Eq. (41) and with initial values at g=g'0 given
byy=J/T, v «J/T, ho=h, =0. Before presenting nu-
merical solutions, it is instructive to consider two simpler
limiting situations. First, neglect U and h &, corresponding
to d/A, , being not too small. Assuming also ho «1,

=goexp[(m. T /32yJro)(l —TITS) ']'~ (46)

where in the last form r=ro(1 —T/T, ) was used. When
Tisnot toocloseto TI, T rl(1+yyo),

J —[2(1—T/~j

f o T
(47)

Consider now a second simplified situation in which
both y and U are maintained, but ho, h

&
are neglected. In

particular, in the limit d/A, , «1, Xo=T/r,
X) = —TI2r, and Eq. (A20) yields

by thermally excited Auxon loops —while for T & T&, y is
relevant, allowing for full 3D correlations between the
layers. Thus T& is a transition from a phase with 2D
power-law corrections at high temperatures to a 3D
phase with exponential correlations at low temperatures.

The correlation lengths can be analyzed as done below
Eq. (34); near T~ [rl(1+yyo) & T& T&],

gI=goexp[(~ T/32yJ)(r/T 1+yJ/T—) ']'

Xo(ho) =(T/r)(1+d/2A, , )

—h()(T/r) ( 3+d/', , +d /4—A, , ) . (43)

dy = [2y(1 —Tlr)+y'yvT/r]d In/,

dv = [2v(1 —T/r)+ ,'y'y T/r]d In/ .—
(48)

Considering now Xo as a scaling variable instead of ho,
the RG equations (A20) for y and ho become

These equations have the fixed point y =U =0, as well as
the nontrivial fixed point

dy =2y(1 —Xo)d In/,

dXO= —2y J Xod in/,

y*=+(4/y')(1 —r/T),
u*=(2/y')(1 r/T), — (49)

where

TI= /[r(1+d/2A. , )(1 yJ/T] . — (45)

For T) T&, y is irrelevant —i.e., the layers are decoupled

y =y [—,'+d/A, , +d /4A, , ](1+d/2A, , )

the initial values are yo =J/T and
Xo($0)=(T/r)(1+d/2A, , ). Equation (44) has the stan-
dard 2D scaling form' "' identical to that of Eq.
(33). The phase transition is at

which defines a critical line v*=
—,'~y*~sgn(1 r/T). —

Linearizing (y —y*, v —u*) near the fixed point yields the
eigenvalues

—(g/g )4(1 —Tlr)

(g/g )
—2(1—T/v)

(50)

with eigenvectors ei=(l, +1), e2=(1,+—,') (Fig. 2). For
T) ~, e2 is the relevant direction, while e, is irrelevant.
For an initial U =0, the critical point is at
yo=(6/y')(1 —r/T); i.e., the transition temperature is at
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shows a case with T &~, affected by a fixed point with
v' )0, similar to that of Fig. 2(b); for T & Tf, a strong v

is again generated. Thus a strong Josephson coupling be-
tween next-nearest-neighbor layers is generated when
T & Tf. This provides an experimental signature which

FKJ. 2. Structure of the fixed points for the simplified Auxon
system [Eq. (48)]: {a) T & r and (b) T) r.

Tf ='r/(1 7 Jp/6) (51) 0.0
-0. 10

I

0.10

with a correlation exponent [2(T/r 1)] '. —For
J/T &yo, y=u=0 is the final fixed point which then
dominates the critical behavior [Fig. 2(b)]. Comparison
of Eq. (51) with Eq. (45) shows that Tf is enhanced by
generating either a u term or an ho term in a similar way.

For T &r, e, is relevant, while ez is irrelevant [Fig.
2(a)]. To reach the fixed point (49), one needs an initial
(possibly small) v(g'o) &0 and the critical yo is near zero;
the corresponding correlation length is

—[4(& —TZT) j

(52)

Comparison with Eq. (47) shows that P «g; i.e., the vi-
cinity of the fixed point (49) is reached much faster then
the vicinity of y =1 as defined by gf. Thus the combined
effect of y and u enhances the renormalization rate and
one may expect that the solution of the RG equation
(A20) will show that v is generated and that the final
strong-coupling situation is reached faster than the scale
of (47); a reasonable guess is that y =1 is reached when
the correlation length is in between those of Eqs. (47) and
(52),

0.0
0.00

1

0.25

J
f 0 T (53)

with 1 & g & 2, depending on T/r. The following numeri-
cal solutions yield g=1 at T/~&0. 4 and increasing to
1.4 at T/~=0. 9 when yJ/T=0. 01 or to 1.9 at
T/r=0. 9 when yJ/T=0. 1. The increase is, however,
mainly due to the ho renormalization, with a smaller part
due to the generated u term.

Numerical solutions of the full RG equations (A20)
with Xo, X& given by Eq. (41) are shown in Figs. 3 and 4.
Figures 3(a) and 3(b) show a case with T &r which is
affected by a fixed point with u

* & 0 similar to that of Fig.
2(a); the trajectory is somewhat dependent on the initial
sign of u. For both signs of initial u, the final stage of
y= 1 is accompanied by a fairly large v. Figure 3(c)

0.0
-0.05

I

0.10
2'Yv

0. )5

FICi. 3. Scaling of the ffuxon system [Eqs. (A20) and (41)] for
k, /d =10, projected in the y, U plane; y and U are the nearest-
and next-nearest-interlayer Josephson couplings [y=y' is as-
sumed, see Eq. (A7)]. The trajectories start near v =0 with vari-
ous initial values y{go), as can be inferred from the figure (a)
T/v=0. 8, v{$0)=—0.001. (b) T/v=0. 8, v{$0)=0.001. (c)
T/ lr. 2, v {g'o) =0. The choice v {go) =+0.001 has a minor
e8'ect on the latter trajectories.
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V. VORTEX-FLUXON CN COMPETITION
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tex loops, as needed in a 3D fluctuation regime.
The implication of the criterion g, =gf is illustrated in

Fig. 5 for systems with k, /d)&1. The dashed lines
represent scaling of the vortex fugacity, while the solid
lines represent those of the Josephson coupling; note the
opposite direction of the flow of the effective temperature
and the locations of T, and Tf. In particular, the two
trajectories near T, /~ correspond to the condition

the vortex scaling is assumed to start from a
smaller yo than the corresponding J/T for the Auxon sys-
tem. Thus, in order to reach the same g when y scales to
= 1, the vortex system must scale faster than the Auxon
system, which is possible if T, is closer to Tf than to T, .

Note that if the renormalization of gf by v and by T/r
is neglected [T/r«1 in Eq. (47)], the criterion g, =gf
becomes that of Ref. 29; i.e., the interlayer coupling in
area g„satisfies Jg, /g =oT; this obviously misses the
effect of Tf on the transition, as well as a renormalization
of g„by J (see below), effect which, as shown below, are
negligible only when J/T is exponentially small.

Before applying the criterion g„=gf, the definition of
g, must be reconsidered. The fiuxon scaling [e.g. Eq. (52)
if T is not too close to Tf ] is valid for (& min(g„, gf ). In
contrast, the vortex scaling [e.g. , Eq. (37) for T not too
close to T, ] is never correct for JWO since nonlinearity
due to vortices is present in both their direct interaction
[first term of Eq. (15)] and in the cosine term of Eq. (15).
This asymmetry is related to the fact that Eq. (15) is not
self-dual; i.e., performing the transformation of Eq. (28)
on the full system does not lead to a system similar to it-
self.

where J (y of the fiuxon system) is the renormalized J/T,
Xo and X, are g dependent from Eq. (41), and b(T) is
given by Eq. (B5). The vortex correlation length g„ is
found by minimizing (54), leading to the form (37), but
with a renormahzed E,', i.e.,

g, =go exp [—,
' E,' /( T r l8 ) ]—, (55)

where, with Xo = —2X, = T/r for simplicity [Eq. (42)],

E,'=E, —T ln2+ —,'y'b(T)(T /r)(J (g, )+v (g„)] . (56)

Thus E,' is enhanced by the Josephson term; for deter-
mining T„we need g„=gf in Eq. (56) so that J (g, ) = 1

and v (g„)& 1.
The criterion g„=gf can now be applied. Consider

first the two extreme regions II and IV of Fig. 5. In re-
gion II, very near T„, Eqs. (36) and (47) should be used
with the result

To find g„ I construct a variational free-energy density

f(g, ), which includes, in addition to the usual interaction
and entropy terms (see Appendix B), the free-energy
gain from integrating the J and v terms [Eq. (A19)].
The fiuxon terms (A19) can be integrated up to g„(with
g„&gf in mind), which together with the vortex free en-

ergy (B6) yields an effective free-energy density

f(g, ) = I (T—rl8) in[go/eg, ]+E,—T ln2] l[b( T)g, ]

y'—Tf [—,'XoJ (g)+(Xo+X, )v (g)]g d(,
0

(54)

T, —T„—[ ln(T, /J)] (57)

/ ,///i

// /

II //'
// /

//g

1

I
/

/

/
/

I I

Tv
8

I

Tc
'r

Tf —T, =0.1Tfl(y JE,' to) . (58)

Most of the possible variation of T, is in the wide re-
gion III of Fig. 5; equating Eqs. (55) and Eq. (53) yields,
for this region,

(59)

in agreement with Ref. 29, but differing from the sugges-
tion of Ref. 28. In the other extreme of region IV, very
near Tf, Eqs. (46) and (55) could be used. A solution for
T, /r) 1 is possible if y J/T )T/E,'; i.e., a large core en-

ergy is required [including the effect of the v term on Eq.
(46) should effectively enhance J in the inequality]. The
result for Tf in terms of ~o is

FIG. 5. Schematic scaling trajectories of vortex fugacity
(dashed lines) and Josephson coupling (solid lines) for d «A,
The axis T/~ is here a renormalized temperature, i.e., ho+ T/~
for the vortex system and [ho+a/T] ' for the tluxon system.
In region I vortex fugacity is irrelevant and Josephson coupling
is relevant; region V has the opposite behavior. In regions II,
III, and IV both vortex fugacity and Josephson coupling are
relevant. Regions II and IV correspond to the behavior of Eqs.
(36) and (46), respectively, while the wide region III corresponds
to Eqs. (53) and (55). Solid circles mark the initial values on the
trajectories defining T, and T& and on the crossing trajectories
(for which g„=gf ) which determine T, .

To allow for T, in regions where second order RCx is
significant, the equation g, (T)=gf(T) is solved numeri-
cally for T=T„as shown in Fig. 6; g, is the scale at
which the solution of Eq. (31) reaches yy = 1 and similar-
ly for gf by solving Eq. (A20) with Eq. (41). [The renor-
malization E,~E,' of Eq. (56), which is neglected in Fig.
6, would make the curves of Fig. 6 steeper at T, /r) 1].
For a small E, /r ( =0.5) the results of the conventional
X-Y model are reproduced, i.e., T, /~ changes by a factor
of =2. For larger E, /~ the variation in T, /~ increases
and T, )~ is possible, i.e., T;/~ changes by ~8. The
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phase. This situation is relevant to 2D junctions between
bulk superconductors —as discussed below Eq. (38),
T,'~~T, , while T/ is decreasing like 1/d [TI formally
vanishes as d ~ ao; however, modifying the model Eq. (3)
for this case leads to a finite T&].

The latter result is remarkable: A boundary such as a
junction can be thermally disordered, while the bulk has
long-range order. This result is due to e&0—the finite
screening length A,, allows fluxon fluctuations in the junc-
tion, while the bulk remains ordered. For the X-Fmodel,
A,, -e —+ ao and the junction orders as soon as the bulk
does.

0
0 VI. MSCUSSIGN

FIG. 6. 3D transition temperature T, as obtained by solving
second order RCx for S, (T)=g&(T) with A,, /d =10, d/$0=1,
y=y'=4 and values of E, /~ as indicated. Other choices of
y, y' [Eq. (A7)] lead to approximately the same curves if J in the
abcissa is replaced by yJ/4.

range for T, /~ variation is therefore a sensitive function
of E, /~.

Conventional calculations of E, are based on an
amplitude-dependent Ginzburg-Landau theory, ' lead-
ing to E, /r=0. 2 (Ref. 39) and to E, /x=0. 12 [Ref. 40
for Eq. (27)]. However, in view of the short coherence
length of Cu02-based superconductors, the required am-
plitude variation is too fast and a microscopic derivation
is necessary. It is safer then to consider E, in the starting
free energy (3) as a parameter, to be determined by exper-
iment.

It is worth mentioning that when fluctuations are ig-
nored E, can be absorbed into the definition of go,

' e.g.,
the energy of a vortex pair is

(~/2) 1nr/go+2E, =(r/2} 1nr/P

However, including thermal fluctuations shows that E,
and go are independent parameters; i.e., scaling between

P and go is not equivalent to eliminating E, . Thus go is
considered here as the cuto6'on phase fluctuations, while
the core energy E, is a term in the vortex energy, which
is in addition to phase-dependent energies and is there-
fore independent of go.

Several of the layered compounds show' ' a resistivi-
ty of the form (1), which allows an estimate of E, . This
resistivity is related to g, via Eq. (36), and the parameter
b in Eq. (1) is then related to yo=2exp( E, /T) in Eq. —
(36). The experimental fits to Eq. (1) for'
Bi2Sr2CaCu20~ and for' T12Ba2CaCu208 yield
E, /~=0. 4+ —,

' 1ny, while for' YBa2Cu307/PrBa2Cu3O/
superlattices E, /~= 0.5+—,

' in@. In view of the
nonuniversal parameter y and the renormalizations in E,'
[Eq. (56)] and i) [Eq. (52)], the factor i)E,'/v. in (59) may
well be above 1.

Finally, the situation for A,, /d &1 is considered. As
shown in Sec. III, there is a finite-size transition
T; =r/8 [Eq. (38)], which is not sensitive to 1,, /d. In
contrast, T/-2i, r/d [Eq. (45)] s,o that a situation with
Tf & T,' can be achieved allowing for an intermediate 2D

The main relevant result of the present work to experi-
ment is the allowed range of T, as J varies from 0 (when
T, ~T, ) to the strong coupling of the isotropic system.
Section V shows that the vortex-core energy, or its renor-
malized version gE,' in Eq. (59), has a significant efFect on
the possible range of T, /r. For gE,' &r, the results are
consistent with the conventional X-F model ' ' where
T, /w varies by a factor of 2.4. However, when E,' is
moderately large, so that exp( r)E,'/~) &&—1, T, /r can
vary by a larger factor of up to 8. %'hen E,' is even
larger, i.e., E,'))T„ the variation in T, /r can be even
larger than 8 [Eq. (SS)].

Note that a given variation of T, /r implies a much
smaller variation in an actually measured T„since r is T
dependent. Assuming the form A,,b=A. '(I —T/T, )

and A,b=A, d/, do, as discussed below Eq. (27), yields
r=ro(1 —T/T, ), where re=god/(4m A'); for , the
CuOz-based superconductors (excluding superlattices),
typically ~o= 10 K (see Table I of Ref. 16). Defining a as
the variation in T, /r, i.e., T, =r/8 when J~O and
T, =cz~/8 when J is large, yields T, in the range

T, /(1+ST, /rc) & T, & T, /(1+ST, /are) .

Since T, « ro, the variation in T, /T, is fairly small.
The Josephson coupling can be estimated by the an-

isotropy as defined below Eq. (4), and experimental
data. ~' Using go=d and re=10 K yields, for
YBa2Cu&07, J= 10 K (with an anisotropy of 5 ), while,
for Bi2Sr2CaCuzOs, J=0. 1 K (with an anisotropy of 55 ).
Thus even in the latter case ln(T, /J) =7 is not large in
the sense that, for gE,'~~, T, is still much larger than
T'

Experimental data on (YBazCu307) (PrBazCu30$) „
superlattices show a significant reduction in T, with
increasing n Consider fir.st the large-n data (n =16)
where T, is near T„;the results of the sharper transitions
of n =16 with m =3, 4, and 8 can be fitted with the left-
hand side of (60} using T, =92 K and rolrn = 1200
K+30%. This implies that A,,b is somewhat larger than
in bulk YBa2Cu307; i.e., there is some loss of electron
condensate. In fact, nonlinear I-V data' on the m =2,
n =8 and m =4, n =8 compounds has shown a reduction
in T„ implying a change in intralayer parameters. It is
therefore essential to measure intralayer properties
directly, in particular A,,b, which can allow a separation
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of the contributions to the T, reduction from either a
change in intralayer parameters or from 2D fluctuations.

The Josephson coupling is expected to change as
lnJ—d, where d —n increases with the PrBa2Cu307
thickness. Figure 6 can therefore be compared with ex-
perimental data on T, (n ) [more precisely, T, /T, should
be plotted rather than T, /r; the T, /T, plot is, however,
similar to that of Fig. 6, except that the overall scale is
reduced to that of Eq. (60)]. Indeed, the initial fast
reduction and the eventual saturation ' in T, (n ) is con-
sistent with Fig. 6 with the parameter E, /~ determined
mainly by the overall change in T, . Experimentally, T,
changes by a large factor; e.g., the m =1 compound
changes from T, =90 K (n =0) to T, =20 K (n =16).
For a small a such as 2.4, the range in Eq. (60) is ex-
tremely small; if a reasonable fraction of the T, reduction
is due to 2D fiuctuations (as implied by the saturation at
high n ), it would imply a larger value of a. Further data
on A,,b are again essential for settling this issue.

Data on the more anisotropic systems
(Bi2SrzCaCu20s) m (Bi2SrzCu06) „have shown a decrease
of T, from 59 K (n =0) to —30 K (m =1, n =2) with
Bi2Sr2CuO6 being a semiconductor. Similar superlat-
tices showed no change in T, =75 K from n =0 to
m =1, n =5; however, Bi2Sr2Cu06 in the latter case is a
superconductor with T, = 15 K and is therefore less
effective in decoupling the Bi2Sr2CaCu208 layers. Fur-
thermore, iodine intercalation of Bi2Sr2CaCu20 shows
that T, is reduced by 10 K, although the crystal sheet
resistance is hardly affected by the intercalation. This in-
dicates that intralayer properties are weakly affected,
leaving the change in interplane coupling as the main
cause for the reduction T, . Thus, even for the small-J
system of Bi2Sr2CaCu20, , a further decrease of J by
forming a superlattice or by intercalation seems to reduce
T„ in agreement with the theoretical estimate presented
above.

The separate studies of the vortex and fluxon systems
lead to further interesting results. The vortex system
(Sec. III) shows that a system with A,, «d has a finite-
size transition T,' at a much higher temperature than T, .
This leads to the possibility of 2D phases on well-

separated junctions. The Quxon system (Sec. IV) shows
that for k, &)d a significant Josephson coupling between
next-nearest layers is generated. Thus the relevance of
the fluxon description can be tested experimentally, e.g. ,
by a strong second harmonic in the ac Josephson effect.

A related set of experiments involves the observation of
power-law I- V relations in a number of layered supercon-
ductors. ' ' This behavior indicates 2D fluctuations and
needs therefore to be reconciled with the presence of a
finite-interlayer Josephson coupling. In the subsequent
work' I study the effect of magnetic fields parallel to the
layers and show that 2D behavior is in fact possible with
a relatively strong Josephson coupling.

To conclude, the present work has gained insight into
the nature of phase transitions in anisotropic systems
with competing topological excitations. Experimental
data on T, of superlattices can be understood in terms of
the competing vortex and fluxon phase transitions. It is
hoped that further experimental data on these superlat-
tices can separate the role of 2D fluctuations from
changes in intralayer parameters and allow for a critical
test of the present theory.
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APPENDIX A: RG PROCEDURE

This appendix describes the RG procedure for a 3D
sine-Gordon-type system which is critical only in 2D.
The procedure is a momentum shell integration method,
similar to that in 2D. The formulation here is
sufficiently general to apply for both the vortex and
fluxon transitions.

Consider a partition function of the form

d dk rZ= fl)f exp —
—,
' f G '(q, k)~g(q, k)~ + f "[y cos[f„(r)]+v cos[g„(r)+f„+,(r)]]

(2m. )
(A 1)

where q, k are Fourier transform variables of r, n, respec-
tively, and the q integration is cut off by 1/R &q &A
(A=1/g), while ~k~ &m/d. The v term is included as it
turns out to be relevant for the fluxon system.

It is given that G(q, k) is singular in q, but not in k,
i.e., G(q ~0, k&0)-q, while G(q%0, k —+0) is finite.
The q =k =0 result may depend on the order of limits, as
is the case for the vortex transition; this does not affect
the RG since the k integrations which follow are not sen-
sitive to a single point.

The f„(r) is decomposed into a field y„(r) with
Fourier components q &A —dA and a field g„(r) with

I

Fourier components in the shell A —d A & q & A.

g„(r)=y„(r)+g„(r) . (A2)

= f G(q, k ) exp( iq. r iknd), — —d qdk
~—~~ (2~)'

(A3)

Consider the correlation function (integral limits indicat-
ed on q =

~q~ only)

G (, )=(g„( )g (0))
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where ( . ) &
is an average with the Gaussian weight

G '(q, k)=q +ho+h, coskd
g q, k

(g~d ), (A4)

exp. —,' f—6'(q, k)~g(q, k)~
d qdk
(27r )'

Define

with g(q, k) nonsingular for either q~O or k~O and
ho, h, are two types of self-energies (as generated below
by the RG) which are q and k independent. Performing
the angular integral in (A3) yields

Jo q" dk g(q, k)
n, dA — q 27r 1+(ho+h, coskd )g(q, k)

(A5)

In this form, G&(r, n ) has poor convergence at large r, a feature due to the sharp cutoff procedure. In a smooth
cutoff procedure, one replaces ' the cutoffs by a smooth function, e.g. , a mass insertion,

J (oAr)dA/A~ f dq qJo(qr)
o q +(A —dA)

= rK[(Ar )d A,1

q +A
(A6)

where K](Ar) is the Bessel function of imaginary argument. To first order in y, one needs only the r =0 value (see
below) and then (A6) is an identity. To second order in y, one needs the averages

f d'p p'Jo(Ap)~y'/(2nA ), fd'p Jo(Ap)~y'/2A' . (A7)

These integrals are formally divergent, but the replacement (A6) gives y=y'=Sm. ; other smoothing functions yield
different y and y'; i.e., y, y' are nonuniversal parameters. (If Ag is chosen as Al, this can also be absorbed into the
definition of y and y'. )

The RG proceeds by integrating out the field g„(r ). Rewrite (Al) as

Z= fXlyexp ,' f——,6 '(q, k)~y(q, k)~' .Z'Iy]Zo[g],d qdk
(A8)

with the normalization

2

Z. [g] = f&/exp ,' f——,6-'(q, k)fg(q, k)f' (A9)

so that an expansion to second order in y and U has the form

Z'[Z] =(esp X [y cos[Z„(r)+g„(r)]+ccos[Z„(r)+Z„+&(r)+g„(r)+g +&(r)]]
n, r

= exp[yI, +uI2+ ,'y I3+yuI4+ ,'—u I5+ .
—] .

Transforming the sum g, to a sum g,' of a lattice with (1—dA/A) less degrees of freedom and using

( exp[if„(r)])&= exp[ —G&(0,0)/2]

yields, for small d A,

I, = g cos[g„(r)+g„(r) ] = [1+2(dA/A) —
—,
' G&(0, 0) ] g' cos[y„(r)],

n, r n, r

(A10)

(A 1 1)

I = gcos[y„(r)+y„+,(r)+g„(r)+g„+[(r)]
n, r

= [1+2(dA/A) —G&(0, 0)—G&(0, 1)]g' cos[y„(r)+y„+&(r)],
n, r

(A12)

I3= g cos[y„(r)+g„(r)] g cos[y„.(r')+g„,(r')] II—
n, r n', r'

]G&(r r', n n')
I cos[y—„(r)——y„,(—r') ]—cos[y„(r)+y„.(r') ]] .

n, r n', r'
(A13)
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In terms of p=r —r' and R= —,'(r+r'), G&(p, n —n') is localized at p ~ A ' [see (A5) and (A6)] so that (A13) generates
terms in the free energy of the form cos[X„(r)—X (r)] (num ) or cos[X„(r)+X (r)]; all these terms; except possibly
the v term, are assumed to be irrelevant; i.e., they renormalize to zero near the phase transition (the condition for this
irrelevancy is obtained below). The only terms of I3 which survive are cos[X„(R+p/2) —X„(R—p/2)] and the v term,
which after expansion in p become

I3 2 p p Il —
—,'p [VX„(R)] JG&(p, O) ——,

' p cos[X„(R)+X„+i(R)]+6&(p, l)+irrelevant terms . (A14)
n, R p n, R

[In the vortex system, keeping the product form in Eq. (29) excludes p=0; this can be absorbed in the definition (A7) of
y'. ] The gradient expansion neglects the higher-order terms in VX„(R ), which are also irrelevant as shown below. Con-
sidering next I&, its only relevant term is cosy„(r),

I4= cos y„r + „r cos y„. r' +g„.+, r' + n
r' + n+, r'

&

—I, I2
n, r n', r'

= g cosX„(r') g [G&(p, O)+G&(p, 1)]+irrelevant terms .
n, r'

The I5 term generates, similar to I2, gradient terms,

I5 = cos y„r +y„+, r + „r + n+, r cos g„. r' +g„+, r' + n
r' + n. +, r'

&
—I2

n, r n', r'

=
—,
' g Q [1—

—,'p [VX„(R)+VX„+,(R)] ] [2G~(p, O)+2G~(p, 1)] .
n, R p

(A15)

(A16)

The Fourier transform of I5 involves 1+ coskd and hence the necessity of introducing the h i coskd term in Eq. (A4).
The partition function becomes then, to second order in y and U,

T

Z=ZO fX)X exp f 3 q LX(q, k)~ +ho+h, coskd+2y y Xo
—1 dqdk 2 2 1 dA

16md (2~)3
'

g q, k A

+8y v (Xo+X, )(1+ coskd )
dA

+ y 1+2 —2XO +2y'yv(XO+X, ) g'cos[X„(r)]dA dA , dA
A A A

dA dA dA

L

A A ' A
(A17)—

—,'y'y X, g'cos[X„(r)+X„+i(r)] dF/T . , —
A

where X„are in general Ao h
&

and A dependent,

dk g(A, k ) cos(nkd )

2m- 1+(ho+ h, coskd )g(A, k )
(A18)

where V is the volume and C a y-independent term due to
(A9).

The final RG step is to rescale q ~q'=q(1+ d A/A ) so
that the original cutoff is recovered; one needs then to re-
scale

X(q, k )~X(q', k ) =X(q, k )(1—2d A/A );
this has the effect that X„(r) is replaced by X„(r'), as re-
quired to preserve the form of the cosine interaction.
After this rescaling (A17) does not change, except that
g(q, k) is replaced by g(q'/(1+dA/A), k).

and dF is the free-energy contribution from the integrat-
ed dA shell,

dF/TV= ,'y'y XO—AdA+y'v —(Xo+X,)AdA+C,

(A19)

dy = [2y(1 —Xo)+2y'yv(XO+X, )]d 1ng,

dv = [2v(1 —2XO —2X, ) ——,'y'y X, ]d in/,

dh o
= [2y y Xo+ 8y v (Xo+X, ) ]d in/,

dh, =8y v (Xo+X, )d 1ng .

(A20)

These equations are to be integrated from an initial

The RG steps are now integrated from an initial cutoff
Ao to a final one A. The effect on g(q, k) is to replace it
by g(qA/Ao, k); thus, all powers of q in 1/g(q, k) in
(A17) scale to zero as A~O —this is the reason for the
standard claim that the higher-order terms in VX„(R )

are irrelevant. Second-order effects from y or U are
neglected as the above rescaling is dominant for g(q, k);
note, however, that the q dependence of g(q, k) can be
significant via Eq. (A18).

Comparing (A17) with (Al) shows that the parameters
y, U, h o, h

&
are renormalized and become cutoff-

dependent functions. Using g instead of A (g=1/A) as
the scaling variable, the recursion relations become
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scale go with initial conditions y(g'o) =yo, u(go) =uo, and
ho(go)=h, (go)=0, which are the bare parameters in the
starting free energy. To first order, there is a phase tran-
sition at Xo = 1, assuming X1 ) —

—,'; for Xo ) 1, y is ir-

relevant (d lny/d in/(0), and for Xo (1, y is relevant

(d lny/d In/&0). At a lower value of Xo, Xo= —,
' —Xi, u

becomes also relevant.
Finally, consider the condition for perturbations such

as tu cos[X„(r)+X„,(r)] to be irrelevant. To first order in
m, renormalization involves

g cos[X„(r)+y„,(r)+g„(r)+g„.(r) ] = [1+2(dA/A) —G&(0, 0) + G&(0, n n') —
] g' cos[y„(r)+y„,(r) ],

n, r n, r
(A21)

for nAn'. Hence

dw =2w [1—2(XO+X„„]d1ng . (A22)

Near the phase transition X0=1, the condition for ir-
relevancy is therefore

+X„„.& —
—,
' (nAn') . (A23)

For n = n ', cos2X„ leads to dtu =2tu(1 —4XO)d In/, which
is always irrelevant near Xo = 1.

APPENDIX B: VORTEX FREE ENERGY

y(k)=yo (Bl)

The free energy per unit area due to vortex excitations is
obtained by integrating Eq. (A19),

f„=—(y'T/16) J y (gg dg

(yI T3/(22 )[ I y2(4T r)/(8T w) ]—/( I T/4—T) (B2)

where g, is determined by y(g, ) =1, leading to Eq. (37).
Note that both terms in (B2) should be kept, to avoid a
singularity at T=~/4.

The phenomenological derivation of f, assumes a vor-

In this appendix a phenomenological effective free en-
ergy for a 2D vortex system is derived, following argu-
ments of Young and Bohr. This free energy involves ad-
justable parameters which are determined by the RG re-
sults.

The RG presented in Sec. III when A,, /d »1 is, up to
a minor shift in T„ the same as that of a 2D vortex sys-
tern; it involves the vortex fugacity y with the initial value
yo=2 exp( E, /T) and—u is irrelevant. When T is not
too close to T, [Eq. (35)], the first-order equation (33a)
can be used with Xo = v./8T, leading to

2(1—~/8 T)

tex density n„proportional to g, . Since the mean spac-
ing between vortices is -n,', the logarithmic interac-
tion energy per unit area is n, (T/4) ln(/on, '/

) [Eq. (20a)],
while the entropy is ln[(A /go) '/N, !], where A is the
area and X, =An, . The free energy, as a variational
function of n„has then the form

f(n, )=(T T/8)n, —1n(/on„)+n, E,(T) . (B3)

This result shows, as is well known, ' '" a phase transition
at T=T/8; when T (T/8, f(n, ) is a minimum at n, =0,
while at T&T/8 the minimum is at n„WO. Defining
n, =b '(T)g, yields two functions E,(T) and b(T),
which adjust the coefficients of the linear (n, ) and loga-
rithmic (inn„) terms. These coefficients are now deter-
mined by comparison with the RG results; n„which
minimizes (B3) and Eq. (37), yield

b(T) =(4hrr)( T T/8)(1 T/—4T)—
X [ I ( T—r/4) /( T ~/8 )

]
—i— (B5)

At T=T/8, b( T ) vanishes and for T & T/8, it increases
continuously to b(T)=0.8 at T=T Substituti. ng Eqs.
(B4) and (B5) into Eq. (B3) yields for the effective free en-
ergy, written now in terms of g„
f(g, )=b '(T)g, [(T T/8)ln(go/eg, —)+E,—Tln2] .

(B6)

This variational free energy has now the proper values at
its minimum. Equation (B6) can now be used to study
shifts from this minimum due to additional terms in the
original free energy, as done in Sec. V.

E,(T)=E,—T ln2+(T T/8) ln[b(—T)/e],
while comparing the value of f(n„) at the minimum with
Eq. (B2) yields
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