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Vortex and Fluxon Phase Transitions in Layered Superconductors
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The system of superconducting layers with Josephson coupling J is studied. The ordering temperature
Tf for the Auxon loops parallel to the layers is shown to determine the transition temperature T, of the
system, except when J is exponentially small; in the latter case T, drops towards the J=O vortex transi-
tion, accounting for data on YBazCu307/PrBazCu307 superlattices. A magnetic field parallel to the lay-
ers produces a sequence of phases in which the induced Auxon lines are I layers apart. For I & 8 and J
not too small, phases with two-dimensional fluxon correlations occur near T„' this accounts for the ob-
served V—I' current-voltage relation in high-T, superconductors.

PACS numbers: 74.70.3m, 05.70.Fh, 74.40.+k, 74.50.+r

The anisotropic properties of most of the high-
temperature oxide superconductors has led to increased
interest in the effects of two-dimensional (2D) fluctua-
tions. In particular, data on bulk samples [1-4] and
more recent data on thin films [5-7] of TlqBa2CaCuqOs,
YBa2Cu307, and Bi2Sr2CaCu20„have shown a relation
V—I' for the voltage V and current I with a(T) & 1

near T, ; this is consistent with the Halperin-Nelson [8]
description of vortex Auctuations in 2D superconductors,
based on the Kosterlitz-Thouless (KT) theory. Further-
more, the exponent a(T) yields an effective thickness of
the 2D layer [5,7] which is of the order of the unit cell in

the c direction. On the other hand, T, drops dramatically
in YBa2Cu307/PrBaqCu307 superlattices as the separa-
tion of the superconducting CuO& layers increases [9-11],
indicating that T, with the usual layer separation is much
higher than that of an isolated layer.

These data focus on the nature of the phase transition
in anisotropic layered superconductors. The effective free
energy with Josephson coupling J between layers [12,13]
allows for two types of topological excitations: vortex
points due to ~ 2tr phase singularities in each plane and
Auxon lines due to ~ 2x variations in the relative phase
of neighboring layers. The J=O case has been extensive-
ly studied [14-17], showing that vortices interact loga-
rithmically in distance and indicating a vortex phase
transition at a temperature T,

The presence of J allows for a distinct phase transition
at a temperature Tf, defined by assuming, for computa-
tional convenience, that vortices are absent. This transi-
tion is due to fluctuations of Auxon loops parallel to the
layers, decoupling the layers at T & Tf. The neglect of

p d2pd ~ QXA 2+
8~~ 2z

vortices is possible in isolated or widely separated junc-
tions, e.g. , junctions on twin boundaries [18], or for our
system if [19] Tf were lower than T,, so that free vortices
are thermally unactivated at Tf. In the latter case the
range Tf & T ( T,, would be a 2D phase exhibiting
V—I'tTI However, Korshunov [20] has shown, by using
a discrete Gaussian version of the free energy, that in fact
Tf & T for all the range of parameters, excluding the
possibility of a 2D phase. He then concluded that the
three-dimensional (3D) transition temperature T, occurs
near T,, with ln(T, —T,, )—T,,/J.

A considerable insight is gained by adding a magnetic
field H parallel to the layers which affects the fluxon Auc-
tuations when H & H, ~, where H, ~ is the parallel critical
field. An isolated junction is thermally destroyed by 2D
fluctuations for all H & H, ~ [18]. For the multilayer sys-
tem Efetov [14] has proposed that above some critical
field (&)H, ~) the 3D correlation of the flux lines is lost,
leading to a 2D phase; the latter derivation was based on
a high-field expansion and neglected the role of vortices.

In the present work I show that indeed Tf & T,„. howev-
er, the 3D transition temperature T, is close to Tf for
ln(T, /J) not too small. Only when J is exponentially
small does T, drop towards T,„accounting for the data
on superlattices [9-11]. I then show that a field H & H, ~

produces a sequence of phases with the induced Auxon
lines I layers apart. For I ~ 8 vortices eliminate 2D
phases (disproving Efetov's scenario for l=l), while for
9 ~ l ~ I, each "l phase" has a 2D regime close to Tf,
accounting for the V—I' l relation [5-7] and for an ob-
served [6,7] H dependence of the exponent a(T).

The effective free energy for a layered superconductor
with s-wave pairing is [12,13]

2

t nd——,Z„', d'rcos s „(r)—
v „-,(r) —(2~/yo) J, „&,(r,z')dz' —&,Zs„'(r),

f/, t'

where p„(r) is the superconducting phase on the nth layer, r is the position vector in the layer, A(r, z) is the vector po-
tential, po =hc/2e is the flux quantum, E, is the loss of condensation energy in a volume Jodo, and s„=+ 1 at the vor-
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Tf

(I+d/2~, ) (I —yJ.)
For d«k„yJ« I, Eq. (4) is factor 8 larger than Eq.

(2); in fact for all values of d/X, we have TI & T, This

(4)

tex sites while s„=0otherwise. Thus

v „(r)=v p(r)+ps„(r')tan '[(y —y')/(x —x')],
r'

where p„(r) is a nonsingular function. The length scales
are k, =A. /dp with X the London penetration depth paral-
lel to the layers, dp the thickness of each layer, d ( & dp)
the separation between layers, and (p the in-plane corre-
lation length; typically X, =10 A» dp=10 A. The
four terms of (I) describe the 3D magnetic energy, the
2D supercurrents, the Josephson coupling, and the vortex
core energies, respectively.

Consider first the J=0 case. The vortex-vortex in-
teraction is [14-17] —ln(r) for r))d, g p, indicating a
KT-type transition. A renormalization-group (RG) anal-
ysis [21l similar to that of a KT transition [22] confirms
this, with the transition temperature

T,, = —,
' z [I —(I+4k, /d) ' '1+&(exp( —E,/T, )), (2)

where z =pp/4n k, At T. & T,, vortices are relevant with
a finite density, while at T & T,, vortices are irrelevant
and have zero density. Note that z = z (T) since the
effective free energy (I ) involves a temperature-de-
pendent k. Defining T, as the transition temperature of a
corresponding isotropic 3D system and assuming that the
relevant temperatures are not too close to T, , the mean-
field form X(T) =Ap(1 —T/T, ) '~ can be used. Hence
z(T) =zp(1 —T/T, ), where zp=Ppdp/4z Ap (typically
zp=10 K), and from Eq. (2) T,, =T, [I+8T, /zpl
for d«k, .

Consider next the system with J&0. I assume first that
vortices are absent, i.e., s„(r) =0, and examine later the
consistency of this assumption. Equation (I) is then
essentially the action for a 2D sine-Gordon system which
is dual to the vortex problem [22], and an RG procedure
is valid in powers of Jp=J/T. The recursion relations
which increase the scale g from gp renormalize Jp to J(g)
and xp=(I+d/2X, )T/z to x(() via

d ln J=2[1 —x]d In(, (3a)
dx = —2y J x din(, (3b)

where the coefficient y depends on the procedure of
smoothing the cutoff [22] (e.g. , with a mass insertion
y=4xJ6). Equation (3) determines a phase transition at
the temperature

confirms Korshunov's result [20]—there is no 2D regime
and the transition is intrinsically 3D.

Consider now the complete system of Eq. (I). In the
range T,, & T ( TI both vortices and J are relevant and
compete for disorder or order, respectively. To study this

competition, compare the fluxon correlation length gy at
which J((y) = T with the corresponding length
defined by the vortex density g, The scaling of the
separate vortex and fluxon systems is valid up to
min(g, , ,g~). If gI(g, , , scaling reaches first J(gg) = T
and fluctuations in the relative phase of neighboring lay-
ers such as free vortices are suppressed, i.e., gf (( col-
responds to a 3D ordered phase. On the other hand,
when (,, ( g~, vortices on a scale g, , interfere in the cosine
term of (I), prevent J from fully renormalizing, and dis-
order the system. If T is not too close to Ty (i.e., TJ

T& yJT/—z) x(g) =xp and Eq. (3a) yields 2In(gp/gf)= (I —T/z) lnJp, a similar scaling for vortices yields
21n(g, ,/gp) =E,/(T —z/8) and the criterion (f
determines

z[E,+ —,
'

z lnT„/Jl
(5)E, + z lnT, /J

Including the eflect of J on the vortex system shows [21l
that Eq. (5) holds with E, replaced by E,' ( & E,), The
eAective vortex energy E,' can also be determined experi-
mentally by the vortex resistivity p, i.e., lnp —(T
—T, ) '~ [8]; the limited range for this behavior [2-5]
implies E,'& T, . Equation (5) then yields T, z = Ty
for ln(T, /J) (E,'/T„ i.e. , J= T„while T, T,, for
In(T, /J) & 8E,'/T„ i.e. , J exponentially small. Equation
(5) thus shows the crossover from fluxon-dominated to
vortex-dominated transition; unless J is exponentially
small the transition is near TI.

I consider next the system (I) in the presence of an
external magnetic field 0 parallel to the layers; vortices
are first neglected. The magnetization in, say, the x
direction corresponds to —fd r+„el [ad„(r) —p„—l (r)]/
By, so that H acts as a misfit parameter in the com-
mensurate-incommensurate transition [23-25]. Based on
this analogy, it is useful to transform the problem into
that of one-dimensional fermions on chains with length
I.—each time-dependent fermion corresponds to a flux
line meandering in space. The algebra involves integrat-
ing the Gaussian vector potential fields [20] and trans-
forming into a quantum problem [24]. In terms of an-
nihilation operators a„(q), b„(q) for right- and left-
moving fermions, respectively, on the nth chain I obtain
the equivalent Hamiltonian

F Z [Vpq [a. (q)a. (q) b.'(q)b, (q)l —(zJ/(pT—) [a„(q)b„(q)+b t(q)a„(q)]
n, q

—(Hpp/4' T) [a„(q)a„(q)+b„(q)b„(q)] + (2x/L )Uppl „(q)p2„(—q)l

+(~/L) Z ZVn —.[pin(q)+p2. (q)][pin( —q)+p2n( —q)l +(27K/L)gg(Ul —Vl)pin~i(q)p2n( —q), (6)
n&n' q +'

q

where pl„(q),p2„(q) are Fourier transformed densities of the a„,b„ fermions, respectively, and V„,U„have the Fourier
transforms [(42z) p (k)+ I]/8'(k) for V(k) (with +) and U(k) (with —) and p(k) =pp/[(16m Td)[I+(4X,/d)
x sin (kd/2)]].
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The on-chain terms [those within curly brackets in (6)]
have been extensively studied [23-25]; following the
Schulz procedure [24] the fermion spectrum is found

by a Bogoliubov transformation to be ~ [(V0+U0) q
+h, ]'~ for small q, where d, —I/gf is the renormalized
gap. When H & H, ~ =4nTA/pa, the upper branch of the
fermions becomes occupied with a fermion density nf
which corresponds to Aux penetration.

The total on-chain fermion energy has terms linear and
cubic in nf for small nf, while the interchain coupling has
a nf term [neglecting U~ —V~ = V~(d/X, ) ' ]. This dom-
inant repulsive force favors a situation with nf&0 on

every lth chain and nf =0 on intermediate chains, i.e.,
Auxons are I layers apart. Both nf and l can be con-
sidered as variational parameters, determined by mini-
mizing (/f F). A mean-field decoupling yields a sequence
of "l phases" with l decreasing with H; I-H ' for
I «(A, ,/d) '~ with H& 2H, ~, while for higher I with
H&2H, ~, l —In[H, ~/(H —H, ~)]. The main feature of
the result, namely, the sequence of l(H) transitions, is ex-
pected in general due to the discreteness of Eq. (1) in the
z direction.

To obtain the long-range behavior I linearize the fer-
mion spectrum of an occupied chain at its Fermi points to
obtain fermions with velocities +' U, and neglect the
states of the filled branch (energies ~ —A) which re-
quire a finite excitation energy [24]. The interactions be-
tween these fermions on chains n, n' are classified [26-28]
as either backward scattering y~ (n —n') or forward
scattering y2(n —n') with Fourier transforms y; (k)
(i =1,2). The fermion RG to third order in y;(n) leads
to an integral-differential equation [26-28] for renormal-
ized y;(k, () with the initial condition y;(k, (0) =y; (k).
The couplings y,. (k) can be chosen so that y~ (k) ~ 0 and
vanishes only at k =z. The latter point is then the most
susceptible one to generate a negative y~(k, g) which sig-
nals a density wave [27,28]. The initial direction of flow

of y~ (x,g) is determined by the sign of y2 (x), which for
I= 1 and (X,/d) '~

&& I is

y'(x) = (y,' —6,') '[(4n) 'p'(n) —I ]/8'(x) v, . (7)

Here y;, 6, are the coefficients of the Bogoliubov transfor-
mation at the Fermi points and depend on H; as H

H, ~, y„8, I/J2. Note that the coupling Eq. (7)
vanishes as H H, ~, justifying the linearization of the
fermion spectrum even in this extreme limit.

Equation (7) changes' sign at the temperature T$'i
=r/4, which remarkably is independent of H. When
T & T)', y~(k, g) remains positive, suppressing a
density-wave response (at least for g not too large, see
below); this corresponds to uniform-density fermions, and
in terms of Auxons to power-law decay for Auxon position
correlations. When T & T)', y~(k, g) develops a nega-
tive dip at k =z corresponding to a density wave, i.e., a
triangular Abrikosov lattice for the Auxons.

For I & 1 the initial condition for the RG becomes

y;(k, (0) =g„'=~y, (k+2nr/l)//, resulting in a density-
wave transition for 2 ~ l && (X,,/d) '~ at

(8)

In an l phase, fluxons penetrate only between groups of
I neighboring layers; the layers in each group are phase
correlated both above and below T)' and can be con-
sidered as an effective layer. For T & T) fluxons have
positional long-range order and all layers are correlated,
while for T & T)'~ fluxon fluctuations decouple the
effective layers.

To appreciate this result I reconsider the vortex prob-
lem with J=O between eA'ective layers. If vortices now
order at T,,

' & Tj' then the separate fluxon and vortex
schemes are consistent and a 2D regime exists. The ele-
mentary vortex excitations in an eAective layer interact as—lln(r) for I «(k, /d) '~, leading to a vortex transition
at T,,

' =rl/8. Comparison with (8) shows a second ap-
parition of a factor 8: For 1~8, T,. 'i~ Tf'l and the
transition must be a 3D one between T,,

' and T)' [as for
the H=O case, it is near Tj' unless J is exponentially
small]. In particular, the range T & T)', which could
correspond to the 2D phase proposed by Efetov [14], is
disordered by vortices.

The only possibility of obtaining a 2D phase is for
l, ~ I ~ 9 in the range r & T & T„ this range exists if
T, = Tf & r and /, is determined by T)' & Tf, i.e.,

48/l & 1
—yJ/Tf (Fig. 1). The 2D phases (shaded areas

in Fig. 1) are bordered by KT-type transitions —a vortex
transition into a normal state at high T and a Auxon tran-
sition into a 3D superconducting phase at lower T. Note
that Auctuations in l should eliminate the sharp corners in

Fig. 1.
The expectation based on the initial flow of y~(x, () is

confirmed by numerical solutions of the RG equations
[27] up to a large scale g, exceeding typical system sizes

((,= IO go for A,,/d=10 ). For longer scales and for
T & T$' a density wave with kWx seems to develop, cor-
responding to a weakly coupled nontriangular fiux lattice.
The 2D phases are therefore at least 2D in the finite-size
sense, similar to the case of the one-layer system [8].

Consider now experimental data. Controlling d in

YBa2Cu307 by adding PrBa2Cu307 layers has shown
[9-11]a considerable reduction of T„by a factor of —4.
If T, were near T,, such a drop could not be understood.
In the present theory, when d increases J becomes ex-
ponentially small and T, shifts from Tf to T,, ; fitting the
results for the sharper transitions [11] of well separated
3, 4, and 8 Cu-0 bilayers yields ra=(1200 K)+'30%,
consistent with a direct estimate of I 0.

Assuming r0= 1200 K for Cu02 layers in all the com-
pounds, Eq. (4) yields T, —Tf =7(1 —yJD) K while T,—T,, is a factor -8 higher. Data on V-I' determine
the shift T, —T„which for Bi2Sr2CaCu20„ is [7] T,—T, = 3 K while for T128a2CaCu20g is [5] T, —T, = 1

K. This is consistent with T, being close to Tf rather
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0.7 9.8 0.9
T/T;

FIG. 1. H Tphase diagra-m showing the 3D transitions Tj'i
(vertical phase boundary lines) for I =1-4. Inset: 3D transi-
tions TI' and 2D transitions T, 'for l =9, 10. . The shaded
areas are 2D phases with power-law I-V relation. The tempera-
ture scale corresponds to T,"/ro =O. I and yJ/ Tf =0.19.
T, /T, = Ti/T, =0.925 is marked by a dot.

than close to T,, and consistent with the observed vortices
having l ) 8.

I propose therefore that the relation V—I' is ob-
served in I & 8 phases due to the presence of small fields
parallel to the layers; since H, [ 0 as T T, these
fields are unavoidable. Furthermore, the observed depen-
dence of a(T) on fields perpendicular to the layers [6,7]
can be due to a small (unintentional) component of these
fields in the parallel direction. H then aA'ects a(T) since
the latter is proportional to the eA'ective layer thickness I,
in qualitative agreement with experiment. Quantitative-
ly, however, the data [6,7] seem to be fitted by l ——lnH
while the mean-field decoupling of (6) gives l-H ' for
H~ 2H, ).

In conclusion, in this work experimental data have
been understood and new insight into the nature of the
superconducting transition has been gained.
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