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Quantum fluctuations in finite size Josephson junctions
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An effective Josephson coupling energy for a one-dimensional Josephson junction is renormalized due to quantum fluctuations
of the phase difference. In a long junction at 7—0 a Kosterlitz-Thouless phase transition takes place. The state with a logarithm-
ically divergent phase-phase correlation function shows a nontrivial combination of phase disorder on a junction surface with
phase order in the bulk. For finite size junctions the renormalized value of the Josephson coupling energy turns out to be strongly
suppressed for small Josephson-to-charging energy ratio. The implications of this effect for Bloch oscillations are discussed.

The prediction [1] of the effect of Bloch oscilla-
tions in ultrasmall superconducting tunnel junctions
induced substantial theoretical and experimental ac-
tivity in the field (see e.g. refs. [2,3] for a review).
Recently reliable experimental evidence of this ef-
fect was reported [4-6]. Most of these experimental
results turn out to be in good quantitative agreement
with the theory [7,8].

The usual starting point for theoretical investiga-
tions of quantum dynamics of a Josephson junction
is the Hamiltonian [1-3]

H=0?%/2C—E;cos ¢, (1)

where O and § are respectively the junction charge
and the phase difference operators, C is the junction
capacitance and E; is the Josephson coupling energy.
This Hamiltonian is written under the assumption
that the junction cross section area .S is very small,
so that the phase difference ¢ is independent of space
coordinates in the junction plane. This is indeed a
natural assumption: the effect of Bloch oscillations
can be observed only provided the condition 7T«
E_=¢e%/2C is fulfilled. Therefore the junction ca-

pacitance Coc.S should be small enough to allow for
an experimentally accessible temperature interval.
Typical experimental parameters for “quantum”
Josephson junctions are S~10-°-10-!° ¢m and
C~10-'%-10-!¢ F. Then if we assume the junction
size in the x-direction L, to be of the order of that
in the y-direction L, (x and y are coordinates in the
junction plane) we can estimate L, ~L, ~10~% cm.
These values are of the order of (or even smaller
than) the London magnetic penetration depth A for
bulk superconductors. On the other hand the typical
variation scale for the phase difference in the junc-
tion plane is larger than A [9]. Thus for two-dimen-
sional (2D) small capacitance Josephson junctions
with L, ~ L, space fluctuations of the phase differ-
ence along the junction are not important and the
Hamiltonian (1) is justified with sufficient accuracy.

In addition to 2D junctions modern nanolitho-
graphic technique allows one to fabricate 1D small
capacitance tunnel junctions in which case one might
have L, > L,. For these junctions the parameter L,
can be very small (e.g. L, ~10~% cm) while L, is rel-
atively large, L, ~ 10~3 cm. Below we shall show that
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in this case the description of quantum effects within
the framework of the point contact Hamiltonian (1)
is not sufficient in general and one has to take space
fluctuations of the phase into account. Space and time
fluctuations of ¢ renormalize the Josephson coupling
energy Ej and in the limit of large L, and low 7T lead
to the Kosterlitz-Thouless (KT) phase transition
between space~time ordered and space-time disor-
dered phase states. We shall discuss the physical con-
sequences of this effect and compare our results with
those of previous considerations [10,11].

Let us consider a 1D Josephson junction and ex-
press its grand partition function in terms of a path
integral,

7= jD(pexp(—S[(p]), (2)

where
/T Lxdx

stol= | at [ E 107168 p/90y
0 o

+3A3E;(3p/0x)*+E;(1—cos ¢) | (3)

1s the junction effective action [3], A, is the pene-
tration depth of the magnetic field into the junction
(Josephson penetration depth). The time derivative
term in (3) describes a local charging energy with
the corresponding local capacitance defined on the
scale of the Debye length A, which is usually much
smaller than any other scale of our problem. Then
eq. (3) represents a summation of these capaci-
tances in parallel so that E_ decreases with L., E.x
1/L,. In contrast the parameter E;oc L, increases with
the junction size L,.

It is convenient for us to rescale the time coordi-
nate as z=4;w; 7, w;=./8F,E,, and rewrite the ac-
tion (3) as follows,

E faxfd
I e
Stel=7 jo ILZ
(8] 0

X {343 [(99/0x)*+ (89/3z)*] +1—cos @} . (4)
L,=A;w,/T is the “size” of our system in the z-
direction. Equation (4) defines an effective 2D sine-
Gordon model (see e.g. ref. [12] for a review). The

effect of quantum fluctuations of ¢ can be treated
within the framework of a standard renormalization
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group (RG) technique. Starting from the shortest
length scale A, of our problem (which will be defined
below) we successively integrate out fluctuations of
¢(x, z) with wavelengths between a and a+da mak-
ing the scale a larger and larger. This procedure re-
sults in a renormalization of the initial parameters of
our problem. For not very large E; (such that y=
A3E;/w;L. ;< 1) we arrive at the RG equations
(12]

dy

:2(1—X)%?. (5a)

dx=—2y%y2x3 % . (5b)

where we defined X=L, w;/8nA;E, and y is a nu-
merical coefficient of order one which depends on
the choice of the cutoff procedure. An infinite 2D
system (L,—co, T—0) shows a KT phase transition
which takes place at X=x.=1/(1—yy). Below we
shall assume y to be much smaller than one and drop
the term y7 in the expression for x.. Then for > 1
the quantity v (and thus E,) scales out to zero with
increasing a. It means that for £,/E, < L2/8n?43 and
7'-0 quantum fluctuations of the phase ¢ in a long
1D Josephson junction destroy the effect of Cooper
pair tunneling and therefore two superconducting
electrodes become effectively decoupled from each
other. On the other hand, for x< 1 (or, equivalently,
for E;/E.> L2/8r2)%) the quantity E scales to a fi-
nite value and the superconductors remain correlated.

The existence of a disordered phase state of a 1D
Josephson junction has an interesting physical con-
sequence. Indeed for x> 1 the phase-phase correla-
tion function diverges logarithmically in space-time,

(p(0.0)p(x,2) ) xIn[(x*+2)/45] . (6)

1.e. quantum fluctuations destroy long range order in
either time or space directions or in both. As to the
space disorder it means that the phase of each su-
perconductor is disordered near the junction plane
while it obviously remains ordered in the bulk. In
other words, long range phase order in the bulk does
not prevent phase disorder on a surface. This non-
trivial situation is due to quantum fluctuations of the
supercurrent component normal to the junction
plane. This component survives only in the vicinity
of this plane and vanishes at a distance of the order
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of the screening length A outside this plane. Then
fluctuations at the junction decouple from those in
the bulk and lead to a coexistence of surface disorder
with the ordered state inside the superconductor. We
can add that for an isolated superconductor the ab-
sence of the current component normal to the junc-
tion plane results in a constraint which prevents any
surface fluctuations of the phase.

Note that similar results were obtained for 2D Jo-
sephson junctions [9] and layered superconductors
[13]. In those cases, however, a disordered phase
state on a junction surface is due to classical thermal
fluctuations of the Josephson current. For 2D Jo-
sephson junctions thermal fluctuations of the phase
difference ¢ also lead to a suppression of E; and to
a KT phase transition between ordered (7< Tj) and
disordered (7> Ty) phase states [9].

In contrast to superconductors the correlation be-
tween two bulk magnets (described e.g. by the XY
model ) weakly coupled through some surface will be
enforced by the long range order in the bulk. In this
case there is no screening length analogous to the
London length A for superconductors and fluctua-
tions on a surface cannot be decoupled from those
in the bulk.

Apart from the obvious similarity between the
problem of ref. [9] and that discussed here, there are
several significant physical differences between them.
Perhaps the most important one is that contrary to
the case of ref. [9] the quantum problem (2)-(4)
is essentially anisotropic with respect to space and
time coordinates. E.g. the “space volume™ L, is in
general by no means linked to the “time volume™ L,.
Therefore depending on the relation between L, and
L, one might expect the existence of a crossover be-
tween the effective 2D and 1D behaviours of our
model. This effect will be considered below.

As to the macroscopic quantum effects in small ca-
pacitance tunnel junctions [ 1-8] the experimentally
relevant limiting case is L,>> L, or, equivalently,
T Aywy/L,. Indeed the temperature is usually ex-
pected to be sufficiently low (typically T~10-2-
10-! K) and therefore for typical junctions one can
estimate the corresponding “time length” as
L.>10~! cm which turns out to be much larger than
L,.~1073 cm. As a result fluctuations of the phase ¢
are effectively two-dimensional only within the scale
interval Ao <a<L,, while for a> L, or, equivalently,
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for the frequency range w~ 1/t<A0y/L, we arrive
at the effective point junction problem with the re-
normalized Josephson coupling energy EJ,

Sle]l= J‘ dr [(1/16E.)(d¢p/d7)*+EJ(1~cosp)] .
(7)

The effect of the charging energy renormalization is
small for y<< 1 and we shall neglect it here and be-
low. To evaluate the parameter Ej we proceed with
the RG equations (5). For X>1 we start renormal-
ization at a~ 4, and stop it at a~ L,. Making use of
(5) we get for E;/E, <L2/8n21?

Ej=E;(Ao/L)*. (8)

For E;/E.>L2%/8%r%A} (X<1) the parameter j in-
creases with increasing the length scale 4. In this case
renormalization should be stopped either at L, or at
the correlation length of our problem depending on
which scale is smaller. Here we define the correlation
length or, equivalently, the renormalized Josephson
penetration length A as a scale at which the condi-
tion y~ 1 is satisfied. Then combining this condition
with (5) and choosing the numerical factor to match
A} with the conventional Josephson length A; in the
limit X—0 we get

Aj=A5(As/Ag)¥ 70, x<1. (9

For L, <Aj the correlation length Aj (9) is irrele-
vant and as in the case X> 1 one should stop renor-
malization at a~ L, thus reproducing the result (8)
also for X< 1. On the other hand for L, > A} we stop
renormalization at a~ A} and find for x<1

Ef=Ey(Ao/Ay)* -0, (10)

In this case the renormalized effective action has the
form

Slel= jdf [(1/16E;)(dp/d7)*

+41A2E;(3¢/0x)*+Ei(1—cos ¢)]. (11)

Both results (8) and (10) show that high frequency
quantum fluctuations of ¢ in a 1D Josephson junc-
tion with L,> 4, decrease the effective Josephson
coupling energy Ej in comparison to that of a point
junction. This effect is particularly pronounced for
X>> 1. In the case described by eqgs. (7), (8) at low
frequencies w SAj;w;/L, the junction behaves as a
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point one with the corresponding effective
Hamiltonian

H=0?/2C—E}cos ¢, (12)

This in turn means that the effective band structure
of the problem is sensitive to the junction size being
renormalized in accordance with Ej (8). Therefore
a corresponding modification of the theory [1-3,7,8 ]
is needed for the case of finite size Josephson
junctions.

To estimate the typical value of the ratio EJ/E) let
us define the minimal length scale 4, at which the
junction can be described by the action (3). As it
was already discussed in ref. [9] the space gradient
term in the effective action (3) has the form
1A3E;(dp/0x)* provided i, exceeds the London
penetration depth A. Another restriction for 1, comes
from the adiabaticity condition w << 24 (4 is the su-
perconducting gap) for the Josephson coupling en-
ergy term —Ejcosg (see e.g. ref. [3]). It yields
Ao>> A wy/24. Combining these restrictions with the
obvious inequality o> L, (which allows us to de-
scribe the junction by means of a 1D model) we get

Ao>max(4, L, A;w;/24) . (13)

Here we estimate A~ 107° cm, L,~107°-10"" cm,
Ay~1072-10"3 cm, w;/24~0.1-1 and thus find
A020.14;. Therefore for L.~ A, and Xz 1 the renor-
malized value E} (8) turns out to be much smaller
than E;. The consequence of this effect might be e.g.
strong renormalization of the effective bandwidth J:
even for Ey>> E_ one might reach the opposite limit
E} < E. and thus the bandwidth for a finite size
junction d~ E. becomes much larger than that for a
point junction, docexp( —8Ey/wy). This in turn in-
creases the threshold current I, for Bloch oscilla-
tions [1-3]. Also Zener tunneling [3,8] becomes
much more intensive of one increases the junction
size keeping the parameters £y and E_ fixed.

Here the following comment is in order. Strictly
speaking one has to modify the action (3) to include
the effect of an external current I, and/or an exter-
nal circuit into consideration. It is easy to see, how-
ever, that this modification affects only the low fre-
quency part of our problem while the high frequency
renormalization of E; discussed here remains un-
changed. Indeed combining the results of refs.
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[3,9,14] one can write the corresponding modified
effective action S as

Slo)=STp) - | delp(x)/2e+S0lol . (14)

where S[¢] was defined in (3), ¢(7) is the space av-
erage of the junction phase

L«
g ,
¢M=Z£MMxﬂ (15)

and Sple] 1s a dissipative contribution from a (part
of an) external circuit. The precise form of Sp[¢]
depends on the details of the setup. Usually it is
Ohmic at reasonably low frequencies in which case
we have

T i
Solp)=5- ¥ lo.l10(@,)1* (16)

a=m/2¢?R, R is the effective resistance of external
leads and w,=2nnT. Then it is necessary to check
that the frequency scale w> w;4,/ L, involved in the
space-time renormalization of E; is separated from
a substantially lower frequency scale of Bloch oscil-
lations I,/2e. For the practically important param-
eter region FEJ<SE. oscillations occur o<
(E{/E.)? and I, <I, <[, i.e. the maximum fre-
quency of Bloch oscillations [8]

Omax =lee/20=1/2RC+ (\/nTE}/4€*R)*3

1s still much lower than wyA;/L, for any reasonable
value L,<A,. Scale separation becomes even more
pronounced for £] > E.. This allows us to conclude
that our RG analysis remains valid also in the pres-
ence of an external bias /..

Note that renormalization of the bandwidth [10]
and the critical current [11] of a finite size Joseph-
son junction has been already investigated before in
the limit E;>> E, within the framework of an in-
stanton technique. In this limit the results obtained
here essentially coincide with those obtained in refs.
[10,11]. E.g. combining eq. (8) with the expression
for the renormalized bandwidth o' x
exp(—./8Ej}/E.) and expanding in powers of X we
immediately reproduce the result of ref. [10],

0"=0[1+ (L./mAy) In(24L /wiAs)] .

It is worth pointing out that the technique of refs.



Volume 171, number 5,6

[10,11] allows us to study finite size renormaliza-
tion effects only provided they are small enough. In
contrast, the RG technique developed here makes it
possible to proceed in a wide parameter region in-
cluding the limit E; <« E, in which renormalization
effects become strong.

As we already discussed, the problem of a 1D
quantum Josephson junction can be reduced to that
of a point junction (12) provided L, $Af. For x<1
and L,>Af the renormalized effective action still
depends on both time and space coordinates. At the
space-time scale x<L,, z<L, the phase ¢ is or-
dered. However, for L,<z< L, the behavior of the
system is entirely different. At this scale the time co-
ordinate is the only one which matters and the sys-
tem becomes effectively one-dimensional again.
Hence, at Toc1/L,—0 and small w<w;d;/L, the
phase-phase correlation function diverges as
(ppd>cl/w? (or {ppxl/|w]| for a#0) and the
problem again can be mapped onto that of a point
junction. This in turn means that in the low tem-
perature limit macroscopic quantum phenomena
(Bloch oscillations, Zener tunneling etc.) in prin-
ciple can occur even in long (L, >A}) but finite Jo-
sephson junctions. In this case, however, the corre-
sponding temperature interval as well as other
relevant parameters (e.g. the threshold current I,;, and
the amplitude of Bloch oscillations) schrink expo-
nentially with Eyoc L,. In a infinite junction, L, — oo,
for X< 1 the phase remains ordered (while the con-
jugate charge variable is disordered) at any scale and
quantum effects are essentially suppressed.

For the sake of completeness let us briefly discuss
the results for a “semiquantum” case Ao<L,<L,. In
this case we again proceed with the RG equations
(5), stop renormalization at o~ L, and reproduce
eq. (8) in which one should substitute L, instead of
L,. For Ag~Aywy/24 and Aywy/L,<T<24 this
equation yields

Ei=E;(T/24)*, Af=A;(24/T)*. 17)
For the scale L, <x<L, quantum fluctuations are
irrelevant and we arrive at a 1D classical problem
with a free energy functional

Lx

r dx ry2 2

Flpl=Ej | 7~ [1(25)*(39/3x)*+1—cos 9] .

Lz ( l 8 )
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In conclusion, we showed that high frequency quan-
tum fluctuations in a finite size 1D Josephson junc-
tion may substantially decrease the Josephson cou-
pling energy in comparison to that of a 2D junction
with the same cross section area. This effect is par-
ticularly pronounced for L,>1, and E,/E . <
L2/8n242. It opens up a possibility to vary the pa-
rameter Ej by changing the junction geometry. For
a long junction at 7—0 we predict a KT phase tran-
sition between disordered (xXx>1) and ordered
(x<1) phases. In a disordered phase E; scales out
to zero, i.e Cooper pair tunneling between super-
conducting electrodes is suppressed by quantum
fluctuations. A nontrivial feature of this phase is the
coexistence of a disordered state on a junction sur-
face with the ordered one in the bulk.
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